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Preface to the 24th German Edition (2018) and
the 2nd English Edition (2018)

Accompanying Volume 1, this second volume of “Pohl” will be published in an up-to-date format,
with a modern system of numbering of the chapters, equations and figures and with exercises at the
end of each chapter. Once again, we have taken the opportunity to carry out a critical reading of
the whole text. Along with numerous clarifications and new formulations, we have revised many
figures and comments to conform with modern notation and symbols, in order to make reviewing
the material and reference to other literature as straightforward as possible.

As in Volume 1, we have carried out major revisions to the accompanying videos. In the e-book
format, they will be readily accessible and can be opened directly by clicking on the links provided.
This is true also of supplementary references from the Internet, and of the historical documentary
“Simplicity is the Mark of Truth – the Life and Work of Robert Wichard Pohl” by the science
journalist Ekkehard Sieker (see the Preface to the 22nd edition, sidenote). He has dealt extensively
with the biography of Robert Wichard Pohl in Göttingen.

Once again, it is our pleasure and duty to expressly thank the Erstes Physikalisches Institut at the
Georg-August-Universität Göttingen and the Fachbereich Physik at the Freie Universität Berlin for
generous support. Special thanks go to Prof. K. Samwer, Prof. G. Beuermann, Mr. J. Feist and
Mr. C. Mahn from Göttingen, as well as most especially Dr. J. Kirstein from the Freie Universität
Berlin, without whose help the preparation of the videos for this new edition would not have been
possible.

The first English edition of Pohl’s “Physical Principles of Electricity and Magnetism” appeared
in 1930 (translated, as was his “Physical Principles of Mechanics and Acoustics” two years later,
by Winifred M. Deans). It was published by Blackie & Son, Ltd., London and Glasgow. The
translation was based on the second edition of Pohl’s “Einführung in die Physik, Elektrizitätslehre”
(Julius Springer, 1929).

The present new, second English edition is based on the 24th edition of “Pohls Einführung in die
Physik”, Vol. 2 (Elektrizitätslehre und Optik, Springer Spektrum, Berlin Heidelberg 2018).

Again, we gratefully acknowledge the help of Professor W.D. Brewer from the Fachbereich Physik
of the Freie Universität Berlin, not only for carrying out the translation of the text with great quality
and speed, but also, and this is probably even more important, for his help with the identification
and clarification of unclear parts in the text and in our comments. The English-language readers will
appreciate the numerous links he added for further information. We owe thanks also to E. Sieker for
his translation and production of the English version of his video biography of R.W. Pohl, which is
included in the links for this edition.

We also wish to thank Dr. T. Schneider and the Springer-Verlag for making this edition possible,
and for their generous help in carrying out its preparation and production.

Berlin, Göttingen, Ithaca, March 2017 K. Lüders
R.O. Pohl
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From the Preface to the 23rd German Edition
(2009)

After the publication of Vol. 1 of R.W. POHL’s Introduction to Physics, covering the topics of
Mechanics, Acoustics and Thermodynamics in a new, revised edition in 2008, we now follow it
with this Vol. 2, dealing with Electromagnetism and Optics, likewise as a newly-revised edition.
We have again taken the opportunity to add supplemental information where it seemed appropriate
to us. In addition to new or revised comments and a number of clarifications in the text, the novel
features include in particular a series of videos showing demonstration experiments as well as
a collection of exercises for the readers. The chapter on Ferromagnetism from earlier editions was
again included in the section on Electromagnetism.

The additional videos for this edition were recorded under our own direction in the new physics
lecture hall at the University of Göttingen, or else in cooperation with the Physics Didactics Group
at the Free University in Berlin. The main part of the exercises on electromagnetism comes from
the original English-language edition of 1930; however, we have again added new exercises to both
the Electromagnetism and Optics sections. They deal in particular with questions which arise in the
text, the figures, or the videos, and so provide additional information and an aid to understanding
the concepts introduced; they are thus intended to make it easier for the reader to review and digest
the material in the book.

Berlin and Göttingen, June 2009 K. Lüders
R.O. Pohl
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From the Preface to the 22nd German Edition

ROBERT WICHARD POHL completed his three-volume “Introduction to Physics” in 1940 with the
publication of the first edition of his “Optics”. After we had edited the new, revised first volume
covering the fields of Mechanics, Acoustics and Thermodynamics in 2004, we decided to combine
the chapters on the fundamentals of Electromagnetism and Optics into a second volume. As with
the first volume, we wanted to make an appropriate selection of the material from the many previous
editions. The present Vol. 2 is based on the 20th edition of the “Elektrizitätslehre” and the 12th
edition of “Optik und Atomphysik”, both of which appeared in 1967. For this volume, as for Vol. 1,
the IWF Wissen und Medien (Institute for Scientific Films) in Göttingen prepared short videos
showing original demonstration experiments. They are made available with the book as a DVD.

In addition, the DVD contains the historical documentary film1 “Simplicity is the Mark of
Truth” (Original title: “Einfachheit ist das Zeichen des Wahren”, Pohl’s scientific motto; see
the Comment), which was planned, researched and, together with the Düsseldorf production studio
‘Kiosque’, filmed by the scientific journalist Ekkehard Sieker. The film offers a detailed view of the
life and work of Robert Wichard Pohl in Göttingen. It describes how R.W. Pohl, together with his
famous colleagues Max Born and James Franck, made essential contributions to research and the
teaching of physics in Germany in the 1920’s. The Physics Institutes of the University of Göttingen
in those days became one of the internationally most important centers of physics. Max Born
engaged early on in research into Einstein’s theory of relativity and made important contributions
to the theoretical foundation of modern quantum theory. James Franck’s research interests likewise
lay in the field of quantum mechanics, in particular in the areas of atomic and molecular physics.
R.W. Pohl was a pioneer of solid-state physics, and through his research and as a brilliant teacher,
he influenced generations of physicists from all over the world. The excellent standing of physics
in Göttingen was brought to an abrupt end by the political takeover of the National Socialist (Nazi)
Party at the end of January, 1933. Max Born and James Franck were forced to emigrate from
Germany; R.W. Pohl remained as the sole physics professor in Göttingen. He was not a publicly
political person – he was a scientist, whose area of commitment was in his Institute.

1 Video:
“Simplicity is the Mark of Truth”
– the Life and Work of Robert Wichard Pohl –
http://tiny.cc/xucxny
The title of this film is the translation of Pohl’s scientific motto, “Simplex sigillum veri”, under which he held his
famous lectures over several decades. It was written on the front wall of the physics lecture hall in Göttingen, and
was occasionally mistranslated by jokesters as “Sealing wax is the only truth”. Pohl’s successor, R. Hilsch, felt that
the motto was no longer timely and had it removed during a renovation of the lecture hall some time later.
“Summer Festival 1952”
“Color Centers”
“R.W. Pohl’s Farewell Lecture” (Audio only)
“Dr. h.c. for Ernest Rutherford” (Audio only)
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x From the Preface to the 22nd German Edition

However, in the course of his research for the film, E. Sieker came upon the little-known fact that
R.W. Pohl had contacts to the civil resistance group around Carl Friedrich Goerdeler, which op-
posed the Nazi regime. Following the failed assassination attempt on Hitler of July 20th, 1944, his
friend and contact to the Goerdeler Group, teacher and lecturer Hermann Kaiser, was sentenced
to death and was executed on the 23rd of January 1945 in Berlin-Plötzensee. After the German
capitulation, the British Occupying Forces made R.W. Pohl, among others, a member of the De-
nazification Commission for the University of Göttingen. Pohl himself regarded it as an obligation
of the University to make major restitutions to the scientists who were forced to leave in 1933. The
film contains many historical documents and interviews with relatives, friends and other contem-
poraries, giving an exceptional insight into the life of the physicist Robert Wichard Pohl.

Berlin and Göttingen, August 2005 K. Lüders
R.O. Pohl



R.W. Pohl (1884–1976)

R.W. POHL (1884–1976) discussing color centers (F-centers), elementary crystal lattice defects which were
discovered at his institute and investigated there for many years. He is shown during a visit to the Ansco
Research Laboratory in Binghamton, NY, in the year 1951. Details of POHL’s life and work can be found on the
website http://rwpohl.mpiwg-berlin.mpg.de of the Max Planck Institute for the History of Science (MPIWG).
There, one can find links to other literature, scientific institutions and websites which offer information and
documents on the teaching and research of the famous physicist in Göttingen. In addition, the documentary
video “Simplicity is the Mark of Truth” by EKKEHARD SIEKER (Video 1) can be found on the MPIWG web
site, together with all the other videos from both volumes and other audiovisual materials, available both for
videostreaming or as downloads.

http://rwpohl.mpiwg-berlin.mpg.de
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1.1 Preliminary Remarks

Textbooks on mechanics usually begin with the concepts of length,
time, andmass. The measurement apparatus which has been tried and
tested in everyday life is described, i.e. rulers, clocks and balances,
and they are immediately put to use. No one uses a sundial or a water
clock for the first experiments, or even a slave who is beating time.
No one begins by considering the entire historical evolution of the
unit ‘second’. We all make use of a modern stopwatch or digital
clock. We can all use clocks, even if we are not aware of the details
of their construction or of their historical development.

When the subject of thermodynamics is taken up, one generally in-
troduces the new concept of temperature. The types of thermometer
known to everyone in modern times are briefly discussed and they are
immediately put to use in the first experiments.

In a similar way, to introduce electricity and magnetism, we make use
from the very beginning of the quantities electric current and voltage
which are familiar from our everyday lives. We briefly explain the
instruments used to measure these quantities on an experimental ba-
sis. We then introduce the concepts of electrical resistance, electrical
energy, and electric power.

Sometime in the future, this entire chapter will become dispens-
able. Its contents will then be just as well known from school
as are the principles of clocks, balances and thermometers at
present.C1.1

C1.1 This is perhaps already
the case today, at least to
a great extent. However,
since this chapter gives
a good introduction to the
topics treated in this part of
the book, we prefer not to
dispense with it. We also
see no difficulty when in-
structors choose to make
use of modern, practical
current and voltage sources
(power supplies) and of dig-
ital measuring instruments
(multimeters) for current and
voltage measurements.

3© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_1

https://doi.org/10.1007/978-3-319-50269-4_1
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1.2 Electric Current

In everyday life, we speak of an electric current in wires and cables.
We want here to start by elucidating the characteristics of electric cur-
rents. We remind the reader of two old and well-known observations:

1. Between the “north pole” and the “south pole” of a bar magnet, we
can make the pattern of the magnetic field lines visible by sprinkling
iron filings or powder. For example, we could put a horseshoemagnet
onto a smooth surface and sprinkle the iron filings around it, tapping
lightly to distribute them. We obtain the pattern shown in Fig. 1.1.

2. A magnet exerts a mechanical force on other magnets and on soft
iron objects. In both cases, the field lines which we can make visible
using iron filings give rise to impressive patterns. In Fig. 1.2, a horse-
shoe magnet is “attempting” to rotate a compass needle. In Fig. 1.3,

Figure 1.1 Magnetic
field lines, repre-
sented by iron filings

N S

Figure 1.2 Mag-
netic field lines. The
horseshoe magnet SN
rotates the compass
needle in a counter-
clockwise direction.

N S
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field lines. A key is
attracted to a horse-
shoe magnet.

N S

a horseshoe magnet is pulling a piece of iron (a key) towards itself.
We are intentionally using a somewhat primitive mode of expression
here.

After these initial remarks, we now want to consider the three defin-
ing characteristics of electric currents:

1. An electric current produces a magnetic field. A wire which is
carrying an electric current is surrounded by concentric circular mag-
netic field lines. Figure 1.4 shows these field lines using iron filings
on a glass plate. The wire extended down through the page, perpen-
dicular to the plane of the paper. It has been pulled out of the hole in
the center of the picture after the field-line pattern was produced. –
This magnetic field due to the current can give rise to a great variety
of mechanical motions. We offer six different examples (a through f):

Figure 1.4 The
circular magnetic
field lines around
a current-carrying
wire
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Figure 1.5 A fixed conductor
(wire) CA and a suspended,
movable bar magnet SN.
When no current is flowing
in the wire, the end of the
magnet N points to the north.
For that reason, it is called
the north pole of the magnet.
When the current is turned on,
the north pole of the magnet is
rotated out of the plane of the
paper towards the observer.

N S

A C

+ –

Figure 1.6 A rigidly fixed bar
magnet SN and a movable,
flexible conducting ribbon CA
made of woven metal

A A

S S

N N

C C

a b

a) A bar magnet (compass needle) SN is hung parallel above a long,
straight wire CA (Fig. 1.5). When a current through the wire is
switched on, a torque acts on the magnet and it rotates until it is
perpendicular to the wire.

b) This process can be reversed. In Fig. 1.6a, the bar magnet SN
is fixed. Beside it, a woven metal ribbon CA is hanging loosely; it
is flexible and free to move. When a current is passed through this
ribbon, it moves so that it is oriented mainly perpendicular to the
magnet, i.e. it winds itself into a helix around the magnet (Fig. 1.6b).

c) We bring a straight conducting rod CA into the magnetic field of
a horseshoe magnet SN (Fig. 1.7a). The rod is hung from two flex-
ible conducting ribbons like a trapeze swing. When the current is
switched on, it is deflected along one of the directions indicated by
the double arrow (Fig. 1.7b).

d) We replace the straight conductor by a helically-wound conductor
(coil). When the current is switched on, the coil rotates around its
axis CA (Figs. 1.8a and b).

e) Thus far, we have considered arrangements where the magnetic
field from a current-carrying conductor interacts with the magnetic
field of a permanent magnet. The latter field can be produced instead
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IFigure 1.7 A fixed

horseshoe magnet SN
and a straight conduct-
ing rod CA hung like
a trapeze on flexible
woven-metal ribbons

a b

S S

C
C

N A N A

Figure 1.8 A fixed horseshoe
magnet SN and a rotatable
conducting coil CA. The
current leads to the coil are
made of flexible woven-
metal ribbons. This is also the
schematic of a “rotating-coil
current meter” (ammeter) or
“rotating-coil galvanometer”.

A A

N S N S

C C

a b

Figure 1.9 The mutual attraction of
two current-carrying metal ribbons C C

A A

a b

by a second current-carrying conductor. In Figs. 1.9a and b, the cur-
rent arriving at point A is split into two branches. At point C, they
again flow together. The conductors along the branch AC are two
woven-metal ribbons under a slight tension. With an electric current
(Fig. 1.9b), they are attracted and are pulled together until they nearly
touchC1.2. C1.2. In liquid conductors,

e.g. mercury, this magnetic
force can lead to a pinch-off
of the liquid column (this
was demonstrated in the 21st
edition of this book, p. 242).

Figure 1.10 shows a variant of this experiment which is often used
for technical applications. The two flexible ribbons are replaced by
a fixed and a rotatable coil, which both carry the same electric current
(Fig. 1.10a). The movable coil orients itself parallel to the fixed coil
(Fig. 1.10b).
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a b

Figure 1.10 At the right is a fixed coil, at the left a coil which is free to rotate. The leads
to the rotatable coil are made of woven-metal ribbons. This is a schematic of a rotating-coil
instrument for measuring current or voltage, including alternating current (Sect. 10.3).

Figure 1.11 A fixed coil
(solenoid) and a soft iron core
Fe which is suspended so as to
be movable

Fe

Figure 1.12 The
linear expansion of
a wire CA heated by
an electric current

A C

f) Finally, we use a piece of soft iron Fe (in analogy to Fig. 1.3) in
Fig. 1.11. It is pulled into the magnetic field of a wire coil (solenoid).
– So much for our examples of mechanical motions produced by the
magnetic field of an electric current.

2. The conductor which is carrying an electric current is heated. It
can be heated until it glows white-hot, as can be seen in any incandes-
cent light bulb. Figure 1.12 shows a simple demonstration experiment
which illustrates how a wire lengthens as a result of the heating by
a current (“JOULE heating”; see Sect. 1.12). – All of the above dealt
with solid conductors; we considered metal wires for the most part.

A liquid conductor exhibits similar effects of magnetic fields and
heating. To demonstrate the magnetic field, in Fig. 1.13 a glass tube

A C

N S

Figure 1.13 The magnetic field of a current flowing in a liquid conductor
(water with a small amount of sulfuric acid added) is detected by a compass
needle SN; paper pointers have been attached to the ends of the needle.
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electrolytic production of hydrogen (H2)
and oxygen (O2) when a current is passed
through a dilute solution of sulfuric acid
(this is a snapshot taken two seconds after
switching on the current)

A C

O2 H2

+ –

Figure 1.15 The precipitation of lead crys-
tals at the cathode when an electric current
is passed through an aqueous lead acetate
solution

+ –

CA

A

filled with acidified water is shown. Above it is a small compass nee-
dle. Two wires serve as current leads (C and A). – Apart from the
magnetic field and the heating effect, we can observe a third effect in
liquid conductors:

3. In liquid conductors, an electric current causes chemical changes.
These are termed electrolytic. – Examples:

a) In a vessel containing acidified water, two platinum wires dipping
into the water serve as electrodes C and A (Fig. 1.14). When current
is flowing, small bubbles of oxygen rise from electrode A, and hy-
drogen bubbles appear at electrode C. By convention, the electrode C
where hydrogen is produced is called the negative pole (“cathode”).
The other pole A is the positive pole (“anode”); “C” for cathode,
“A” for anode. We thus employ here an electrolytic definition of the
difference between the negative and the positive poles in an electric
circuit.

b) In a vessel containing a solution of lead acetate (“sugar of lead”),
two lead wires dipped into the liquid serve as electrodes. When an
electric current flows, a delicate “lead tree” made of tiny joined crys-
tals is formed at the negative electrode C (Fig. 1.15). In this case,
the electrolytic effect leads to the precipitation of metal out of the
solution.

Finally, instead of a solid or liquid conductor, we consider a conduct-
ing gas. The U-shaped tube shown in Fig. 1.16 contains the noble
gas neon. Again, two metal electrodes C and A serve as current leads.
A small framework above the tube carries a compass needle SN. We
attach the leads A and C to a current source; immediately, we can
observe all three effects of the electric current: The magnetic needle
rotates to a new position; the tube is heated; and a brilliant red-orange
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Figure 1.16 The noble gas neon as
a gaseous conductor in a U-shaped glass
tube. C and A denote metallic current
leads, and SN is a compass needle.

N S

C
A

+

light emitted all along the tube reveals profound changes in the gas,
such as we might observe from chemical processes in a gas flame.

The results of this paragraph: We can characterize the effects of an
electric current in a conductor by three phenomena:

1. A magnetic field,
�
are produced with all conductors.

2. heating1

3. “chemical effects” (in the broad sense) in liquid and gaseous con-
ductors.

Or, expressed differently: We observe these three phenomena, often
together, and invent the concept of “electric current” to summarize
their cause. – This is a qualitative definition. It will not suffice for
rigorous physics. All concepts which are employed to describe phys-
ical processes and states must be associated with physical quantities
defined by a measurement procedure, i.e. products of a numerical
value and a unit. – Here, we must be careful to keep two things sep-
arate:

1. The definition of a measurement procedure, and

2. the technical setup used for the measurements.

In the present case of electric currents, we begin with the technical
setup of the measuring instruments. They can be kept quite sim-
ple: We can construct an “ammeter” which allows us to read off the
strength of the current directly on a scale.

For quantitative specification, instead of simply using the word ‘current’,
one often speaks of the current strength or amperage. This would ap-
pear to be superfluous; we do not call a measured pressure the ‘strength
of pressure’, or a measured time the ‘intensity of time’, etc. But we can
cite a reason for this usage in the case of an electric current: A current has
a direction, but its strength is independent of its direction.

1 Exception: In the case of superconducting materials, there is no heating effect.
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Meters Or AmmetersC1.3 C1.3. The technical design
of measurement instruments
used in the laboratory today,
for the most part with a dig-
ital display, is based on the
principles of vacuum and
solid-state physics. Such in-
struments will therefore be
treated initially here as “black
boxes”, as is usual for com-
plex apparatus in general.

For the construction of such measurement apparatus, one can use ei-
ther the magnetic or the thermal effects of an electric current:

Current meters using magnetic effects (symbol shown in Fig. 1.17)
are based on the arrangements illustrated in Figs. 1.5 through 1.11.
Magnetic force is employed to move a pointer along a scale. The rest
position of the pointer is determined by a spiral spring or some sim-
ilar device. Rotating-coil instruments play an important role. They
are based on the scheme shown in Fig. 1.8.

Themagnetic field usually forms a radially-symmetric pattern; cf. Fig. 1.18,
which shows two designs.

Figure 1.19a shows the coil Rc of such an ammeter with a mechan-
ical pointer. For very sensitive instruments, a light-beam pointer is
employed: The movable part of the instrument (rotatable coil) car-
ries a small mirror M to reflect a light beam (e.g. a laser beam)
(Fig. 1.19b). Instruments of this type are often called mirror gal-
vanometers.C1.4 C1.4. The galvanometer,

which today may appear
rather old-fashioned, is sim-
ply a particularly sensitive
rotating-coil instrument, of
which many are still in use.
For demonstration exper-
iments in the lecture hall,
a galvanometer still offers
some advantages, since it is
suitable both for the meas-
urement of weak electric
currents as well as for cur-
rent impulse measurements
(as a ballistic galvanometer
with a long response time).
Furthermore, it can be used
to demonstrate damped os-
cillations in a clear manner,
including the aperiodic limit.

A

Figure 1.17 Schematic symbol for a current meter or ammeter. The same
principle will later be used for instruments which are calibrated for use as
voltage meters or voltmeters.

Figure 1.18 Radially symmetric magnetic
fields in rotating-coil ammeters; above with
the poles outwards, below with poles in-
wards. The magnets are shown with shading
and soft iron is black. Two short circular
segments mark the intersection of the rotat-
ing coil with the plane of the page.

N S

S N

Airgap Rotating coil
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Figure 1.19 Two designs for rotating
coils Rc in rotating-coil ammeters
or “galvanometers”. C and A are
spiral, flexible current leads. C and
A or B also provide the “restoring
torque”, i.e. they rotate the coil back
to its zero position when no current is
flowing. M is the mirror for a light-
beam pointer.

Z

C

CA

A
Rc

Rc

M

B

G G

a b

1.4 The Calibration of Current Meters
or Ammeters

The calibration of apparatus for the measurement of electric currents
is based on the arbitrary definition of a measurement procedure and
a unit for electric current. The simplest measurement procedure for
comprehension and teaching was based on the electrolytic effects of
electric currents. It makes use of the quotient

Mass m of precipitated material

Time t during which current flows
:

That current which electrolytically deposits 1.1180 milligram of sil-
ver in one second was defined as the unit of current and is denoted
as 1 ampere. The rather strange decimal value is due to the historical
definition.

C1.5. Each charged silver atom
(the ion AgC) lacks precisely
one elementary charge.
Silver has a molar mass
of 107.87 g=mol, so that
6:24 �1018 elementary charges
transport 107:87 g � 6:24 �
1018=6:02 � 1023 D 1:118mg
of Ag. This is an application
of FARADAY’s principle of
equivalence, according to
which the ratio of charge
Q (see Sect. 2.11, Eq. 2.1,
unit: ampere second, A s) to
the amount of substance n
deposited is given by

Q

n
D z � 9:65 � 104 A s

mol
;

where z is the valence of
the ions (D C1 for silver)
(Exercise 1.1).

The electrolytic2 elaboration of the unit of current called the ampere is es-
pecially satisfying in a conceptual sense. It states in principle: That electric
current is called ‘one ampere’ which corresponds to the passage of a de-
fined number of elementary electrical charges e through the cross-section
of the current path within a given time (Sect. 3.6) (in one second about
6:24 � 1018 elementary charges). The measurement of this number with the
required precision by direct counting (single-electron counting) is still not
possible today; therefore, one lets each single elementary electrical charge
be transported by a carrier, namely a silver atom, and instead of the number
of the carriers, one determines their total mass M D 1:1180 milligram.C1.5

– There are naturally other procedures for the realization of the unit ‘am-
pere’. The modern definition is based on the force between two current-
carrying conductors (Sect. 8.2).C1.6

C1.6. The ampere as the unit
of electric current strength
belongs, along with the me-
ter, the kilogram, the second,
the kelvin, the mole and the
candela, to the base units
of the SI (Système Interna-
tional d’Unités), which are
defined in terms of a meas-
urement procedure. All the
other units are derived from
these seven base units. See
the PTB-Mitteilungen 117,
Vol. 2 (2007); English, see
http://physics.nist.gov/cuu/
index.html . See also Vol. 1,
Comments C2.14. and 2.15.
(Exercise 1.1).

Many current meters, in particular rotating-coil instruments, show
a pointer deflection which is directly proportional to the current; one

2 Sometimes called the coulometric method, after the older unit for electric charge,
1 coulomb D 1A s; now obsolete.

http://physics.nist.gov/cuu/index.html
http://physics.nist.gov/cuu/index.html
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; measured in

Ampere
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to be constant and calls it the calibration factor of the instrument.

1.5 The Electric Voltage or Potential
Difference

In everyday life, we speak of a voltage between two points, for ex-
ample between the poles of a flashlight battery or the two contacts of
an electric socket. – We give here the two defining characteristics of
the electric voltage :

1. A voltage can produce an electric current. – This needs no further
explanation.

2. Two bodies between which a potential difference or voltage is
present are subject to mutual forces. These are often called electro-
static forcesC1.7. C1.7. The analogy between

mechanical force and electric
voltage is often emphasized
by referring to the voltage
as the “electromotive force”
(E.M.F.). See also the foot-
note in Sect. 9.1

This can be demonstrated with a force meter, e.g. a balance. In
Fig. 1.20, we see a light-weight balance beam made of aluminum.
It rests on a knife-edge on the metal post S. At the left end of the
beam is a metal plate C, and at the right end, as counterweight, some
small sliders R made of paper. Below the metal plate C is a sec-
ond similar fixed metal plate A; the spacing between the two plates
is a few millimeters. The plate A and the post S are each connected
via a wire to the poles of a current source. When contact is made, the
balance beam immediately begins to move. The voltage between the
plates A and C produces an attractive force (Sect. 3.4).

So much for the qualitative properties of electric voltage or potential
differences. For the purposes of physics, we must define a measure-
ment procedure for voltages. Here, again, we consider the definition
of the measurement procedure separately from the technical design
of the instruments used for making the measurements. We will start
with the latter. Both of the characteristic properties of electric voltage
can be used to construct voltmeters, and we thus distinguish between
instruments which carry a current, and static voltmeters (“electrome-
ters”). Wewill discuss the two groups separately in Sects. 1.6 and 1.8.

Figure 1.20
A “volt balance”.
B is an insulator.

C

A
B

R R

S

+
–
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Figure 1.21 A static voltmeter with a gold-leaf
pointer C (instruments with glass housings are
practically useless; see Sect. 2.6) A

C

B

Figure 1.22 A static voltmeter (field electrometer)
with an aluminum pointer C on needle bearings. It
can be used for voltages between a few hundred up
to about 10 000 volt.

B

A

C
S

1.6 The Technical Design of Static
VoltmetersC1.8

C1.8. Here again, we refer
to the remarks in Comment
C1.3. The ‘electrometers’ de-
scribed in this section, which
measure voltages with prac-
tically no current flowing
during the measurement, as
well as the ‘rotating-coil in-
struments’ described below
(Sect. 1.8), are intuitively
clear and simple in their oper-
ation, but are largely obsolete
today. We will represent
them in circuit diagrams by
a circle containing ‘V’ (for
voltmeter), ‘E’ for electrom-
eter, i.e. a voltmeter in which
no current flows during the
measurement; or ‘G’ (for
galvanometer) and ‘A’ (for
ammeter). This will spec-
ify where relevant whether
a static (‘E’) or a current-
carrying instrument (‘V’, ‘A’,
‘G’) is meant.

These instruments make use of the “static” forces caused by a voltage
(i.e. by the electric charges collected by the voltage; see below). They
operate on the same principle as a small balance: The force caused
by the voltage to be measured can be read off a scale. We mention
only three of the many different designs used for such instruments:

a) The gold-leaf electrometer (Fig. 1.21), obsolete; strictly speak-
ing, a gold-leaf voltmeter. The metal housing A is penetrated by
a metal rod, electrically isolated from the housing by an insulator
B. The rod carries a strip of gold leaf C which serves as a movable
pointer. The voltage to be measured is applied between the points
A and C, e.g. by connecting them to a current source. The gold-leaf
pointer is attracted by the wall and deflected; its angle of deflection
can be read off a scale.

b) The field electrometer (Fig. 1.22). Its operation is similar to that
of the gold-leaf electrometer, but instead of the gold leaf strip, an
aluminum pointer C with needle bearings indicates the force which
is proportional to the applied voltage.

c) The double-fiber voltmeter (Fig. 1.23). Here, again, a metal rod
is isolated from the metal housing A by an insulator B. A loop C of
fine platinum wires or fibers is hung from the rod; it is held under
mechanical tension by the small quartz stirrup Q below. An electric
voltage applied between C and A causes the fibers to approach the
walls of the housing (or more accurately, the wire loops A attached
to the walls). The spacing of the fibers thus increases; this increase
is observed by a microscope. Figure 1.24 shows an image of its field
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measurement range lies between 30 and 400 volt.

C

B

Q

A A

Figure 1.24 The field of view of a double-
fiber voltmeter with platinum-coated quartz
fibers

302010 0 0 10 20 30

of view, with a scale. The double-fiber voltmeter is suitable for pro-
jection. Because of its rapid reaction to applied voltages, it is very
convenient to use in showing demonstration experiments.

1.7 The Calibration of Voltmeters

The calibration of these instruments is based on the conventional
definition of a measurement procedure and a unit for the potential
difference. The simplest measurement procedure makes use of a se-
ries circuit of N identical batteries (Fig. 1.25), and asserts that the
voltage between the ends of the circuit is N times larger than that of
a single battery (G. S. OHM, 1827). Within the large number of cur-
rent sources, one particular battery (voltaic element) is chosen as the
“normal element” and its voltage is assigned a fixed value.C1.9 C1.9. The volt is a derived

unit; see Eq. (1.12). How-
ever, for practical reasons, it
is realized by different meth-
ods, e.g. by using normal
elements or, for the highest
precision, by making use of
a quantum-mechanical effect
(the JOSEPHSON effect in
superconducting junctions).

The
unit of potential difference or voltage is 1 volt (V), and all voltages
are quoted in multiples of this unit.

Figure 1.25 A series circuit of 6 batteries.
(The positive electrode is always denoted by
a longer bar symbol)

+ –
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1.8 Current-Carrying Voltmeters.
Electrical Resistance

Current-carrying or galvanic voltmeters are in principle simply re-
calibrated ammeters. The recalibration is made possible by the fact
that in metallic conductors, a fixed relation holds between voltage
and current.

In general, we define every conductor as an electrical resistance3 R
by the quotient

R D Voltage U between the ends of the conductor

Current I through the conductor
: (1.1)

The electrical resistance in general depends in a complex way on
the current I (examples: fluorescent tubes, electric arcs, irradiated
crystals, photocells). Only in special cases does one find a constant
value of U=I, independent of I. One then says that OHM’s law holds
for that conductor:

U=I D R D const: (1.2)

In words: The resistance U=I of the conductor has a constant
value R, i.e. the current I through the conductor and the voltage U
between its ends are strictly proportional to one another. This special
case is found for metallic conductors at constant temperature4.C1.10C1.10. This type of conduc-

tor is also called an “Ohmic
conductor”. Suppose that
it has a cross-sectional area
A and a length l. Then the
value of its resistance is pro-
portional to l and inversely
proportional to A. We find

R D %
l

A
:

The proportionality factor
% is a property of the mate-
rial and is called the specific
resistance or resistivity. Its
reciprocal � D 1=% is
called the specific conduc-
tance or conductivity. As
an example, for copper at
20 ıC: % D 1:55 � 10�8�m,
� D 6:45 � 107��1 m�1.

This can be demonstrated with the setup shown in Fig. 1.26. A cur-
rent source B sends a current through a metallic conductor CA,
e.g. a ribbon or strip of metal. The ammeter measures the current I
through the conductor, while the voltmeter registers the voltage U
between its ends CA. – We make use of a series of different current
sources (e.g. various batteries or accumulators) and thereby vary the
current I. Then we divide the corresponding values of U by I and
find U=I to be constant. We thus measure the resistance, defined
as the quotient U=I (e.g. in volt/ampere). This ratio volt/ampere is
named and abbreviated by international convention as the “ohm”,
with the symbol�.

Suppose that with the setup shown in Fig. 1.26, we find for the con-
ductor CA a value for the quotient U=I of 500 volt/ampere. Stated

3 The word “resistance” has three different meanings within the field of electro-
magnetism: Firstly, it refers to the quotient of voltage and current, U=I, for any
arbitrary conductor. Secondly, it refers to a device, e.g. a length of wire wound on
a spool, as seen in Fig. 1.28; this is also called a resistor or rheostat (when it is
variable). Thirdly, resistance means, as in everyday life, a force which is directed
oppositely to the velocity of a moving electric charge, similar to a frictional force.
4 The quotient mass m/volume V is defined as the density of an object. Under
constant ambient conditions (pressure, temperature etc.), it is constant for many
materials. But it is still not usual to consider the relation m=V D const D % as an
empirically-discovered ‘law’ or to name it after its author.
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tance U=I (e.g. of the filament CA of an
incandescent lamp) or the demonstration
of the special case that OHM’s law holds (the
conductor CA could be a flat metal ribbon
held at constant temperature for this demon-
stration)

C A
A

B

V

briefly, the conductor CA then has a resistance R D 500 ohm. If two
resistances (cf. footnote 3 on previous page) are connected in series,
their overall resistance is equal to the sum

R D R1 C R2 : (1.3)

For parallel circuits, the overall resistance R is given by the equation

1

R
D 1

R1
C 1

R2
(1.4)

(G. S. OHM). So much for the definition of electrical resistance and
OHM’s law.

OHM’s law now allows us to re-calibrate an ammeter to make it into
a voltmeter. – The usual ammeters contain a wire through which the
current to be measured flows, for example rotating-coil instruments
(Fig. 1.19). We know the value of its resistance, defined by the ratio

R D x
volt

ampere
D x ohm I

x is here a numerical value. As a result, we need only to multiply the
ampere calibration by the factor R D x volt/ampere in order to con-
vert the ampere calibration to a volt calibration (and the instrument
into a voltmeter).

We repeat: Current-carrying voltmeters are simply re-calibrated am-
meters. We therefore draw them in our circuit diagrams according
to the scheme shown in Fig. 1.17, but with the letter ‘V’ to indicate
‘voltmeter’.

The measurement instruments described in Sects. 1.3 to 1.8 operate
on readily recognizable physical principles. This is a great advantage
for the student of physics or electrical engineering.

1.9 Some Examples of Currents and
Voltages of Varying Strengths

a) Voltages of the order of 1V are found between the poles of dry
cells or batteries for doorbells, flashlights etc.
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Figure 1.27 Schematic of a voltage di-
vider circuit (potentiometer circuit)

1 2

C A
G

B

V

b) The line voltage between the contacts of wall sockets is a few
hundred volts. In Europe, 220V is usual (for alternating current,
cf. Sect. 10.3).

c) Above voltages of several thousand volts (kV), there will be sparks
and arcing through the air. A voltage of around 3000V (3 kV) can
produce an arc 1mm long in air.

d) For long-distance transmission lines, voltages up to 103 kV are
used.

e) For physics research, generators which produce voltages up to tens
of MV (1 megavolt D 1MV D 106 V) are available (e.g. van de
Graaff or “belt generators”; see Sect. 2.9).

Many experiments require variable voltages. These can be obtained
by a trick which permits selecting some fraction of a maximum volt-
age. One makes use of a voltage divider or potentiometer circuit
(Fig. 1.27). The two poles of the current source B are connected to
a “variable resistor” CA, which is typically wound with a length of
fairly resistive metal wire made of an appropriate alloy and fixed on
an insulating drum. Between its ends CA is the full output voltage
of the current source. Between one end and the middle is one-half
this voltage and so forth for other fractions of the length. We can
thus attach a wire 1 to one end of the resistor and a second wire 2 to
a metal slider G. Then by moving the slider along the resistor, we can
produce any desired voltage from zero to the source voltage between
the ends of 1 and 2. – Figure 1.28 shows a convenient setup for such
a potentiometer circuit.C1.11C1.11. In calculating the

voltage between C and G, it
must be taken into account
that the current source also
has an (internal) resistance
which acts in series with B in
the schematic of Fig. 1.27.

Now, we turn to some examples of current strengths.

a) Currents of the order of 1A are passed through common lamps
used for room lighting.

b) 100A is a typical current which is employed in the motors of an
electric streetcar or subway train.

Figure 1.28 The technical design of
a variable resistor (‘potentiometer’ or
‘rheostat’) with a sliding contact G. The
resistance wire is wound onto an insulat-
ing cylinder.

G

C A
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mA

Figure 1.29 Including a test person within an electric circuit. An ammeter
of the type shown in Fig. 1.8 is used. The handles contain hidden protective
resistors which keep the test person safe in the event of a malfunction.

Figure 1.30 Measurement of the
current delivered by a HOLTZ

influence machine or “Wimshurst
machine” with a rotating-coil
ammeter

c) 10�3 A is called 1 milliampere (mA). Currents of a few mA (3
to 5mA) can barely be perceived when they are passed through the
human body. This can be demonstrated using the setup shown in
Fig. 1.29. The test person is connected to the circuit via two metal
handles. The applied voltage is slowly and smoothly increased using
a voltage divider as described above.

d) Currents of the order of 10�5 A are produced by an influence ma-
chine or “Wimshurst machine”, used in the 19th century as a high-
voltage generator. We can measure this current as in Fig. 1.30 us-
ing a technical ammeter. One often encounters a strange prejudice
here: An influence machine is supposed to produce “static electric-
ity”, while an ammeter measures only “galvanic” currents. In fact,
there is no difference between static and galvanic electricity!C1.12

C1.12. Here, and for all
the applications mentioned
later, we could replace the
influence machine by an elec-
tronic high-voltage source
(a “power supply”). How-
ever, just as in Fig. 1.29,
it is then wise to limit the
maximum current by insert-
ing a resistance R into the
circuit (as for example in
Video 3.1).

e) 10�6 ampere is called 1 microampere (�A). Currents of this order
of magnitude can easily be produced by the human body. In Fig. 1.31,
a test person grasps two metallic handles with both hands. They are
connected by wires to the ammeter (mirror galvanometer). Clasping
the handles loosely, we observe no current. Tensing the finger mus-
cles of one hand produces a current of some 10�6 A. If the other hand
is tensed, a similar current is observed, but in the opposite direction.

f) High-quality mirror galvanometers can measure currents down to
around 3 � 10�12 ampere (3 pA).C1.13 C1.13. Using electronic

instruments, today we can
measure currents two orders
of magnitude smaller.

This lower limit is determined by the BROWNian molecular motion of the
movable parts (rotating coil etc.). With a still higher sensitivity (a lighter
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Light
pointer

Figure 1.31 Observation of the weak electric currents produced by tensing
the finger muscles. The rotating-coil galvanometer (schematic in Fig. 1.8)
with a mirror and light pointer is distinguished by an especially short oscilla-
tion period (T D 0:5 s). (This current is due to processes in the skin and not
in the muscles!)

coil or a finer suspension), the zero point of the instrument would move in
just as chaotic a manner (albeit much more slowly) as the dust particles in
BROWNianmotion (Vol. 1, Sect. 9.1)

1.10 Current Impulses
and Their Measurement

Often, in the course of physics experiments we are dealing with elec-
tric currents which are constant over time; then the pointer of an
ammeter rests at a certain value on its scale and remains there, show-
ing a constant deflection. However, in many measurements, currents
flow only very briefly; for example with a time dependence like that
sketched in Fig. 1.32a: The current drops within a time t from its
initial value to zero. The shaded area in the figure represents the
time integral over the current (

R
I dt). This integral has a brief and

appropriate name, the current impulse. This term is analogous to
the mechanical impulse (

R
F dt). The simplest example of a current

impulse is shown in Fig. 1.32b: A constant current I flows during
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Figure 1.32 Three examples of time integrals of the current or “current impulses”, measured in ampere second
(A s)
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by the product of the current and the time; it is thus I � t, with the
unit ampere second (A s). In a corresponding manner, by summa-
tion (Fig. 1.32c), current impulses of arbitrary time dependence can
be evaluated. This is however too tedious, so that it is done only on
paper.

In reality, a current impulse is a quantity which can be measured in
a very convenient way. This requires reading only a single pointer
position from an ammeter. The ammeter in this case merely has to
fulfill two conditions:

1. At constant current, the constant deviation of its pointer must
be strictly proportional to the current. This is to good accuracy the
case for rotating-coil galvanometers (Sect. 1.3). Since one can con-
sider a rotating-coil galvanometer to be a torsion pendulum (Vol. 1,
Fig. 6.5), this proportionality means that the force produced in an
ammeter of this type is proportional to the current flowing through it.
The same is true of the (mechanical) impulse resulting from a current
impulse.

2. The oscillation period of the pointer must be long compared to the
time during which current flows in a current impulse. Then the tor-
sion pendulum leaves its rest position with practically its maximum
angular velocity, which is proportional to the impulse and thus also
to the current impulse. For a pendulum with a linear restoring force
law, the amplitude u0 of its velocity is proportional to its maximum
deflection x0:

u0 D !x0 ; (1.5)

where ! is the circular frequency of the pendulum (Vol. 1, Sect.4.3).

We thus expect a constant value of the quotient

Current impulse

Impulse deflection
D BI :

To demonstrate this, we use a current impulse with a rectangu-
lar shape (Fig. 1.32b). That is, we pass a known current I during
a short but precisely measured time t through a slowly oscillating
galvanometer (its period of oscillation in Fig. 1.33 is 44 s). Any
suitable sort of electric time switch can be used for this purpose.

A known electric current I of suitable strength can be provided by the
circuit shown in Fig. 1.33. Using a voltage divider (Fig. 1.27), for ex-
ample a voltage of 1=100 V is selected. This voltage produces a cur-
rent which passes through the galvanometer and through a resistance of
106�. This current I is then, according to OHM’s law (Eq. 1.2), equal to
10�2 V/106� D 10�8 A.With this setup, we can observe the galvanometer
deflection ˛ for different values of the product It. We then repeat the meas-
urements with different current strengths. The times t are also arbitrarily
varied between a few tenths and around 2 s.
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Figure 1.33 Calibration
of the impulse deflec-
tions of a galvanometer
with a slow response
time (‘ballistic gal-
vanometer’; see also
Sect. 2.11) in the unit
ampere second

G

10
–8

 A

1
100 V

106Ω

1Ω 199Ω

2 V

Figure 1.34 “Frictional elec-
trification machine”. The same
galvanometer is used here as in
Fig. 2.36.

We then compute the ratios BI D .Current impulse It/=.Observed de-
flection ˛). For all the measured values and in all cases, we obtain the
same result; in our example, BI D 1:2 � 10�8 A s/scale division. Thus,
we have demonstrated the proportionality of the observed impulse
deflection to the current impulse for a current pulse of rectangular
shape (Fig. 1.32b), and at the same time we have calibrated the gal-
vanometer ballistically. This result can be readily generalized: Every
arbitrary current impulse can be put together by adding rectangular
pulses, as in Fig. 1.32c.

The ballistically-calibrated galvanometer can now be used to mea-
sure an unknown current impulse. To show this, we improvised
a frictional electrification machine as shown in Fig. 1.34. Instead
of sealing wax and cat’s fur, we use the hand of one of the experi-
menters and the hair of the other. One stroke across the hair produces
a deflection of about 16 scale divisions, that is a current impulse of
about 2 � 10�7 A s.C1.14

C1.14. Of course, today
we have technical instru-
ments for measuring current
and voltage impulses of far
greater sensitivity and preci-
sion. However, since the bal-
listic galvanometer contains
a lot of interesting physics
(e.g. it is a damped oscillator;
see Vol. 1, Sect. 11.10) and
is especially well suited for
demonstration experiments
in the lecture room, as can be
seen in several of the videos
for this volume, it seems op-
portune and reasonable to
treat it in some detail at this
point.

1.11 Current and Voltage Instruments
with a Short Response Time.
Cathode-Ray Tubes

Great physical achievements of past decades are today already part
of our general and technical knowledge, and are even topics for sci-
ence fair projects and the like; some of them are also in the meantime
obsolete. The cathode-ray tube (“BRAUN’s tube”) belongs to a con-
siderable extent in this latter category.C1.15

C1.15. Named after KARL

FERDINAND BRAUN (1858–
1918). Today, cathode ray
tubes for viewscreens and
television screens have
been largely replaced by flat
screens making use of liquid
crystals or light-emitting
diodes. For a discussion
of “BRAUN’s tube” see
e.g. F. Hars, “Hundert Jahre
Braunsche Röhre”, Phys. Bl.
54, 1040 (1998); English: see
https://en.m.wikipedia.org/
wiki/Cathode_ray_tube. Developed in 1899, it

https://en.m.wikipedia.org/wiki/Cathode_ray_tube
https://en.m.wikipedia.org/wiki/Cathode_ray_tube
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tremely short response time. In the oscilloscope, which is today
indispensable in many laboratories, it is used to display and record
rapidly-occurring electrical processes. The “pointer” is an electri-
cally deflected electron beam which strikes a fluorescent screen and
becomes visible there. Frequencies up to 1010 Hz can be visualized
in this way.

Using deflections in two coordinate directions, one can measure two dif-
ferent quantities simultaneously, for example two currents, two voltages,
a current and a voltage, or current vs. time; the time can be represented
either as a linear deflection or as an angle, etc.

1.12 Measurements of Electrical Energy

Today, we can hardly imagine everyday life without electrical phe-
nomena, with their innumerable applications. Everyone needs at least
two electrical concepts in daily life, namely electric current I and
electric voltage U. Both are measured as multiples of the units am-
pere and volt. – Making use of these two electrical quantities, we can
also measure the electrical energy. A typical setup is shown on the
right in Fig. 1.35. We observe the same temperature rise when the
productUIt has the same value (t is the time during which the current
I flows). Thus, this product is a measure of the energy E, with the
unit ‘volt ampere second’ (VA s):

E D UIt : (1.6)

To distinguish it from other types of energy, it is often termed JOULE

heating. Applying the electrical resistance R D U=I, we obtain the
frequently-used form

E D I2 � R � t D U2

R
� t : (1.7)

Mechanically, we measure the energy E in terms of the product called
‘work’,

W D F l : (1.8)

(Unit: newton meter; an experimental setup is shown at the left in Fig. 1.35.
– F is the force component parallel to the path l.)

A mechanically- and an electrically-produced energy are thus equal
when they increase the temperatures of two identical calorimeters
(Fig. 1.35) by the same amount. That occurs in the experiment when

F l D UI t (1.9)
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Water

Falling path l
Stirrer

Current source

A V

Water
F Resistance

heater

I U

Figure 1.35 The production of identical quantities of energy, measured me-
chanically and electrically by means of equal temperature increases in two
identical calorimeters. At the left: Mechanical energy input via a stirring ap-
paratus; a metal block which exerts the force F falls along a path l. At the
right: Input of electrical energy by heating a resistor (immersion heater).

i.e. when the product on the left with the unit Nm has the same nu-
merical value as the product on the right with the unit VA s. There-
fore, we find

1 newton meter D 1 volt ampere second : (1.10)

This equality of the mechanical and electric energy units is not
physically necessary, but is rather the result of an expedient inter-
national agreement: The unit ‘volt’ has been defined in such a way
that Eq. (1.10) is fulfilled. – Or, expressed differently, we dispense
with defining all three of the quantities on the right in Eq. (1.9) in-
dependently of one another as base units. Instead, we make use of
the current to measure voltage. We define the voltage U and its unit
‘volt’ as a derived quantity by making use of Eq. (1.9). The definition
is

Voltage U D Work F l

Current I � Time t
(1.11)

and thus

1 volt D 1
newton meter

ampere second
: (1.12)

Analogously, in the fundamental equation of mechanics, i.e. acceleration
a D F=m, the force F and the massm are not defined independently of one
another as base quantities. Physicists use the mass to measure force; they
define the force as a derived quantity with the defining equation F D ma
and the unit 1 newton D 1 kgm=s2.

The electrical energy unit is thus the ‘watt second’, so that

1 volt ampere second (VA s) D 1 watt second (W s) : (1.13)
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volt ampere hour. This is a unit of electrical energy with an industrial
price of the order of 10 Eurocents.C1.16 C1.16. The industrial price in

Germany at present (2016) is
about 8 Euroct./kWh; for
private users, it is nearly
30 Euroct./kWh, with an
increasing tendency. In
the U.S., these values are
5.8 $ Ct. (industrial price)
and 11.1 $ Ct. (private users),
respectively, with the indus-
trial price falling and the
private-user price rising.

In mechanics (Vol. 1, Sect. 5.2), the concept of ‘power’ PW was de-
fined by the equation

PW D dW

dt
(1.14)

(workW , time t). Its mechanical unit is 1 newtonmeter/second, while
its electrical unit is 1 volt ampere D 1 watt.

Exercises

1.1 For the calibration of an ammeter using the electrolytic
method described in Sect. 1.4, divalent copper ions (CuCC) were
used. At the negative electrode, a mass increase of 5.9 g per hour
was measured. The ammeter indicated a current of 4.5A. What
was the true value of the current I? (The molar mass of copper is
63.54 g/mol.) (Sect. 1.4)

1.2 Bauxite (Al(OH)3) is used for the electrolytic production of
aluminum (the so-called flux-melt electrolysis process). The molar
mass of aluminum is 26.97g/mol. How long does it take to produce
1 metric ton of aluminum with a current of 4 000A? (Sect. 1.4)

1.3 How could we increase the maximum indicated value of
a voltmeter with the internal resistance Ri D 1� from 0.15V to
15V? (Sect. 1.8)

1.4 The maximum indicated value of an ammeter with the in-
ternal resistance Ri D 1� is to be increased from 0.05A to 10A.
For this purpose, a resistor Rshunt is connected in parallel to its ter-
minals (a so-called shunt resistor). Find the correct value of Rshunt.
(Sect. 1.8)

1.5 In Fig. 1.26, we could replace the electrometer (static volt-
meter) by an uncalibrated rotating-coil ammeter with a finite OHMic
resistance of RV. RV is known. The voltage U is measured using
the voltmeter, and the current I with the ammeter. How can we deter-
mine the resistance R of the conductorCA from these measurements?
(Sect. 1.8)

1.6 A voltage Ua is applied to two OHMic resistances R1 and R2

which are connected in parallel, and the total current I is measured. If
the resistances are connected in series, the voltage must be increased
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to 4:5Ua in order to obtain the same current. Determine R2, if R1 has
the value 2�. (Sect. 1.8)

1.7 A battery with an open-circuit voltage of U0 D 1:5V is con-
nected to a conductor of resistance R D 5�. An ammeter with
a negligible internal resistance is used to measure the current, I D
0:25A. Explain the result and calculate the voltage UI between the
poles of the battery when this current is flowing. (Sect. 1.9)

1.8 To illuminate a lecture room, 20 light bulbs are used, each
operating at 220V and 5A (DC, from a storage battery). The battery
consists of N cells connected in series, each producing a voltage of
2V. Each cell has an internal resistance of RZ D 5m�. Calculate N.
(Sect. 1.9)

1.9 An electric motor has an efficiency of 80%, i.e. it converts
80% of the electrical energy that is fed to it into mechanical energy.
At an operating voltage of 220V DC, it is supposed to lift a weight
of mass 1.5 kg at a velocity of 2m/s. How large is the current I that
it draws? (Sect. 1.12)

1.10 In an X-ray source (see Fig. 19.10), the anticathode (anode)
consists of a hollowwater-cooled cylinder. In operation, it evaporates
100 cm3 of cooling water per hour. The electron current in the source
is 10mA. Find the voltage U between the cathode and the anode (the
cooling water is at room temperature (20 °C) when it enters, and its
heat of vaporization is LV D 2:45 � 106 Ws/kg; see Vol. 1, Fig. 14.3).
The efficiency with which X-radiation is generated is very low (<
1%, see R.W. Pohl, “Optik und Atomphysik”, 13th ed., p. 220), so
that the energy transferred to the X-radiation can be neglected here.
(Sect. 1.12)

1.11 a) Two wires with the resistances R1 and R2 are connected in
series (R1 D 2�). With an applied voltage ofU D 10V, the heat pro-
duced in R2 is three times the heat produced in R1. Find the current
I which is flowing through the circuit. b) The wires are now con-
nected in parallel and the same voltage, U D 10V, is applied. Find
the currents I1 and I2 and the ratio of the amounts of heat produced
as a function of time in the two wires, PQ2= PQ1. (Sect. 1.12)

For Sect. 3.7, see also Exercises 2.11, 2.15 and 2.16;
For Sect. 3.8, see also Exercise 2.7.
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2.1 Preliminary Remarks

The purpose of the first chapter in this book was summarized in
Sect. 1.1. It was intended to provide a brief overview of the most
important measuring instruments for electric current and voltage (po-
tential difference). To this end, we introduced some of the basic
concepts of electromagnetism. Now, making use of these concepts,
we want to give a systematic treatment of the field of electromag-
netism, essentially following its historical development. We start
with the concepts of the electric field and electric charge.

2.2 Basic Observations. Different Forms
of Electric Fields

Figure 2.1 shows two parallel, flat metal plates A and C. Their sup-
ports are made with insulators B, so that they are electrically isolated
from each other and from the “ground”. We connect these plates
via two wires to a current source at a voltage of 220V1 and then,
using two other wires, to a static voltmeter (a double-fiber electrom-
eter, i.e. no current flows during the measurement). We thus have
the straightforward circuit shown in Fig. 2.2, left.C2.1

C2.1. Such an arrangement of
two electrodes insulated from
one another (and usually
from the ground) is called
a “condenser”, in this case
a “parallel-plate condenser”.
In electronics technology,
the term “capacitor” is also
often used, in particular for
commercially-available com-
ponents with standard voltage
ratings and “capacitance”;
the latter is the characteris-
tic value which quantifies
their ability to store electric
charge. See below for more
details. In this chapter, we
will use the simpler (and
older) term “condenser”.

The voltmeter
indicates a voltage of 220V between the two plates. The cause of
this voltage is apparently the connection of the two plates to the
output poles of a current source. The experiment contradicts this as-
sumption: The voltage remains even after the connecting wires to the
current source have been removed (Fig. 2.2, right). This is extremely
important!

Two additional experiments with the setup shown in Fig. 2.2 (right)
show that there is a strong influence of the space between the plates
on the value of the measured voltage:

1. Increasing the distance between the plates increases the voltage,
while a decrease of their spacing decreases the voltage. The two
fibers of the voltmeter follow the changes in the spacing of the plates

1 Today, there are commercially-available current sources (“power supplies”) with
readily adjustable output voltage. In the text, we often quote a value of 220V.
This is the output voltage of a large set of storage batteries which were used in the
Göttingen lecture hall for many decades; today, they have been replaced by power
supplies.

27© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_2

https://doi.org/10.1007/978-3-319-50269-4_2


Part
I

28 2 The Electric Field

A C A C

B BB

Figure 2.1 A parallel-plate condenser with insulators B; at the right as
a shadow image. The diameter of the plates is about 22 cm

Figure 2.2 CA: parallel-plate condenser;
at the left while it is connected to the
current source, at the right after the
connection is broken (here and in the
following figures, the symbol for the volt-
meter (circle with ‘E’, for electrometer)
indicates that a static voltmeter (Sect. 1.6)
is employed.)

C CA A

220V 220V
E E

Figure 2.3 A disk made of some arbitrary material between
the condenser plates (Video 2.1)Video 2.1:

“Matter in electric fields”
http://tiny.cc/s9fgoy
This video shows how insert-
ing various materials into the
electric field of a parallel-
plate condenser which has
been disconnected from the
current source reduces the
voltage between the con-
denser plates; the voltage is
restored when the material is
withdrawn (cf. Chap. 13).

100V
E

with a remarkable precision. When the spacing is returned to its
original value, we again find the initial value of the voltage, in our
example 220V.

2. Without touching the plates, we slide a thick disk of some mate-
rial into the space between the condenser plates (metal, plastic etc.)
(Fig. 2.3). The voltage drops to a fraction of its original value. When
we pull the disk out again, the original value of 220V is restored.

http://tiny.cc/s9fgoy


2.2 Basic Observations. Different Forms of Electric Fields 29

Pa
rt
IFigure 2.4 Two gold-covered quartz fibers which have

spread apart (the distance between the spread fibers re-
mains small compared to the spacing of the condenser
plates A and C)

C A

– +

In this space between the condenser plates, unusual forces act, which
otherwise do not occur; an example is shown in Fig. 2.4: Two fine
metal fibers (gold-covered quartz threads) will spread apart when
brought into this space between the plates (we will discuss this ef-
fect in detail in Chap. 3; see also Fig. 2.39).

We can amplify these phenomena by increasing the voltage: We
replace the power supply by an influence machine or Wimshurst ma-
chine, already mentioned in Chap. 1 (Sect. 1.9); it produces several
thousand volts. Then we sprinkle some small fibrous particles, for
example small tufts of cotton, between the plates. The fibers stick at
one end to the plates and stretch away from them. Sometimes they
fly across the gap from one plate to the other, following straight-line
paths in the center and curved paths at the edges of the plates. (This
can be seen with particular clarity in the shadow image!)

We investigate this remarkable behavior of the fibrous particles in
more detail. We try to observe it systematically in the whole of the
space between the plates. To this end, we repeat the previous ex-
periments “two dimensionally”: Fig. 2.1 shows at the right a vertical
section through the two plates C and A. We replace it in Fig. 2.5 by
two metal foil strips glued onto a glass plate. Between them, we
apply a voltage of around 3000V. Then we scatter some sort of in-

Figure 2.5 The electric field lines
in a parallel-plate condenser, made
visible with gypsum crystals (this
and all the following images of
electric field lines have not been
retouched at all)

C A
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Figure 2.6 Elec-
tric field lines
between a plate
C and a sphere or
a wire A

A

C

Figure 2.7 A similar image as
in Fig. 2.6, from a drawing by
JOHSEPH CARL WILCKE, 1777
(showing the paths of motion
of gold-leaf shreds). This is
the principle of “electrostatic
spraying” used for painting.

A

sulating fibrous dust particles, e.g. powdered gypsum crystals, onto
the glass plate and tap it gently. The small crystals orient themselves
into peculiar lines; we see a pattern of the electric field lines (“lines
of force”). They appear superficially to resemble the magnetic field
lines which we made visible using iron filings (Figs. 1.1 through 1.4).

We can vary this experiment in a variety of ways. For example, we
reshape one of the two plates into a circle or a line (wire). Then we
obtain “two-dimensional” patterns as shown in Figs. 2.6 and 2.7.

On the basis of our observations thus far, we introduce two new con-
cepts:

1. Two conductors between which there is an electric potential dif-
ference (voltage) are called a condenser.

2. The space between these two objects, in which we can detect field
lines or lines of force, contains an electric field.

We have to derive the basic concepts of the “electrical world” from
experience, just as we have done for the basic concepts of the “me-
chanical world”. We have for example come to understand the phe-
nomenon of “weight” through many experiences in daily life. With-
out such experiences and observations, we could not deal with me-
chanics. In a similar way, we will have to become familiar with the
concept of the electric field on the basis of experience. Otherwise,
we will never be able to penetrate into the world of electric phenom-
ena. An electric field introduces a preferred direction into a region
of space; such a direction is not present in “empty” space. The field
lines make this clear in a pictorial way. In the beginning, one should
approach the subject in a completely naive and unbiased manner. It
is quite all right to visualize the electric field lines as visible chains of
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lines between two spheres or
between two parallel wires

C A

Figure 2.9 Sketch of the electric field
lines between wires and the wall of
the room when the positive pole of the
current source is grounded, i.e. con-
nected to the earth by a conducting
link

C A

dust particles. Later on, it will be no problem to distinguish between
the field lines and this rough, descriptive image.

We will offer four additional examples of condensers of different
types and show the corresponding patterns of their electric fields:

1. Two adjacent spheres or wires (Figs. 2.8 and 2.9).C2.2 C2.2. The concept of a field
line has thus far simply been
used to describe the experi-
mentally observed patterns
(forces on small particles)
which allowed us to deduce
the existence of a vector field.
In graphic representations
of fields, as in Fig. 2.9, one
in addition makes use of the
density of the field lines to
indicate the magnitude of the
field (the “field strength”).

The image in Fig. 2.8 shows how the field between the poles of our electric
sockets looks. Often, one pole of a current source is permanently con-
nected to the surface of the earth by a conducting wire. The field then
looks like the sketch in Fig. 2.9. In this drawing, the positive pole A is as-
sumed to be “grounded”. When wires are open in the room, we sometimes
see the beginnings of a “field line pattern”; one of the wires will have at-
tracted a large amount of dust and looks like a hairy caterpillar. Along the
wall adjacent to this wire is often a dusty strip; it marks the other ends of
the field lines on the wall.

2. In Fig. 2.10, at the right we see a “carrier of electricity”, that
is, one of the plates of a condenser; it could be a metal disk A or
a sphere. The other plate is formed by the surface of the earth, the
walls of the room, the furniture and the experimenter. Figure 2.11
illustrates a dainty shape for such a carrier, a “spoon” on an insulating
handle. Later, in Fig. 2.48, we will see the field of a spherical carrier
of electricity.

3. An antenna and the hull of a ship (Fig. 2.12). We can see how the
field lines run from the antenna to the masts and the hull.

4. Figure 2.13 shows the pattern of field lines in and around a static
voltmeter. A voltmeter (or “field electrometer”) of this type is simply
a condenser; one of the condenser plates takes the form of a movable
pointer (cf. Figs. 1.21 and 1.22).

A review of the electric fields that we have observed shows us two
things:
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A

Figure 2.10 Electric field lines between a carrier of electricity (in earlier
times called a “conductor”) and its surroundings. J. C. WILCKE, one of the
first to investigate the parallel-plate condenser, said in 1757, “The conductor
namely acts as one of the plates A, and the observer is the other plate C”.

Figure 2.11 A “spoon” on an insulating
handle as a “carrier of electricity” or, more
compactly, a “charge carrier”

Figure 2.12 Electric
field lines between
the antenna and the
hull of a ship (a truly
“historical” picture,
since the antennas for
the short-wave radio
signals used today are
just short dipoles; see
Chap. 12)

Figure 2.13 Electric field lines around
a static voltmeter, or an electrometer
as condenser
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the condenser plates.

2. Among all the possible electric fields, two have a particular geo-
metrical simplicity. In a sufficiently flat parallel-plate condenser, the
field is homogeneous (Fig. 2.5).C2.3 C2.3. The experimental proof

of the homogeneity of the
field can be carried out in
principle by the method in-
dicated in Figs. 2.22–2.24
using influence charges (bal-
listic galvanometer), whereby
the two carriers of electricity
must be small compared to
the size of the plate (see also
Sect. 2.13).

The field lines are straight, par-
allel, and have a constant density. A spherical carrier of electricity,
at some distance from the other pole of the condenser, gives rise to
a spherically-symmetric field (Fig. 2.48).

In the following, we will refer for the most part to the homogeneous
field of a sufficiently flat parallel-plate condenser. The direction of
the field will be defined as usual by the convention that the field lines
point from the positive towards the negative plate.

2.3 Electric Fields in Vacuum

(ROBERT BOYLE, before 1694). All of the experiments described
in the previous section would give the same results in high vacuum
or in air. An electric field can exist in empty space. Air at atmo-
spheric pressure has little effect on the observations of electric fields.
Its influence is seen only when very precise measurements are car-
ried out (apart from spark discharges and similar phenomena). At
atmospheric pressure, a difference of 0.06% is found for some char-
acteristics of the field as compared to measurements in high vacuum.
This result, which has been verified by numerous observations, is
understandable in terms of the molecular picture of the composition
of the air. Figure 2.14 reminds us of the most important facts: It
shows room air with a linear magnification of around 2 � 106, as
an instantaneous image. The molecules are drawn as black points.
Their spherical shape is arbitrary and unimportant. Their diame-
ter is around 3 � 10�10 m. Their average spacing is about ten times
larger. The volume occupied by the air molecules themselves is thus
practically vanishingly small compared to the volume of empty space
around them.2

We add to this static picture of the air a fast exposure with an ex-
posure time of around 10�8 s (Fig. 2.15). The flight paths of three
molecules are drawn in, but here only at a 6 � 104-fold magnifica-
tion. The straight lines are the “free paths” between two collisions
(about 10�7 m). Every kink in the paths corresponds to a collision
with one of the other molecules (not shown). Their average path
velocity at room temperature is about 500m/s. 1m3 of room air con-
tains around 3 � 1025 molecules.

2 In one cubic centimeter of room air, there are about 3 � 1019 molecules. The
diameter of each individual molecule is of the order of 3 � 10�10 m. If they were
strung together, they would form a chain which could be wound roughly 200 times
around the earth’s equator.
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Figure 2.14 A schematic in-
stantaneous image of room air at
a 2 � 106-fold magnification. A cross-
section of width d D 4 � 10�9 m D
4 nm is shown.

0 5
m

10×10–9

Figure 2.15 The mean free path of
gas molecules in room air (magnified
6 � 104-fold; see also Vol. 1, Sects. 16.3
and 17.10)

0 1 2 3×10–7m

2.4 The Electric Charge

We continue our experimental observations of electric fields and ar-
rive at the following conclusion, which was already anticipated in the
previous sections: An the ends of the field lines, there is something
which can be transferred or filled from one conductor to another. We
will call it “electric charges”. We will have to distinguish two types
of charges (CHARLES F. DU FAY 1733), following a suggestion by
G. C. LICHTENBERG, (Göttingen 1778), who denoted them by the
mathematical symbols3 C and �. From among the many possible
demonstration experiments, we give two examples:

1. In Fig. 2.16, a potential difference of 220V has been established
between the plates of a condenser by connecting them briefly to the
C and � poles of the current source. Then we insert a disk-shaped
carrier of electricity or charge carefully between the plates (Fig. 2.11)
and move it back and forth in the direction of the double arrows.
At the end of each motion, we allow the carrier disk to touch the
surface of the plate briefly. Each touch reduces the voltage between

3 They could serve equally well for distinguishing two different types of charge
(one positive and one negative), as for an excess or a deficit of only one type of
charge.
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C A
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E

220V

Figure 2.17 Filling electric charges from
a current source (Sect. 2.2) onto the plates of
a condenser b b

C A

220V

E

the plates. The carrier transports negative charges from the left to the
right plate, and positive charges from the right to the left plate.

2. In Fig. 2.17, top, we see the C and � poles of the current source; at
the bottom of the figure, there is a parallel-plate condenser connected
to an electrometer, but now without a voltage between the plates. We
then move two small charge carriers in the direction of the arrows
along the dashed paths. We can observe that a voltage is produced
between the condenser plates, and it increases with each additional
motion of the carriers. Now we cross the paths, going from the �
pole to A and from the C pole to C: Then the voltage decreases again;

Figure 2.18 A simplified version of the ex-
periment in Fig. 2.17. The positive charges are
transferred to the left-hand condenser plate via
a wire, while the negative charges are brought
to the right-hand plate by a “charge carrier” (or
“spoon”).

220V
+ –

E
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charges of the “wrong” sign are transported to the plates. (Figure 2.18
shows a simplified version of this experiment.)

Every electric charge can be decomposed into tiny portions whose
size is reproducibly always the same (“elementary charges”). The
first elementary charge carriers to be discovered had a negative sign
and were called electrons (see Sect. 3.6). For clarity, we mention this
fact here; we will return to it later.

2.5 Fields in Matter

We produce an electric field in a condenser in the usual manner and
then bridge the gap between the plates by some object (Fig. 2.19).
We repeat the experiment numerous times with different substances,
e.g. in that order metal, wood, cardboard, cloth, glass, hard rubber
or plastic, amber. In each case, the result is qualitatively the same:
the electric field decays; the voltage between the plates drops to zero.
Quantitatively, however, we find striking differences: Metals destroy
the field very quickly, so that the fibers of the voltmeter collapse to-
gether in an unmeasurably short time. With wood, this process lasts
several seconds, with cardboard or cloth still longer. With hard rub-
ber or plastic, it takes quite a few minutes, and with amber, the decay
of the field occurs only after some hours or days.

In this way, we can order the different materials in a series, which
is called the series of decreasing electrical conductivity.C1.10 The first
members of the series are called good conductors, while those at its
end are insulators (very poor conductors).

There is no “perfect” conductor and no “perfect” insulator. No con-
ductor is so ideal that it destroys the field instantly. And every insu-
lator conducts to some extent, i.e. it will also cause the field to decay,
even if this takes a very long time.

An electric field could exist between two objects for a practically unlimited
time only if they were very cold and were located in a perfect vacuum with
no radiation of any kind.
The characterization of materials as ‘conductors’ or ‘insulators’ is due to
STEPHAN GRAY (1729). The fact that the transition between the two
kinds of material is continuous was first recognized by FRANZ ULRICH

THEODOR AEPINUS (1759).

Figure 2.19 An object is bridging the gap between the
two condenser plates C A

+–

220V

E
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We refer directly to the preceding experiments and ask the question:
How can the objects placed in an electric field destroy it? A first
answer, which suffices for many purposes, can be seen by comparing
Fig. 2.19 to Fig. 2.16.

In Fig. 2.16, electric charges were transported from one plate to the
other using a carrier – the negative charges from the left to the right,
and the positive charges from the right to the left. This permits the
charges to combine in pairs and remain close together. Then their
electric field no longer acts outside their immediate location, and it
disappears in the space between the condenser plates.

In Fig. 2.19, the field disappears when the gap between the condenser
plates is bridged by an object. This allows us to arrive readily at
the following conclusion: Charges can somehow move, pulled by
the force of an electric field, through material objects. The positive
and the negative charges approach each other and combine as pairs.
Briefly stated: In conductors, electric charges are mobile.

In insulators, one must then assume that there is no appreciable
charge mobility within the material. This is confirmed by exper-
iment. One can demonstrate that electric charges stick on or in
insulating materials in numerous ways (see for example the 21st
edition of POHL’s Elektrizitätslehre, Chap. 25). We limit ourselves
here to two examples:

1. We repeat the charge transfer experiment shown in Fig. 2.18, but
now instead of a metal disk as charge carrier on the “spoon”, we
use some good insulator, e.g. plexiglas. Furthermore, in Fig. 2.20,
we use a different voltage source, a small influence machine, and as
a static voltmeter, we employ the field electrometer which was shown
in Fig. 1.22. These two carriers of electricity behave in quite different
ways. A conducting metal spoon need only touch the terminal of
the voltage source at one point, both for taking on charge and for
dispensing it. The carrier made of insulating material, however, gives
rise to only very small deflections of the instrument if it is touched
at just one point. In order to transfer larger quantities of charge, we
have to rub the whole surface of the carrier on the pole of the current
source and on the condenser plates to take up and release the charge.
We have to “spread around” the charges onto the surface of the carrier
in order to collect them, and to dispense them, we have to “scrape
them off” again.

2. We can also make spots of electric charge on the surface of insulat-
ing materials. These spots can be made visible just like grease spots
on a piece of cloth, by dusting them. For example, we can put an
insulating plate of glass between a sheet of metal and a pointed wire.
The sheet is connected to one pole of a current source with a high
voltage, e.g. an influence machine. Then a small spark is allowed to
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Figure 2.20 Trans-
ferring charges using
charge carriers made
of different materi-
als (at the left is an
influence machine
which was especially
designed for shadow
projection)

Figure 2.21 An electric spot. This kind of
“LICHTENBERG figure”C2.4

C2.4. GEORG CHRISTOPH

LICHTENBERG (1742–1799),
professor of experimental
physics at the University
of Göttingen (from 1770).
A number of original ex-
amples of his apparatus can
still be seen today in the His-
torical Collection at the 1st
Physics Institute of the Uni-
versity of Göttingen.

can also be
readily produced on photographic emul-
sions, which then, instead of being dusted
with a powder, are developed in the usual
way (Video 2.2)

Video 2.2:
“LICHTENBERG’s figures”
http://tiny.cc/99fgoy
Various figures are shown
which are formed when neg-
ative electric charges are
either sprayed onto a plate,
or are removed from it (in
the latter case, an image like
that in Fig. 2.21 is seen).
They are compared with the
images made by LICHTEN-
BERG from the Historical
Collection. At the end of the
video, we demonstrate how
removing electrons from the
interior of a plexiglas disk
leads to the same kind of
branched figures as on the
surface. Energetic electrons
were first injected to a depth
of ca. 1 cm into the disk; then
by grounding at the edge
of the disk, they flowed out
along branched paths, similar
to a lightning stroke, leav-
ing an optical change in the
plexiglas so that their paths
become visible.

jump from the other pole of the source to the pointed wire. Initially,
the charges on the surface of the glass plate are invisible; but they
produce an electric field which extends out into the space above the
plate. If we dust a fine powder, for example flowers of sulfur, onto the
glass surface, we can see that the ends of the field lines are marked
by the powder which sticks there, just as with an electric wire above
a white room wall (cf. Fig. 2.9). Figure 2.21 shows an image of such
a “LICHTENBERG figure” (Göttingen, 1777)4.

2.7 Influence and Its Explanation

(JOHANN CARL WILCKE, 1757). In our experiments on field de-
cay up to now, we have bridged the gap between the two condenser
plates using a (more or less good) conductor. Continuing these ex-
periments, we now put a short piece of conducting material into the
electric field, so that it does not touch the condenser plates. We can
then observe the phenomenon of influence.C2.5

C2.5. Influence plays an im-
portant role in producing
high voltages, as we have
already mentioned several
times in relation to the influ-
ence machine (or Wimshurst
machine). Its principles of
operation were described in
detail in previous editions
of this book. See e.g. www.
powerlabs.org/wimshurst.
htm.

Influence will prove
later to be our most important tool for detecting electric fields (induc-
tion coils, radio antennas etc.). At this point, we consider the result of
our experiments which we describe in advance: A conductor always
contains positive and negative charges, but in its usual “uncharged”
state, there are exactly the same amounts of the two. The overall

4 Electric spots can also be made by spraying charges onto a thin layer of insu-
lating material whose optical index of refraction is >2 in the visible region. The
layers become conducting on irradiation (as described in detail in the 21st edition,
Chap. 25); as a result, the charges flow away where the layers have been irradi-
ated: Dust particles stick only to the spots which were not irradiated. This is the
principle of xerography, used in copying machines.

http://tiny.cc/99fgoy
www.powerlabs.org/wimshurst.htm
www.powerlabs.org/wimshurst.htm
www.powerlabs.org/wimshurst.htm
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shaped carriers of electricity ˛ and ˇ are
touching each other within an electric field.

Field direction
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αβ

Figure 2.23 The two carriers ˛ and ˇ
have been separated, still in the field

Field direction

C A

- ++ -

βα

“charge” of an object refers simply to an excess of charges of one or
the other sign.

To demonstrate influence, we make use of the homogeneous elec-
tric field of a sufficiently large and flat parallel-plate condenser AC
(Fig. 2.22), and show the individual steps in the experiment in terms
of two-dimensional field-line patterns. We use a metal plate as the
conducting object. It is made in the form of two disks with insulating
handles; the disks touch each other at several points when they are
held together. The flat surfaces of the disks are oriented perpendicu-
lar to the field lines. We can then make the following observations:

1. We separate the two disks within the field and observe that the
space between them is field free; fibrous powder shows no tendency
to stick to them or to orient itself (Fig. 2.23). Interpretation: Field
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Figure 2.24 Explanation of influence. The carriers of
electricity which have been removed from the field region
prove to be electrically charged

Field direction

+ –

E

α β

decay means that charges, pulled by the forces in an electric field,
move within the conductors until no field remains between ˛ and ˇ.
Where do these charges come from? The inevitable conclusion is that
they were already present in the conducting disks, however as pairs
(C and �), tightly joined and thus undetectable.

2. We keep the two disks separated and remove them from the field
region, as seen in Fig. 2.24; they are then connected to a static volt-
meter (Figs. 1.23 and 1.24). The voltmeter indicates a voltage and
thus an electric field; the two disks each carry an electric charge,
with opposite signs. Interpretation: As a result of field decay within
a conductor, the field lines in Figs. 2.22 and 2.23 have to end on the
surfaces of the disks. The right-hand disk in these images acquired
a negative charge, and the left-hand disk a positive charge.

3. How can we show that the field-line patterns in Figs. 2.24 and
2.23 are compatible with each other? Answer: The direction of the
field in Fig. 2.24 is opposite to the direction of the original field in the
condenser AC. The fields thus mutually cancel each other in Fig. 2.23.

The homogeneous electric field was intended only to simplify and
clarify our experiments on influence behavior. In general, electric
fields are inhomogeneous and the shape of objects placed in them
is arbitrary. Then the field lines are not only interrupted, but also
distorted, for example as in Fig. 2.25. There are always “influence
charges” which collect at the points where the field lines are inter-

a b

+ + +– – –

Figure 2.25 Example of influence with distortion of the electric field
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need only break apart the conductor at a suitable junction while it is
in the field. This is suggested in Fig. 2.25b by the dotted line.

2.8 The Free Charges on the Surface
of a Conductor

Now, continuing our experiments, we again bring a conducting ob-
ject into an electric field. Previously, we bridged the gap between
the two condenser plates with the object; the field decayed immedi-
ately, and we concluded that the charges within conductors can move
freely. The second time, the object was located separately within the
field region, not touching the plates, and we observed that the charges
can be pulled apart by influence. Now, as a third case, we allow the
object to touch only one of the electrodes which produce and delimit
the field. We ask: How do the mobile charges distribute themselves
within the conductor? We will find that the answer is that they move
to the outer surface of the conductor and remain there.

We deduce this from a two-dimensional model experiment with field
lines made visible as dust patterns. In Fig. 2.26, the two black cir-
cles indicate the poles of the current source. The field between them
originally looked like the field in Fig. 2.8. Now, however, we have
attached a conductor in the form of a hollow sheet-metal cup to the
negative pole; it has a small hole at its top. We see that all the field
lines end at the outer surface of the cup. In its interior there are no
field lines, and thus also no field-line ends or free charges.

This model experiment of course requires additional confirmation
through further experiments. We describe three of these:

1. Fig. 2.27 corresponds to our model experiment; but in addition,
the positive pole of the current source is connected to the housing of
our static voltmeter. The voltmeter acts as a condenser (Fig. 2.13), so
that it can accept and store electric charge. The positive charges pass

Figure 2.26 Pattern of field
lines between a sphere and
a “FARADAY cup” with
a small opening

+ –
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Figure 2.27 On the bottom inner surface
of a conducting box which is nearly closed
on all sides, or of a conducting cup, there
are no free charges (BENJAMIN FRANKLIN,
1755)

3

2

1E

220V

+ –

through the connecting wire, while the negative charges are trans-
ported by a small “charge transport spoon” (Fig. 2.11). We first move
the spoon along path 1 and observe a deflection of the voltmeter. The
same behavior is found on path 2. In contrast, the spoon transfers no
charge at all along path 3. This result is astonishing; the cup is con-
nected via a conducting wire to the current source, but nevertheless,
we can not collect even a small charge from its inner surface. On the
inner surface of a conducting cup, there are no free electric charges.

A practical application: Often, one wishes to shield a certain space
from electric fields. The phenomenon of influence, explained in
Fig. 2.26, suggests a general method for obtaining such a field-
free space: The region to be shielded need only be surrounded by
a conducting shell, closed on all sides. Then the field indeed moves
influence charges to the outer surface of the shell; but its inner sur-
faces remain completely free of charges, and its inner volume is
therefore field free. The shell or shield need not even be completely
closed; a housing made of wire mesh whose openings are not too
large will suffice. This kind of shield is called a “FARADAY cage”).
This is illustrated by the arrangement shown in Fig. 2.28.

Figure 2.28 Shielding against electric fields by a metal mesh (J. S. WAITZ,
1745. The voltmeter is similar to the one in Fig. 1.22)
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ing charges with a “charge spoon”
2

1
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220V

+ –

E

Without the “cage”, the static voltmeter would exhibit a large deflec-
tion. Within the cage, it indicates no voltage at all. The field cannot
penetrate into the interior of the cage. We can increase the voltage
of the influence machine and allow loud sparks to jump between the
balls and the cage, but the interior will remain free of fields and no
sparks will be seen there. For sparking to occur, an electric field must
be present. Protection by Faraday cages plays a significant role in the
laboratory and in technical applications.C2.6

C2.6. Earlier editions of this
book contained the following
remark at this point, and the
author often repeated it in
private:

“Technical applications
make use of Faraday cages
as protection against light-
ning strikes. They are used
for example around depots
for explosives or flammable
substances, in the form of
a wire mesh with relatively
large openings. However,
another safety rule is that no
ungrounded water lines from
hydrants are to be passed
into the enclosure; otherwise,
a lightning bolt could jump
from the wire cage onto the
water line and thus enter the
building, causing a calamity.
In practice, much sad expe-
rience has been accumulated
with such arrangements!”

A closed space with an
insulated conductor which
enters it is a condenser.
This should be kept in mind,
in particular when we are
dealing with the rapidly
oscillating electric fields
associated with electric vibra-
tions.

2. In a second experiment, we put a metal cup onto our static volt-
meter (Fig. 2.29). The housing of the voltmeter remains connected
to the positive pole of the current source, while the cup can be con-
nected briefly to the negative pole to charge it. The voltmeter then
indicates a voltage of 220V. We touch the outer surface of the cup
with our “charge spoon” and move the spoon about 1m away to a.
The voltmeter indicates a reduced voltage, i.e. some of the negative
charges stored on the cup and the voltmeter have been transferred by
the spoon to a. Then we bring the spoon along path 2 to the interior
surface of the cup and fill all the negative charges back. The volt-
meter again indicates 220V. The spoon can hold no charges as long
as it is connected to the interior wall of the cup, so that it is uncharged
when we take it out again.

Figure 2.30 The production of a high
voltage between the cup and the housing
of the voltmeter (the experimenter must be
aware of the meaning of Eqns. (2.3) and
(2.20)!)

20V

E

+ –
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3. Finally, we carry out a third experiment with the same setup,
but using a current source with only a low voltage, e.g. 20V as in
Fig. 2.30. We move the spoon back and forth between the negative
pole and the inner surface of the cup. We can thereby increase the
voltage indicated by the voltmeter as much as we wish, for example
up to around 400V, the maximum allowed voltage for the double-
fiber voltmeter. Explanation: In the interior of the cup, all of the
charge on the spoon is deposited each time. There is no opposing
electric field there to limit the amount of charge delivered. This trick
is used technically in the construction of high-voltage generators, as
described in the following section. It is also important for the opera-
tion of influence machines.

2.9 Current Sources Delivering
High Voltages

For voltages of up to around 5 million volts (5MV) in air, van de
Graaff generators or belt generators are used; they are constructed
as shown in the schematic in Fig. 2.31. They are used e.g. for low-
energy nuclear physics research (production of artificial isotopes).
The field is generated between two large, spherical electrodes A and
C. A is connected to the C pole of a small battery. The other pole of
the battery “sprays” negative charges via a conducting brush 1 onto
a moving carrier of electric charge; this is an endless belt which is
driven by a small electric motor. The charge on the belt is carried into
the interior of the hollow sphere C, where it is removed by brush 2;
all of it flows out onto the outer surface of the sphere. Belt generators
of this type have been constructed with spherical electrodes of up to
several meters in diameter, so that the experimenter can sit safely in
the field-free interior while making observations.

One can leave off the small battery and use frictional electricity (“static
electricity”) to charge the belt, employing the friction between brush 1

A C

B

2

1

Figure 2.31 A belt generator for high voltages without corona discharge
losses. The interior of the sphere C is visible through two windows. (B is
an insulator; at the lower right is an electric motor.) Sparks up to 30 cm long
can be produced, corresponding to a voltage of � 106 V.
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electrification machine (OTTO VON GUERICKE, 1672). The rotating car-
rier of electricity is no longer a sphere or drum, but rather an endless belt
(WALKIERS DE ST. AMAND, 1784, R.J. VAN DE GRAAFF, 1933). Carri-
ers of electric charge in the form of belts can be made larger than disks,
spheres or drums, and thus permit greater charge separation distances and
higher voltages.C2.7 C2.7. Modern van de Graaff

generators for research or
isotope production have their
high-voltage parts enclosed
in a pressure tank containing
an insulating gas (often SF6)
to prevent sparking; they
can produce up to 25MV.
Even higher voltages can be
obtained by operating two
or more in tandem (i.e. in
series). Replacing the rub-
ber or textile belt by a chain
with alternating insulating
and conducting links (the
“pelletron”) permits a higher
operating velocity and thus
still higher voltages and cur-
rents. See e.g. https://www.
aps.org/publications/apsnews/
201102/physicshistory.cfm.

2.10 Currents During Field Decay

Based on our observations, we have attributed the decay of electric
fields to a movement of charges within matter (conductors). We will
now try to gain some more detailed knowledge of this charge move-
ment, and we find that: During the decay of the field, an electric
current flows through the conductor. We can observe this current
using a technical ammeter, e.g. a mirror galvanometer with a rapid
response time. We use a large condenser as shown in Fig. 2.32, con-
sisting of 100 pairs of plates (with an area of all together about 8m2

and a spacing of 2mm between the plates; cf. Fig. 2.52). We con-
nect a voltage of 220V to this condenser, as usual. Then its field is
caused to decay by a piece of conducting wire. The galvanometer is
connected in this wire in series with a piece of wood. The wood acts
as a poor conductor and slows the decay of the field, so that it takes
about 10 s. During this time, the galvanometer deflection indicates
that a current is flowing. The time evolution of the current can be
recorded with the aid of a stop watch and is shown in Fig. 2.33. The

Figure 2.32 The slow decay of an electric
field through a poorly-conducting wooden
link (the static calibration factor of the gal-
vanometer is BI � 2 � 10�7 A/scale division)

G

E

Figure 2.33 The current which flows
during the decay of the field (recorded
using a rapidly-responding galvanometer
as in Fig. 1.31)
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https://www.aps.org/publications/apsnews/201102/physicshistory.cfm
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Part
I

46 2 The Electric Field

Figure 2.34 During field decay through
a conducting wire 1, a small incandescent
lamp included in the circuit lights up

1

1

E

Figure 2.35 During field decay through
a conducting wire, an electrolytic cell in-
cluded in the circuit exhibits electrolysis
(electrode area < 1mm2)

A C

H2 O2

E

quantitative treatment of this curve will be given in Sect. 2.16. Of
course, the brief current flow during the decay of the field could also
be detected through the heat it generates or its electrolytic effects. We
illustrate both using the schematics in Figs. 2.34 and 2.35.

2.11 Measurements of Electric Charge
from Current Impulses.
The Relation Between Charge
and Current

In our experiments with electric fields, we made use of field decay
(discharging of condensers) to gain some particular insights; it led
us to several important phenomena: First to influence, then to the
location of mobile charges on the outer surfaces of conductors, and
finally to the currents which flow through a conductor during dis-
charge. This latter phenomenon now brings us closer to an important
goal, the quantitative measurement of electric charges in electrical
units.

We refer to Fig. 2.33, an arbitrary example of the time dependence of
the current during a field decay (condenser discharge) process. The
area enclosed under the curve is the time integral of the current, that
is the current impulse (see Sect. 1.10). We now measure this cur-
rent impulse on discharging the small condenser that we have often
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Figure 2.36 The technical arrangement used for the experiment in Fig. 2.32;
at left, a mirror galvanometer. The window at the bottom of the column
allows us to see the mirror which reflects the light pointer onto the scale.
The oscillation period T of this galvanometer is long, around 44 s ( ballistic
galvanometer), and the spacing of the condenser plates is 4mm.

used already, together with the ballistic galvanometer (with a long
response time) which we calibrated in Sect. 1.10 (Fig. 2.36).

We carry out the experiment several times with variations. In all
cases, the condenser plates are set initially to the same spacing,
ca. 4mm, and a field is produced (charging the condenser) by apply-
ing a voltage of 220V (static voltmeter!). Then the experiments are
as follows:

1. The connection used to discharge the condenser and destroy
the field contains only the rotating-coil galvanometer with its low-
resistance coil. The field decays in an unmeasurably short time.

2. A poorly-conducting (resistive) object is placed in the circuit, in
series with the galvanometer, for example a piece of wood (compare
Fig. 2.32). The decay of the field now requires several seconds.

3. First, the spacing of the condenser plates is increased, increas-
ing the voltage correspondingly. Then the field is caused to decay
(condenser discharge) as before, either rapidly or slowly by using the
wooden “resistor”.

4. and 5. Now, we carry out two experiments on the production of
the field. We return the condenser plates to their original spacing
(4mm), but this time, we include the galvanometer in one of the two
conducting wires used to charge the condenser and thus produce the
field (Fig. 2.37). In the fourth experiment, we generate the field very
rapidly; in the fifth experiment, we generate it by using a resistive
conductor much more slowly, over several seconds.

In all five cases, we observe a current impulse of the same magnitude
(in this example, about 10�8 A s; see Eq. (2.1)). We changed the time
dependence of the field, the magnitude of the voltage, we observed
both the decay and the production of the field. What remained un-
changed? Only the electric charges that were placed on or taken off
the condenser plates, negative charges on one plate and positive on
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Figure 2.37 The current impulse during the production of
the field

G

E

– +

the other. From this we may deduce that the current impulse
R
I dt as-

sociated with the decay or production of the field is a measure of the
electric charges Q associated with the field. We can measure electric
charges Q by determining a current impulse.

We define the charge Q through the equation

Q D
Z

I dt (2.1)

.Unit: 1 ampere second (A s), also called 1 coulomb (C) (obsolete)/:

As a first example, we measure the charge on a small “carrier”
(a spoon with an insulating handle), as shown in Fig. 2.38. We place
a negative charge on it by touching it briefly to the negative pole of the
current source. Before doing that, we had already connected the left
terminal of the galvanometer (which is calibrated in ampere second)
to the positive pole of the current source. Now we move the spoon
along some arbitrary path to the right terminal of the galvanometer
and observe a current impulse of 6 � 10�10 A s. The spoon thus con-
tained a negative charge of this magnitude.

For a quantitative investigation of the mechanisms of electrical con-
duction with the aid of similar experiments in gases, see for example
the 21st edition of this book, Chap. 15.

Figure 2.38 Meas-
urement of the charge
on a “carrier of
electricity” (the gal-
vanometer is the same
as in Fig. 2.36)

220V+ –
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We follow the measurement of electric charges by measurements of
the associated electric field. The principal characteristic of an elec-
tric field is its preferred direction, as indicated by the field lines. To
describe an electric field quantitatively, we must therefore use a vec-
tor. We call it the electric field E. The direction of this vector is the
same as that of the field lines, conventionally from C to �. The mag-
nitude of the vector can be determined by suitable experiments. One
example can be carried out with the aid of two devices (Fig. 2.39):

Figure 2.39 The definition of the
electric field strength

l U
E

440V

1. Flat parallel-plate condensers of differing plate areas A and plate
separations l, and

2. Some sort of indicator for the electric field (a “field electroscope”).

The indicator need only be able to identify two spatially or tempo-
rally separated electric fields as equal. It need not measure them, but
rather only verify the equality of the two fields.

As an indicator, we choose two small5, fine gold-covered quartz
fibers, such as we have already seen in Fig. 2.4. We place them with
their plane parallel to the field lines and observe the spread of their
tips on a scale using an optical projection method6.

During the experiments, we can vary the voltage between the con-
denser plates at will. To accomplish this, we use the familiar voltage
divider circuit (Fig. 1.27). We will investigate a series of condensers
with varying plate areas A and plate separations l. By regulating the
voltage, we adjust the spread angle of the electroscope fibers to be
the same each time; this means that the same force is acting on them
and thus the same electric field is present each time. We find in this
way a simple experimental result: The electric fields are the same as
long as the ratio U=l, i.e. (voltage/plate spacing), is the same. The
surface area of the plates plays no role. The homogeneous electric
field of a flat parallel-plate condenser is determined uniquely by the
quotient U=l. For this reason, one makes use of the ratio U=l to arrive
at a first definition of the electric field strength (the magnitude of the

5 Otherwise, they would distort the field too strongly; compare Fig. 2.25b.
6 For thought experiments, a different indicator would be preferable, namely a tiny
charged carrier of electricity attached to the arm of a force meter.
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Figure 2.40 The path integral of the electric
field E
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vector E ) in a parallel-plate condenser:

Field strength E D Voltage U between the condenser plates

Spacing l of the condenser plates
: (2.2)

We use as unit 1 V/m.

The next step leads to an important generalization. By comparing
with the homogeneous electric field of a parallel-plate condenser, one
can measure the field E at arbitrary points within an arbitrary electric
field: Its individual small regions are practically still homogeneous.
They are replaced by the field of the same strength and direction of
a parallel-plate condenser. We then determine for this substitute or
“surrogate condenser” its field direction and the value of the ratio
voltage/plate spacing (Eq. (2.2)).

The vector nature of the electric field E leads to a relation that is often
useful: In Fig. 2.40, we have connected the arbitrarily-shaped con-
ducting electrodes of a general condenser by a broken line. Within
the individual path elements �s along this line, the field must be
practically homogeneous. Denote the components of the field in the
direction of the path elements �s as E1, E2, . . . , Em. Then the sum
E1�s1 C E2�s2 C : : : C Em�sm is equal to U1 C U2 C : : : C Um.
We already know this latter sum, however: It is simply the voltage
between the condenser plates. Therefore, we must haveC2.8

C2.8. POHL for simplicity
ignores the question of the
sign here. Since he is dealing
only with the voltage U be-
tween two points, it suffices
here to use the magnitude of
U. With the definition of the
voltage as a potential differ-
ence �' (Sect. 3.8), Eq. (2.3)
becomes, taking the sign into
account,

�' D �
Z

E � ds :

Z
E � ds D U ; (2.3)

or, in words: The path integral of the electric field along an arbitrary
curve is equal to the voltage U between the ends of that curve. We
will make frequent use of this relation in the following pages.C2.9

C2.9. The sentence in italics
here is by no means trivial. It
is also not true in general, as
will be shown in Chap. 5.
However, it holds for all
the electric fields which are
treated in the present chapter.
They are characterized by the
fact that their path integrals
are independent of the curve
chosen, and are therefore
zero along any closed curve.
Mathematically, such electric
fields can be represented as
the gradient of a scalar field
(potential field). They are
termed “conservative fields”
or “potential fields”.

The path integral changes its sign if it is computed in the opposite direction
along the curve. It is positive when the curve is followed for the most part
in the direction of the field, i.e. from C to � (compare Sect. 3.8).

In metrology, the measurement of electric field strengths plays a very
minor role. In the vast majority of cases, one computes the field
strength E. Examples can be found in Sect. 2.15. For the generally
most important electric field, the homogeneous field of a flat parallel-
plate condenser, this computation is dispensed with by referring to
the defining equation (2.2).
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Density and Electric Field Strength

In all of the electric fields that we have considered thus far, the field
lines had ends, and electric charges were found to be sitting at those
ends. Therefore, a quantitative relation between charge Q and elec-
tric field strength E is to be expected. We search for it experimentally
by looking at the geometrically simplest field, our old friend the ho-
mogeneous field of a parallel-plate condenser. In Fig. 2.41, we see
a condenser; let the area of each of its plates be A, the voltage be-
tween them be U, and their spacing l. Then the magnitude of the
electric field between the plates is E D U=l, as seen above. In the
figure, a ballistic galvanometer can be connected to the condenser.
It has been ballistically calibrated and measures the current impulseR
I dt when the condenser is discharged (when contacts 1 and 2 are

closed). We thus measure the magnitude of the two equal positive
and negative charges Q which were on the condenser plates (e.g. in
ampere second).

We repeat these measurements several times with various values of
the plate area A and the field strength E D U=l. The result of all these
measurements is

Q

A
D "0E ; (2.4)

or, in words: The surface density Q=A of the charge on the condenser
plates is proportional to the electric field strength E ("0 is a constant
of proportionality).

We find the same simple relation for the surface density Q0=A0 of the
influence charges. In Fig. 2.42, we see again the influence experi-

Figure 2.41 The proportionality of the field
strength and the surface charge density G

1 2

E

Figure 2.42 The measurement of the displace-
ment density D as the surface density Q0=A0 of
the influence charge Q0 (U � 8000V)

C CA A

– –+ +
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β
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Figure 2.43 The in-
fluence charge Q0 on
the disks ˛ and ˇ is
being measured as the
“impulse deflection” of
a ballistic galvanome-
ter. Its calibration
was carried out as in
Fig. 1.33.

α

β

ment (Sect. 2.7) in a homogeneous field, now using rather thin metal
disks ˛ and ˇ, with areas A0, which cause hardly any distortion of the
field. At the left in the figure, ˛ and ˇ are still in contact; at the right,
they have been separated, still in the field. In Fig. 2.43, they have
been taken out of the field and their charges Q0 are being measured.
The surface density of these influence charges has its own name; it is
called the displacement density D, with D D Q0=A0. As its unit, we
use for example 1A s=m2. The displacement density D is also a vec-
tor. This can be seen by the fact that the influence charges depend on
the inclination of the disks relative to the direction of E. The largest
induced (influence) charge is found when the disks are perpendicular
to the field vector E. This leads us to conclude that D lies parallel to
E (Eq. (2.5)).

The word “displacement” is unfortunate. It is intended to remind us of
the displacement of the charges when the field is interrupted due to influ-
ence .C2.10

C2.10. POHL suggests in the
21st edition that one could
simply use the expression
“electric field quantity D”
instead of “displacement”.
D is also called the “electric
flux density”.

Inserting the displacement densityD, Eq. (2.4) takes on the form:C2.11

C2.11. Equation (2.5) or
(2.4) is a special case of the
general relation (2.9) which
is discussed in the following
section:

Q

"0
D
I

E � dA :

It is the first of the
MAXWELL equations in
integral form, and is also
known as GAUSS’s law
(or GAUSS’s formulation
of COULOMB’s law). The
connection to COULOMB’s
law (as given in Eq. (3.8))
can be seen if we compare
the equation for the field
strength of a charged sphere
(Eq. 2.15) with that equation
and use the expression for
the force on a charge in an
electric field,

F D QE (Eq. (3.5)).

(The differential form of the
first MAXWELL equation
can be found at the end of
Sect. 2.14.)
For the history of the

discovery of COULOMB’s
law, see e.g. J. L. Heilbron,
p. 470, cited in the footnote in
Sect. 2.17.

D D "0E : (2.5)

This is the essential content of the law discovered by CHARLES

A. COULOMB in 1785. It relates a charge density (quoted e.g. in
A s=m2), measured via a current impulse, through a constant of pro-
portionality "0 to an electric field E, measured in terms of a voltage
(quoted e.g. in V/m).

For the factor "0, in a vacuum (and for all practical purposes also in
air), one finds the value:C2.12

C2.12. When the quanti-
ties current and voltage are
considered to be indepen-
dent of each other, as we
do here, then "0 is a natural
constant which must be de-
termined experimentally. But
we should mention that the
value of "0 has been fixed
by law today (see Comment
C23.1).

"0 D 8:854 � 10�12 A s

Vm
:

It is called the electric field constant or the permittivity of vacuum; its
official (SI) name is simply the electric constant.

For precise measurements of the electric field constant, instead of the sim-
ple condenser sketched in Fig. 2.41, one makes use of a condenser with
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Fig. 2.41, but using a condenser with a corona
ring
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220V
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E

a “corona ring” S (Fig. 2.44). The surface charge density is measured only
on the inner part of the condenser, thus avoiding disturbances due to the
inhomogeneous stray field around the edges of the plates.

The experimental fact summarized in Eq. (2.5) can be interpreted in
three ways:

1. One considers the readily-measurable quantity D as a useful aid to
the measurement of electric fields E, employing E D D="0;

2. One can treat the displacement densityD simply as an abbreviation
for the product "0E, which occurs frequently in electromagnetism;

3. or, one can treat D as an independent, second quantity which is
equivalent to E for the quantitative description of electric fields.C2.13 C2.13. The introduction of

two vector fields, E and D,
which differ only through
a constant of proportionality
"0, might seem unnecessary
here. For the complete de-
scription of an electric field
in vacuum, E is indeed suffi-
cient. D is therefore not even
mentioned in some textbooks.
However, in the presence of
dielectric materials, the sim-
ple relation D D "0E no
longer holds. Then it is often
found to be helpful to employ
both of the field quantities
(see Chap. 13).

In this book, we will place all three of these possibilities on an equal
footing.

2.14 The Electric Field of the Earth.
Space Charge and Field Gradients.
MAXWELL’s First Law

The earth is always surrounded by an electric field E (G. LE MON-
NIER, physician, 1752). This field points downwards and is per-
pendicular to the surface of the earth in flat regions. The field can
be readily detected and measured by making use of Eq. (2.5). We
employ a flat parallel-plate condenser which can be rotated around
its horizontal axis (Fig. 2.45). It is set up in the open. Each plate
(made for example of aluminum sheet metal) has an area A of about
1m2. The plates are analogous to the small disks in the influence
experiment. They are each connected to one terminal of a ballistic
galvanometer which is calibrated in ampere second. We alternately
orient the plane of the plates in the vertical and the horizontal, that is
alternately parallel and perpendicular to the field. With each change
of orientation, the galvanometer indicates a current impulse Q D
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Figure 2.45 A measurement of the dis-
placement density of the electric field of
the earth using a rotatable parallel-plate
condenser connected to a ballistic gal-
vanometer (Video 2.3)Video 2.3:

“Measuring the electric
field of the earth”
http://tiny.cc/69fgoy
In the experiment, the con-
denser is rotated by 180ı, so
that the current impulse is
doubled.

G

R
I dt of around 10�9 A s. The ratio Q=A is the displacement den-

sity D of the electric field of the earth. Averaged over time, one finds

D D 1:15 � 10�9 A s

m2

or

E D D

"0
D 130

V

m
:

The earth has a surface area Ae of 5:1 � 1014 m2. Its total negative
charge is thus Ae � D � 6 � 105 A s. Where are the corresponding
positive charges? One could think of the fixed stars; in that case, we
would be dealing with the usual radially-symmetric electric field of
a charged sphere at a great distance from other objects or charges
(Fig. 2.48). The electric field strength would be practically the same
at several kilometers altitude above the earth’s surface as on the sur-
face itself (the earth’s radius is 6370km!). But this is not at all the
case. Already at an altitude of 1 km, the field strength has dropped to
around 40V/m. At an altitude of 10 km, it is only a few V/m.

These observations lead us to a new kind of electric field and thereby
to a fundamental relation between charge and electric field. The fields
which we have treated thus far were delimited on both sides by a solid
body which carried electric charges. In the case of the earth’s field,
we have a solid body on only one side, namely the earth itself as car-
rier of the negative charges. The corresponding positive charges are
localized on innumerable, invisible carriers in the atmosphere. These
carriers all together form a cloud of positive space charge (Fig. 2.46).
The volume density % of these charges (A s/m3) is responsible for the
strong “slope” (the gradient) of the field. We find

% D @D

@x
D "0

@E

@x
: (2.6)

Figure 2.46 A cloud of positive space charge
above the negatively-charged surface of the earth
(approximated here as a planar surface)

http://tiny.cc/69fgoy
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gradient and a space charge
D

D+∆D
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Derivation: In Fig. 2.47, two homogeneous field regions are sketched, with
the cross-sectional area A and displacement densities D and (D C �D),
one above the other. D is thus assumed to increase by the amount �D on
passing down the vertical path element�x. Then from Eq. (2.4), it follows
that

"0�E D �D D �Q

A
(2.7)

or

"0
�E

�x
D �D

�x
D �Q

A�x
D % ; (2.6)

since�Q is the charge contained within the volume A�x. It is marked by
the C signs in Fig. 2.47.

Equation (2.6) is a special case, limited to a gradient in one direc-
tion (along the x axis); usually, this relation is written in the general
mathematical form (obtained in the limit �x ! 0 and in three di-
mensions):

divE D %

"0
(2.8)

and is called the “fundamental equation of electrostatics”. It is one
of the four MAXWELL equations (see Sect. 6.5), and it describes the
general relation between the vector field E and the charge density %
(Exercise 2.12). In integral form, it is given by

I
E � dA D 1

"0
Q ; (2.9)

where the (2 dimensional or surface) integral is to be carried out over
the closed surface area A which encloses the charge Q. The surface
integral

R
E � dA is also called the electric flux.

2.15 The Capacitance of Condensers
and Its Calculation

Combining the two equations

D D "0E (2.5)

and Z
E � ds D U ; (2.3)
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we can compute the distribution of the electric field strength of arbi-
trary fields. We thus arrive at the physically as well as technologically
important concept of the capacitance. The capacitance is defined for
every condenser as the quotient

C D Charge Q on the electrodes

Voltage U between the electrodes
: (2.10)

Its unit is 1 ampere second/volt (A s/V), and is given the name ‘farad’
(F) (after Michael FARADAY).

Q is the electric charge on one of the electrodes (which define the
boundaries of the electric field), and has the same magnitude as the
charge (of opposite sign) on the other electrode. One is positive and
the other negative. Often, we speak conveniently, but less rigorously,
of the “charge on the condenser”, and correspondingly of “charging”
and “discharging” the condenser (this will be treated quantitatively in
the following section).

We give examples of the capacitance of several condenser designs
with geometrically simple electric fields:

1. A flat parallel-plate condenser. In its homogeneous field, the
displacement density D is equal to the surface charge density Q=A of
the charge on the two condenser plates (electrodes). Equation (2.2)
then gives the field strength E D U=l. Inserting both into Eq. (2.5)
gives

C D "0
A

l
: (2.11)

A numerical example: 2 circular plates of 20 cm diameter and areas of
3:14 � 10�2 m2, at a spacing of 4mm:

C D 8:86 � 10�12 A s � 3:14 � 10�2 m2

Vm � 4 � 10�3 m
D 7 � 10�11 A s

V

.or 7 � 10�11 farad D 70 pF/ :

Here, as in Sect. 2.8 for several resistors, it is worth the trouble to
derive the capacitance of several condensers connected in series or
parallel. We readily obtain for two condensers in parallelC2.14

C2.14. When two condensers
are connected in parallel,
their two negative electrodes
are equivalent to a larger
electrode whose total area is
the sum of the two individual
electrode areas, and similarly
for the positive electrodes.
They thus act like a larger
condenser, and the overall
capacitance of the circuit is
just the sum of the individ-
ual capacitances of the two
condensers.
In a series circuit, the volt-
ages on the individual con-
densers simply add, and since
the capacitance is propor-
tional to the reciprocal of the
voltage, the reciprocal of the
overall capacitance is just
the sum of the reciprocals of
the individual capacitances;
this is analogous to resistors
connected in parallel. C D C1 C C2 : (2.12)

In a series circuit, we find

1

C
D 1

C1
C 1

C2
: (2.13)

2. A spherical condenser electrode with a radius r (and a radially-
symmetric electric field; see Fig. 2.48). A charge Q is located on the
surface of the sphere. At a distance R from the center of the spherical
electrode, it gives rise to a displacement densityC2.15

C2.15. One can try to derive
Eq. (2.14) by imagining that
pairs of concentric spherical
surfaces are brought into the
field, and then computing
the density of surface influ-
ence charges (displacement
densities) which would be
present on them. For those
who prefer an experimental
derivation, we refer to Com-
ment C2.16.

DR D Q

4�R2
; (2.14)
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between a negatively-charged
sphere and very distant positive
charges

and, from Eq. (2.5), the field strengthC2.16 C2.16. The experimental
derivation of the important
equation (2.15) starts with
the experiment illustrated
in Fig. 2.49 (Video 2.4),
which can be carried out with
spheres of different radii.
Measurement of their capac-
itances C(r) as a function
of the radius r of the sphere
yields Eq. (2.17), and

U D Q

4�"0r
(2.16) .

Substituting Eq. (2.15), it
follows that

U D
RD1Z
RDr

ER dR

(concerning the sign, see
Comment C2.8). The im-
portance of this equation is
that it is experimentally veri-
fied in principle for all radii,
including extremely small
values of r (“point charges”).
Thus, by superposition of
many such point charges, the
electric fields and potentials
(Chap. 3) of arbitrary known
charge distributions can be
calculated.

ER D Q

4�"0R2
: (2.15)

The voltage U between the charged sphere and the very distant
boundary of the field (e.g. the walls of the room) is obtained from
Eq. (2.3) by integration. Then

U D
RD1Z
RDr

ER dR D
RD1Z
RDr

Q dR

4�"0R2
D Q

4�"0r
: (2.16)

Equations (2.10) and (2.16) together yield the capacitance of a spher-
ical electrode (spherical condenser):

C D 4�"0r (2.17)
�
4�"0 D 1:11 � 10�10 A s=Vm

�
:

The capacitance of a sphere is proportional to its radius.

In Fig. 2.49, we measure the capacitance C of a globe which has been
hung on an insulating cord to verify Eq. (2.17). A voltage of 220V
suffices for this measurement.

The earth’s radius is r D 6:37 � 106 m. It thus forms with the system of
fixed stars (as counter electrode) a condenser whose capacitance according
to Eq. (2.17) is 708 microfarad (�F).

In an analogous manner, we can compute the electric fields of more
complex electrode shapes, as long as they are sufficiently symmet-
ric, as well as the spatial distribution of the field strength and their
capacitances7

7 Examples:

2 concentric spheres: C D 4�"0
r1r2

r2 � r1
; (2.18)

2 coaxial cylinders of length a W C D 2�"0
a

ln.r2=r1/
: (2.19)



Part
I

58 2 The Electric Field

B

G
E

220V
+

−

Figure 2.49 Measurement of the capacitance of a condenser formed by
a sphere and the floor of the lecture room. To charge it, the cardboard sphere
is connected briefly to the C pole of the current source (U D 220V). The
negative pole of the current source was previously connected to the earth E
(it was “grounded”). (The calibration of the ballistic galvanometer G in am-
pere second was carried out as in Fig. 1.33; B: insulator) (Video 2.4)Video 2.4:

“The capacitance of
a sphere”
http://tiny.cc/jaggoy
The globe (of radius r D
0:27m) is charged up to
a voltage of 103 V. The cur-
rent impulse on discharging
it produces a galvanome-
ter deflection of 3.7 scale
divisions in the ballistic gal-
vanometer G, corresponding
to 4 � 10�8 A s. Doubling
the charging voltage dou-
bles the measured charge.
The capacitance is found to
be C D 4 � 10�11 farad. The
capacitance calculated from
Eq. (2.17) is 3 � 10�11 farad.

For an overview of complex fields, we give a useful tip: The combi-
nation of Eqns. (2.15) and (2.16) yields the field strength directly on
the surface of the sphere (where R D r!):

Er D U

r
: (2.20)

Any sharp corner or point can to first order by considered as a spher-
ical surface with a small radius of curvature r. From Eq. (2.20),
the field strength E on the surface of a sphere and the radius of
curvature r of the sphere are inversely proportional to each other.
Therefore, in the neighborhood of corners and points of condenser
electrodes, even quite low voltages give rise to high field strengths.
The air becomes conducting at high field strengths (“field ioniza-
tion” of air molecules) and is no longer an insulator. A violet-colored
glow (“corona discharge”) indicates fundamental changes in the air
molecules. In addition, an electric wind is produced: It blows away
from the point and is a first example of the matter transport which is
associated with an electric current.

The air which streams away from the point is replaced by air which comes
in from the sides; it is in turn ionized and accelerated away from the point.
A counter-force acts on the point. It can for example cause the “propeller”
sketched in Fig. 2.50 to rotate. The voltage between the propeller and the
walls of the room need be only a few thousand volt .C2.17C2.17. A planned application

of this matter transport is
a rocket drive for space flight
using ion beams.

Apart from details, the same process occurs as with a propeller aircraft:
The propeller or fan accelerates the air which enters from the sides and
blows it backwards as a jet. The counter-force which is oppositely di-
rected to the jet of air accelerates the aircraft on takeoff and later allows
it to maintain a constant velocity in the face of the inevitable frictional
resistance to its motion (Vol. 1, Sects. 5.11 and 10.11).

http://tiny.cc/jaggoy
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Figure 2.50 At left: Pinwheel (ANDREAS GORDON, 1712–1751) (Vi-
deo 2.5).

Video 2.5:
“The Electric Wind”
http://tiny.cc/maggoy
Right: Ionic wind (particu-
larly effective as a shadow
image). – An instructive vari-
ation: Hang a light-weight
condenser made of a pointed
and a ring-shaped electrode
mounted rigidly, with two
thin wires which serve as
electrical leads and sus-
pension. This “pendulum”
swings whenever the jet of
the electric wind is blowing
through the ring.2.16 Charging and Discharging

a Condenser

The time dependence of discharging a condenser was already shown
in Fig. 2.33. In order to investigate it quantitatively, we use the circuit
shown at the upper right in Fig. 2.51. As can be seen there, the total
voltage is the sum of the condenser voltage and the resistor voltage:

U D UC C UR D Q

C
C RI ; (2.21)

R
A

I U

Uc

Uc
U'c

Uc
U

E

B

1

0
TimeTime

5×10–3  s5×10–3 10–2

1
e ≈0.37

s0

A

1

τr τr τr τr

1
e ≈0.37

1
e ≈0.631– ))

I c 
= 

C
dU

c
dt

Figure 2.51 Production and decay of the electric field in a condenser as a function
of time, i.e. charging and discharging the condenser. An oscilloscope is used here to
measure the voltage (shown as a static voltmeter in the circuit at upper right). From
its time dependence (curve A), we obtain by differentiation the time dependence of
the current shown above (Eqns. (2.23) and (2.24)). B: Discharging begins already
at U0

c < U. (C D 10�6 F, R D 103�, �r D relaxation time D RC D 10�3 s)

http://tiny.cc/maggoy
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and thus,

U D Q

C
C R

dQ

dt
: (2.22)

This differential equation has the solutions

Q D Q0 e
� t
RC or I D � Q0

RC
e

� t
RC (2.23)

on discharging (U D 0),C2.18 andC2.18. This result clearly
does not hold for R D 0,
since then the condenser
would be discharged within
an infinitely short time, with-
out the energy it contains
being converted into JOULE

heat. The current in this case
would be determined by
other properties of the cir-
cuit which are not taken into
account in Eq. (2.22), and
which would lead to oscilla-
tions (see Sect. 11.2).

Q D Q0

�
1 � e

� t
RC

�
or I D Q0

RC
e

� t
RC (2.24)

for charging (U D U0), as one can verify by substituting into
Eq. (2.22) (simple differential equations can best be solved by fol-
lowing this recipe: Guess the solution and test it by substituting into
the original equation). The time �r D RC is called the relaxation time
or time constant of the circuit. It can be used to measure resistances
whose value is greater than the order of magnitude of 107�.

2.17 Various Types of Condensers.
Dielectrics and Their Polarization

Thus far, we have used condensers of practically only two types.
They consisted either of a pair of parallel plates (Fig. 2.1), or of
several pairs of plates (Fig. 2.52). A variation on this multi-plate
condenser is the rotary variable condenser (Fig. 2.53). By rotating

Figure 2.52 The design of multi-plate
condensers. Usually, they have three
instead of the one pair of mounting
shafts shown here. (B are insulators)

B B+ –

Figure 2.53 Shadow image of a rotary vari-
able condenser

C A
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one set of plates so that different fractions of the plate areas overlap,
one can vary the capacitance of the condenser.

Technical condensers often have liquid or solid materials (“di-
electrics”) between their plates rather than air. We mention here
three types which are frequently used:

1. The well-known and venerable Leyden jar8. Figure 2.54 shows at
the right a primitive version: A glass cylinder has a sheet of tinfoil
glued inside and another outside. Its capacitance is usually in the
range of 10�9 to 10�8 F (1 to 10 nF).

A small influence machine produces currents of around 10�5 A (Sect. 1.9).
With this current, it can charge a Leyden jar with a capacitance of 10�8 F
in 30 s to a voltage of about 3 � 104 V (Fig. 2.54). A spark gap with two
balls at a distance of 1 cm, wired in parallel to the Leyden jar, can serve as
a rough voltmeter. At around 30 000V, a spark jumps the gap, accompa-
nied by a loud ‘snap’. The time during which a spark of this kind jumps
is ca. 10�6 s. This can be registered with a rapidly-rotating photographic
plate (or with a photo detector and an oscilloscope). The current in the
spark must therefore be 30=10�6 or 3 � 107 times larger than the current
from the influence machine; it must be around 300A. This large current
causes a strong heating of the air in the spark gap, with the resulting noise
(thunderclap principle).

2. The paper condenser. We lay out two strips of metal foil C and A,
separated and covered by two strips of insulating paper P,P, then roll
up the whole packet and press it together (Fig. 2.55). Newer variants
use plastic foils with vapor-deposited metal electrodes on each side.
They can be fabricated for voltages of up to several thousand volt.

3. Electrolytic condensers. In these, the insulating separation layer
(dielectric layer) is produced electrolytically and has a thickness of
the order of 0:1�m. Condensers of capacitances up to 10�3 F, or even
1 F are commercially available today, and can be used at up to several
hundred volt.

The treatment in this and the following chapter is limited to electric
fields in vacuum, which is practically the same as in air. Matter in an
electric field will be discussed in Chap. 13. Nevertheless, in the three

8 See: J.L. Heilbron, “Electricity in the 17th and 18th Centuries: A study of early
modern physics”, University of California Press, Berkeley, CA (1979), p. 309.
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C

A P
P10μF

Figure 2.55 At the left: A finished paper condenser with a capacitance of
10 �F; at the right: The condenser is partially unrolled. The two metal foils
each have an area of about 4m2. Their spacing, equal to the thickness of the
paper strips P, is about 0.02mm (Exercise 2.13).

types of condenser described above, we have intentionally anticipated
that topic. We therefore introduce three new concepts at this point,
the dielectric, its polarization, and its dielectric constant.

A good insulator causes an electric field to decay only very slowly.
It can be “penetrated” by an electric field over a long period of time:
Thus its name, “dielectric”.

The ratio

" D
CapacitanceCm of a condenser

completely filled with a dielectric

CapacitanceC0 of the empty condenser
(2.25)

is called the dielectric constant of the dielectric. Numerical values
will be given in Table 13.1.

With a given charge on the electrodes of the condenser, an increase
in its capacitance is accompanied by a decrease in its voltage. Filling
the gap between its electrodes with a dielectric thus produces a simi-
lar effect to partially filling the gap by a conducting object (Fig. 2.3).
The conductor cancels the field in its interior. It thereby shortens
the field lines by the amount of its thickness. At the same time,
charges are induced on its surfaces: this is the phenomenon of in-
fluence.

In an insulator or dielectric, the charges cannot move to the sur-
face as they do in a metal. Nevertheless, an insulator in an electric
field causes a shortening of the field lines; in the simplest case, one
can simply assume that influence is operating on the scale of the
individual molecules. This is illustrated in Fig. 2.56 by a rough
two-dimensional model. The molecules are represented arbitrarily
by small conducting spheres. Influence within individual molecules
is called an electric polarization of the molecules. It in turn produces
a “polarization of the whole dielectric”. Then charges appear on its
surfaces, just as with influence in conductors; in Fig. 2.56, positive on
the left and negative on the right. But the polarization of an insulator
cannot be used to separate charges like the influence in a conductor.
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plain the polarization of a dielectric in
terms of polarization of its individual
molecules (Exercise 2.14)

a

b

C A
– +

Imagine that the polarized insulator in Fig. 2.56 is split into two parts
along the cross-section a b perpendicular to the field lines and the
two halves are removed from the field: Then each half contains the
same number of C and � charges, and is thus wholly uncharged. The
polarization charges are also called “bound” charges, to distinguish
them from the “free” charges on the condenser plates or the surfaces
of conductors in the field.

The model experiment in Fig. 2.56 contains extensive but not essen-
tial simplifications. In reality, the molecules are not spherical, and
the charges do not move to the ends of the molecules. More details
are to be found in Sect. 13.9. In any case, a rather unspectacular
experiment, sliding an insulator into the gap between the plates of
a condenser (Fig. 2.3), has led us to an important result: In the in-
terior of matter, charges are present. They can be displaced by an
external electric field. This results in an “electric deformation” or
polarization of the molecules themselves.

What happens when an object is electrically charged according to this
picture? From Sect. 2.7, this can only mean that an excess of charges
of one sign is present on the object. But how many charges of both
signs are present, whose difference is observed in charged bodies?
We offer an example:

An amount of water of massM D 1 kg has a volume of V D 10�3 m3

and, if it were spherical, a radius r D 6:2 cm. From the molar mass
of the water molecules, M=n D 18 g/mol, we find the amount of
substance in the sphere to be n D 55:56mol, and thus the number N
of water molecules to beN D nNA D 3:34�1025 molecules, each with
10 electrons. Since the charge of a single electron is 1:602 � 10�19 A s
(Sect. 3.6), the sphere contains chargesQ of both signs, each totalling
5:4 � 107 A s. Between this sphere and the walls of the laboratory,
we could – with some difficulty – produce voltages of U > 106 V.
Then, from Eq. (2.17), a charge q D 6:9 � 10�6 A s would sit on
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the surface of the sphere, either positive or negative. The ratio q=Q
is then 1:3 � 10�13. This means that, although we would say in the
laboratory that a large electric charge was present on the object, in
reality we would have removed or added only an unimaginably small
fraction of its positive or negative charges Q and thereby produced
a difference of q D QC � Q� (that is, we have disturbed the electric
equilibrium in the object, but only by a very small amount). Only
when the object has an exceedingly small mass, i.e. for individual
molecules or atoms, can the charge difference q be of the order of the
total charge Q.

Exercises

2.1 For a simple application of Eq. (2.8), we assume that the cloud
of positive space charges in Fig. 2.46 has a constant volume charge
density % up to a height of x D h and then % D 0 for x > h. Let the
negative surface charge density� be that of the earth’s surface, and h
the height, both known. Then, find a) the volume charge density%;
b) the electric field E as a function of the height x above the earth’s
surface; c) the voltage Ux between the earth and a point at x above it;
and d) the voltage Uh between x D h and x D 0 (Sect. 2.14).

2.2 In the experiment shown in Fig. 2.35, the electrolysis of water
is carried out by discharging a condenser. How large must the capac-
itance C of the condenser be, if it were charged up to a voltage of
220V and produced 10mm3 of hydrogen gas on discharging through
the electrolysis cell? The number density NV of the H2 molecules at
300K and atmospheric pressure is NV D 2:45 � 1025 m�3 (Sect. 2.15,
see also Sect. 1.4).

2.3 Two condensers with the capacitances C1 and C2 are con-
nected in series. Find their overall capacitance C for the case that
C1 D 1 nF (a small Leyden jar) and C2 D 2�F (Sect. 2.15).

2.4 An uncharged parallel-plate condenser with a capacitance of
C D 0:1 nF is connected to a static voltmeter which was previously
charged and indicated a voltageU. When the condenser is connected,
the voltage decreases by 10%. Find the capacitance CV of the volt-
meter (Sect. 2.15).

2.5 The voltage U between a negatively-charged sphere of radius
r D 1 cm and the distant walls of the room is U D 105 V (see
Video 2.3). Determine the surface charge density at the surface of
the sphere, expressed as the surface number density Ne of electrons
(Sect. 2.15).
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2r D 2mm in a 5mm thick plastic insulation with the dielectric con-
stant " D 3, which carries the outer conductor. Find the capacitance
per length unit, C=l (Sects. 2.15, 2.17).

2.7 Two point charges Q1 D Q and Q2 D �3Q are at a distance
of 1m. At what point along their connecting line is a) the electric
field strength E D 0, and b) the potential ' D 0 (besides at infinity)?
(Sects. 2.15, 3.8).

2.8 A rotating-coil galvanometer (Fig. 1.19) has a resistance of
100�. When a charged condenser (capacitance 0.1�F, voltage 10V)
is discharged through this galvanometer, it shows a ballistic deflec-
tion of 10 scale divisions. Find the voltage impulse

R
Udt which

would produce a deflection of one scale division (Sect. 2.16).

2.9 A condenser of capacitance C is discharged through a resistor
of resistance R. a) Determine the time t1=2 in which the voltage
decreases to one-half of its initial value; b) how large is the capaci-
tanceC of the condenser if R D 1012� and the voltage decreases by
20% after 10 seconds? (Sect. 2.16).

2.10 A neon lamp (Fig. 1.16) lights up at a voltage between 160
and 220V; the current increases linearly with voltage over this range,
following the equation I D .U � 157V/=7:63 k� (the “differential
resistance” dU=dI is thus 7.63k�). The lamp is connected to a con-
denser charged to a voltage of 220V; its capacitance is C D 50�F.
Find the time � that it takes for the lamp to go out (Sect. 2.16).

2.11 A condenser (C), an OHMic resistor (R), a battery (U0) and
a switch are connected in series in a circular circuit. The switch is
closed, so that the condenser is charged through the resistor up to
the voltage U0. Find the energy Wbatt supplied by the battery and
compare it with the energy WC stored in the condenser. What role is
played by the resistor R? (Sects. 2.16, 3.7).

2.12 A rotary condenser (Fig. 2.53) has semicircular plates with
a radius of 5 cm and spacings of 1.1mm. How many plates will be
needed to obtain a maximum capacitance of 500 pF ? (Sect. 2.17).

2.13 Determine the dielectric constant " of the paper strip P in
Fig. 2.55, if for the dimensions given there, the capacitance obtained
is C D 10�F (Sect. 2.17).

2.14 Find the effective dielectric constant " in the model experi-
ment illustrated in Fig. 2.56, in which metal balls of diameter d are
arranged on a cubic lattice with a lattice constant 2d within the oth-
erwise empty space between the condenser plates (Sect. 2.17).
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2.15 A parallel-plate condenser (with rectangular plates of height
a, width b, and spacing l) is dipped vertically into a liquid (density %,
dielectric constant ") so that the lower edges of its plates just touch
the liquid. When a voltage U is applied to the plates, the liquid rises
between them to a height h, so that a volume h � l � b is filled by the
liquid. Find the height h (Sects. 2.17, 3.7).

2.16 The volume between the plates of a parallel-plate condenser
(V D A � l, A D surface area and l D spacing of the plates) is as-
sumed to be completely filled with a liquid of dielectric constant ".
How large is the force with which the plates attract each other when
a voltage U is applied? (Sects. 2.17, 3.7).

Electronic supplementary material The online version of this chapter (https://
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in Electric Fields 3
3.1 Three Preliminary Remarks

1. In every physics laboratory for research or teaching, one can find
an assortment of instruments for measuring time, length, mass, and
temperature as well as for electric current, voltage, capacitance and
various other electric quantities. However, force meters are to be
found, if at all, only rarely and then mostly in teaching labs. If
an investigation requires the measurement of a force, one generally
compares that force to the force that we call weight (unit newton).
In general, forces are not measured directly, but rather are computed
from other quantities.

2. The relation between force F, mass m, and acceleration a has to be
derived experimentally. This problem is one of the most invidious in
all of physics teaching. One method is described in detail in Vol. 1,
Sect. 3.2. The corresponding experiments yield the result

a D F
m

or F D ma

with a barely acceptable precision. The real justification for this fun-
damental equation is to be found only later in the successes of its
numerous applications.

3. Exactly the same situation is found in electromagnetism for the
fundamental equation derived in Sects. 3.2 and 3.3:

E D F
Q

or F D QE ;

giving the relation between the mechanical quantity ‘force’ F and
electrical quantities (chargeQ, electric field E ). Again, for this equa-
tion, the final justification is found only later in terms of all of its
general applications.

3.2 The Fundamental Experiment

We start, as always, from experimental results. Figure 3.1 shows
a disk-shaped charge carrier ˛ on the lever of a force meter, in this
case a small beam balance. The carrier is placed at the center of
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A

C S

G

α

3000 V 220 V

I II

1

2

+ – –+

V

Figure 3.1 The fundamental experiment on the force between a charge and
an electric field. The (insulating) quartz balance beam carries two riders made
of Al sheet metal on its right side and can swing between two limiting stops.
S is a small round weight which keeps the center of gravity of the balance
beam below the knife-edge bearing. The condenser plates (electrodes) A and
C are mounted on insulating posts.

Figure 3.2 The field-
line patterns in the
fundamental experiment
of Fig. 3.1

a b c

a parallel-plate condenser, between the two electrodes C and A. Its
shape and its orientation perpendicular to the field lines have been
chosen for a reason: The carrier, when itself uncharged, should have
only a minimal effect on the form of the electric field between C and
A (Fig. 3.2a); it should not distort the field by influence (Fig. 2.25b).
The field betweenC andA is produced with the aid of a current source
I. It operates at the voltage U, so that the field strength of the ho-
mogeneous field in the condenser is E D U=l (l D spacing of the
electrodes). With this setup, we proceed as follows:

1. We transfer a negative charge to the carrier ˛. To do this, we
connect it briefly to the negative pole (contact 1) and both condenser
plates to the positive pole of the current source I (U D 0). After
charging the carrier, we will observe the field pattern shown in part b
of Fig. 3.2.C3.1C3.1. In textbooks one often

finds the term “a sufficiently
small test charge”. In carry-
ing out the experiment, one
has to make compromises in
order to have sufficient sen-
sitivity and precision for the
measurement.

This field would pull the charged carrier towards the plate which is nearest.
In order to prevent that, the carrier must be placed precisely at the center
between the plates (in an unstable equilibrium).

2. In addition, we use the current source I to apply a voltage U be-
tween the plates C and A. This produces a new field-line pattern, as in
part c of the figure. It is the result of a superposition of the patterns b
and a (cf. Fig. 3.9, below). The carrier is now pulled upwards by the
field from the condenser plates.
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sure the charge Q on the carrier. This is done with the calibrated
ballistic galvanometer (carrier ˛ is contacted by the wire 2!). Finally,
we measure the voltage U and the spacing l between the condenser
plates.

4. From each set of four corresponding quantities (the charge Q, the
force F, the voltage U and the spacing l), we compute the product F l
and the product UQ and find experimentally, within the error limits,
that they are proportional to each other:

F l � QU :

If we again set the constant of proportionality equal to 1, we obtain

F l D QU : (3.1)

(The direction of the force will be discussed in the following section.)

In this equation, the term on the left is a quantity of work; therefore,
the term on the right must also be ‘work’. That is, one can measure
work not only mechanically as the product of force times distance,
but also electrically, as charge times voltage; or, written as an equa-
tion,

W D QU : (3.2)

The charge is the time integral of a current; when the current I is
constant over time, we can write Q D I t (Eq. 2.1). Inserting this
quantity into Eq. (3.1) yields

F l D UIt ; (3.3)

an equation which we have already encountered in Sect. 1.12.

In the experimental setup which we have used (Fig. 3.1), the elec-
tric field was homogeneous. Its field strength is given by E D U=l.
Inserting E into Eq. (3.1) gives

F D QE (3.4)

.e.g. F in newton, Q in ampere second, E in volt/meter/:C3.2

C3.2. The complete equation
in vector form will be given
in the following section. Of
course, Eq. (3.4) also holds
when other units are used; it
is an equation relating physi-
cal quantities, as always.

In words: The force observed is proportional to the carrier charge Q
and also to the field strength E of the condenser field (which is as-
sumed not to be modified by the small charge on the carrier (Fig. 3.2,
part a). E is not for example the field strength of the actual field
present during the measurements (part c)!C3.3

C3.3. This is not due only to
the compromise mentioned
in Comment C3.1; rather,
the “test charge” also pro-
duces an electric field, whose
magnitude is in fact rather
large near the carrier (�1=r2,
Eq. 2.15). However, this field
cannot exert a force on the
carrier (test charge) itself.

Equations (3.1) to (3.4) are often used. We set the proportionality
factor in Eq. (3.1) equal to 1. This means that the three quantities
‘work’, ‘charge’, and ‘voltage’ cannot be measured independently of
one another; instead, work and charge are used to measure the voltage
as a derived quantity. This makes it possible to use the same energy
units for mechanical and electrical measurements (see Sect. 1.12).
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3.3 The General Definition
of the Electric Field E

The essential qualitative property of electric fields are the forces
which they exert on electric charges at rest. These forces lead to the
preferred directions which are so graphically apparent in the patterns
of electric field lines, and they require that an electric field E be
represented as a vector. The vector nature of the electric field E is
already apparent in its defining equation. To show this, we first have
to agree upon a measurement procedure for defining the charge Q
(Sect. 2.11), and then we can define the field E as a vector quantity
using the fundamental equation (3.4),

F D QE or E D F
Q
: (3.5)

In this relation, Q refers to a small charge on a test object, which
does not affect the form of the field already present. Equation (3.5)
contains the definition of the direction of the electric field vector:
For a positive charge, E and F are parallel and point in the same
direction.C3.4C3.4.This is also found

experimentally from the
fundamental experiment in
Fig. 3.1: The “test charge”
was negative, the field di-
rected from above to below,
and the resulting force was
directed upwards. This agrees
with Eq. (3.5), since a force
opposite to the field direction
acts on negative charges.

If forces F D QE move a charge Q in an arbitrary field, e.g. an
inhomogeneous field, along a path s, then they perform the work

Z
F � ds D Q

Z
E � ds ; (3.6)

and from this, the voltage follows:

U D
Z

E � ds D 1

Q

Z
F � ds (3.7)

as a derived quantity with the unit

1 volt (V) D 1Nm

1A s
:

Theoretical treatments need only describe the results of experiments,
but not to demonstrate them quantitatively. As a result, in mechanics,
they can use the equation F D ma as a defining equation and place
it at the beginning of the treatment, or also, in electrodynamics, they
can follow the path sketched out in this section. However, whoever
wants to derive the fundamental empirical facts quantitatively from
experiments will have to resign themselves to following a longer and
more tedious path, making use of the currently-available technical
resources.
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F = QE

The application of Eq. (3.5) is in general not at all simple. Usually,
the carrier distorts the initially-present electric field due to influence,
even when it is not itself charged. The field takes on a compli-
cated form. In such cases, one has to compute the field strength at
each surface element of the uncharged carrier; then, after charging
the carrier, one must multiply the charge on the surface element by
that field and sum over all such products. In reality, the situation is
still more complicated, since the charge on the carrier will shift the
charge distribution on the electrodes that produce the field by influ-
ence (imagine a point charge in front of an uncharged metal plate: It
induces a mirror charge of opposite sign due to influence). Integra-
tion of the MAXWELL equation (2.8) is in general possible only with
the aid of complex computer programs. This tedious procedure can
be avoided only in a few limiting cases; we offer two examples:

1. The forces between two small spheres at a large distance R from
each other. A sphere carrying the charge Q has, by itself, a radially-
symmetric field (compare Fig. 2.48). At a distance R, it produces an
electric field of strength

ER D Q

4�"0R2
: (2.15)

After bringing up the second sphere with its charge Q0, the field be-
comes quite different. For the special case that the two charges are
equal, Q D Q0, it can be seen in Fig. 3.3 (where the charges have
opposite signs), and in Fig. 3.4 (for charges of the same sign).

Figure 3.3 Field lines between
charges with opposite signs. As in
Fig. 3.4, also, they were generated by
vector addition of the fields of the in-
dividual charges (the direction of the
field lines is by convention from C to
�, or beginning on C, ending on �
charges).

Figure 3.4 Field lines between
charges of the same sign. The cor-
responding negative charges can be
thought of as residing on the distant
walls of the room.
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Figure 3.5 The attraction of two con-
denser plates. The increased density of the
field lines in the right-hand image reflects
the increased field strength.

In order to apply the equation

F D Q0E ; (3.5)

one has to assume the original, undistorted field of the first sphere
alone (Eq. (2.15)), i.e. to combine Eqns. (2.15) and (3.5). In this way,
we obtain the magnitude of the forceC3.5C3.5. COULOMB’s law

(Eq. (3.8)) in vector form

is F D 1

4�"0

QQ0

R2 � R
R
;

where F is the force which
Q exerts on Q0, and R=R is
the unit vector which points
from Q towards Q0. In this
formulation, in addition to
the magnitude of the force,
its direction and sign are also
specified.

F D 1

4�"0

QQ0

R2
; (3.8)

and for its direction, the result that it points along the line connecting
the two charges (spheres). For charges of the same sign, it is a re-
pulsive force, and for opposite signs, an attractive force. This law
was first stated in the form F D ˙QsQ0

s=R
2 by COULOMB.C2.10 It

was the culmination in 1785 of a century of experimental research.
Nevertheless, most treatments of electromagnetism put it at the very
beginning.

2. The attraction of the two plates (electrodes) in a flat parallel-
plate condenser. A plate (with charge Q) by itself produces the field
sketched at the left in Fig. 3.5. The field lines can be thought of as
ending on distant charges of opposite sign on the walls of the room
or other distant surfaces. Compare Fig. 2.10. The field is still homo-
geneous at not-too-large distances in front of and behind the plate.
There, its magnitude is

E D D

"0
D 1

"0

Q

2A
: (3.9)

This field is to be used in applying Eq. (3.4). It acts on the charge Q
on the second plate with the forceC3.6

C3.6. The two charges have
opposite signs, which gives
rise to the attractive force.
For simplicity, POHL con-
siders only the magnitudes
here.

F D Q
1

"0

Q

2A
D 1

2"0

Q2

A
: (3.10)

The charges on the second plate modify the field drastically (Fig. 3.5,
right side).C3.7

C3.7. Since the charges are
free to move over the sur-
faces of the plates, they
no longer remain on both
faces, but instead are now
concentrated on the inner sur-
faces, each facing the other
plate. This however has no
influence on the new field
distribution, as one can read-
ily understand by considering
insulating plates with fixed
charges instead.

All the field lines on the upper side of the plate now
vanish. What remains is the well-known homogeneous field of a flat
parallel-plate condenser.

Now we change the meaning of the symbol E. We again use it to
denote the field of the complete condenser. Then we find

Q D "0E A ; (2.4)

F D 1

2
QE D "0

2
E2A (3.11)
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Figure 3.6 The mutual attraction of two condenser plates C and A. B is an
insulating post, M is a screw micrometer with a mm scale and a vernier, G is
a weight. Numerical example: A D 20 � 20 cm2 D 4 � 10�2 m2; plate spacing
l D 10:2 mm D 10:2 � 10�3 m; voltage U D 7500 VC3.8 C3.8. Instead of the influ-

ence machine and the large
condenser which is needed
to smooth its voltage out-
put, one could of course use
a high-voltage power supply.
Note the robust kitchen scale
which permits a sensitive
measurement of the forces.

F D 8:86 � 10�12

2
� A s

Vm
� 5:63 � 107 V2 � 4 � 10�2 m2

1:04 � 10�4 m2

D 9:6 � 10�2 W s

m
D 9:6 � 10�2 N :

When the electric force becomes greater than the weight of G, the plate A
begins to move upwards.

or

F D "0

2

U2A

l2
; (3.12)

i.e. the force is proportional to the square of the voltage U and in-
versely proportional to the square of the spacing l of the plates.

Figure 3.6 shows a setup for testing this equation. It is intended in
particular to give a feeling for the orders of magnitude involved. For
precision measurements, one must use a flat parallel-plate condenser
with a “corona ring” here also (Fig. 2.44).

According to Eq. (3.12), the force increases in inverse proportion to the
square of the spacing of the condenser plates. Therefore, to produce
large forces, condensers with very small spacings have been constructed.
A highly-conducting plate is set onto a poor conductor, both with smooth
surfaces. Figure 3.7 shows a metal plate M in contact with a lithography
stone St. Both have a surface area of around 20 cm2. The stone’s weight
is about 2 N (mass m D 200 g). When a voltage of 220 V is applied, the
stone “sticks” to the metal plate. It can be lifted together with the metal
plate using the handle. Of course, this condenser is not insulated. In our

M
St 220V

Figure 3.7 The mutual attraction of two condenser plates which are made of
a good conductor M and a poor conductor St. As a result of the unavoidable
roughnesses on their surfaces, the spacing is very small at some points, and
the electric fields are therefore very large there (Video 3.1)

Video 3.1:
“Forces in an Electric
Field”
http://tiny.cc/xaggoy
Note the protective resistors!
Note also that the experiment
in Fig. 3.7 is reversed: the
stone is lifted and pulls the
metal plate below it upwards.(Exercise 3.1).

http://tiny.cc/xaggoy
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example, a current of several 10�6 A flows across it. The human body only
feels currents of more than 3 to 5mA (Fig. 1.29). We could readily use it
as a “connecting wire” instead of the metal wires shown in Fig. 3.7, and
thus make the stone “stick” onto the metal plate.

3.5 Pressure on the Surfaces
of Charged Bodies. Reduction
of Their Surface Tension

Pressure is generally defined by the ratio

p D ForceFwhich acts perpendicular to a surface

Surface areaA
:

For the homogeneous field of a parallel-plate condenser, we thus find
from Eq. (3.11)

pe D "0

2
E2 : (3.13)

Here, E is the field strength directly on the inner surfaces of the plates.

We want to apply this equation to the case of a charged sphere of
radius r. The voltage between the sphere and the distant carriers of
the opposite charge is U. Then on its surface, the field strength is

E D U

r
: (2.20)

We insert this value into Eq. (3.13) and obtain for the pressure on the
surface of the charged sphere:

pe D "0

2

U2

r2
: (3.14)

This pressure is directed outwards1, it acts like a reduction of the sur-
face tension 	. The surface tension by itself produces a pressure that
is directed inwards, p0 D 2	=r (see Vol. 1, Sect. 9.5). In the pres-
ence of an electric field, the remaining inwardly-directed pressure is
reduced to

p D 2	

r
� "0

2

U2

r2
: (3.15)

The reduction of the surface tension by an electric field can be demon-
strated in many ways, e.g. using the setup shown in Fig. 3.8. The spray
nozzle of a glass container emits a jet, which becomes a stream of droplets
as the depth h of the water decreases. The fact that the water coalesces into
droplets is a result of its surface tension. Now, we produce an electric field
between the water and the walls of the room using an influence machine.
Immediately, the water again flows out of the nozzle as a smooth jet.

1 This is a convenient but lax way of putting it. The pressure is not ‘directed’, but
rather the associated force.
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tension of water (GEORGE MATHIAS BOSE, 1745)

h

3.6 GUERICKE’s Levitation Experiment
(1672). The Elementary Charge,
e = 1.602 · 10−19 A s.

A particularly important application of the equation F D QE for
physics is the “levitation experiment”. It is the original form of the ar-
rangement shown in Fig. 3.1. A light-weight charge carrier is brought
into a vertically-directed electric field. Suppose that the carrier is neg-
atively charged and the condenser electrode above it is positive. Then
its weight FG pulls the carrier downwards and the force

F D QE or F D Q
U

l
(3.1)

pulls it upwards (compare the field lines in Fig. 3.9). In the limiting
case

FG D Q
U

l
; (3.16)

there will be an “equilibrium”, and the carrier is “levitated”. Then we
can compute the charge Q on the carrier from its weight FG and the
field strength U=l.

For demonstration experiments, light-weight objects which would
fall only slowly in air, such as feathers or cotton, gold leaf flakes,

Figure 3.9 The elec-
tric field lines (lines
of force) in the levita-
tion experiment. One
can practically “see”
how the charge carrier
is pulled upwards, al-
though the field which
enters in Eq. (3.16) is
the homogeneous field
of the empty condenser.

A

C

–
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Figure 3.10 A charged
soap bubble levitated in an
electric field (Video 3.2)Video 3.2:

“Soap Bubbles in an Elec-
tric Field”
http://tiny.cc/9aggoy

Figure 3.11 Old rep-
resentations of the
levitation experiment:
at the right, by BEN-
JAMIN WILSON (1746);
at the left by OTTO VON

GUERICKE (1672)
(B: gold-leaf flakes;
a: downy feathers).
“Plumula potest per
totum conclave portari”

a

C

A
B

soap bubbles etc. are most suitable. These carriers are charged and
then caught in the electric field between two charged condenser plates
(Fig. 3.10). The electric field strength is varied by changing the
spacing of the plates. (The field as shown in Fig. 3.10 is not ho-
mogeneous; otherwise its field strength would be independent of the
spacing of the plates.) In this way, we can cause the carriers to rise,
to sink, or to remain levitated (i.e. to “float” at a fixed height). To
simplify the setup, the upper plate in Fig. 3.10 is often left off; then
the ceiling of the room takes on its function. In this form, the levita-
tion experiment was first demonstrated by OTTO VON GUERICKE2,
(1602–1686), in the year 1672 (Fig. 3.11).

The levitation experiment can be readily repeated on a greatly re-
duced scale; instead of the soap bubble in Fig. 3.10, one can use
small liquid droplets, usually oil or mercury, with diameters of less
than 1�m. They are charged by contact to a solid body (by “static
electricity”). This can be accomplished by letting them be carried in
an air jet through the nozzle of a spray bottle; friction with its walls
separates the necessary charge. The condenser plates have a spacing
of ca. 1 cm. The motions of the charged droplets in the electric field
are observed through a microscope. The weight of the droplets can
be obtained by a microscopic measurement of their diameters3. The
volume can be computed from the diameter and yields the weight FG

2 Guericke was mayor of Magdeburg, 1646–1681. See also Vol. 1, Sect. 9.9, and
J. L. Heilbron, p. 216, cited in the footnote in Sect. 2.17.
3 Usually, however, their diameters are found from their sinking speed in air
(Vol. 1, next-to-last paragraph of Sect. 10.3).

http://tiny.cc/9aggoy
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of gravity. A very fundamental result emerges from such experiments
with small, but still readily visible charge carriers (R. A. MILLIKAN,
1910; he continued the classic experiments of J. S. E. TOWNSEND,
1897, and J. J. THOMSON, 1898):

An object can accept or release electric charges only as integral mul-
tiples of the ‘elementary charge’ e D 1:602 � 10�19 A s. In spite of
numerous efforts, no one has ever been able to observe a smaller
charge than 1:602 � 10�19 A s on a positively- or negatively-charged
object. For this reason, we call the charge e D 1:602 � 10�19 A s the
elementary electric charge. It is the smallest individually observed
negative or positive electric charge. For example, an electron pos-
sesses exactly one negative elementary charge.

The ‘Millikan experiment’ is not difficult to carry out. It should be found
in every beginning physics teaching laboratory. It is most impressive
when observed individually through the microscope. With a projection
microscope, even gentle air currents in the condenser disturb the obser-
vations. They arise from the intense light source which is required for
projection.C3.9 C3.9. Today, this disturbing

effect can be easily avoided
by combining a television
camera with the microscope.

The cathode-ray tube (or oscilloscope) already mentioned in Sect.
1.11 can be conveniently used to demonstrate the force on individ-
ual electrons in an electric field (Eq. 3.5). The schematic is shown
in Fig. 3.12. The electrons (of charge e and mass m) which emerge
from the hot cathode C pass through a tube F and through a hole
in the anode A. This tube and the anode together serve as an elec-
tric lens and form an image of the small opening in the anode on
the fluorescent screen S. Along their paths from the anode A to the
screen S, the electrons pass through two parallel-plate condensers
whose field directions are rotated by 90° relative to each other. We
show in the figure only one of these, namely DD0. Using its elec-
tric field, the electrons can be deflected within the plane of the paper
(the other condenser produces deflections perpendicular to the plane
of the paper). In this manner, one can combine the two perpendicu-
lar deflections (“x and y axes”). The deflections are proportional to
the field strengths E produced by the voltages between the condenser
plates. For the deflection x of the path (Fig. 3.13), we find

x D 1

2

e

m
E
y2

u2
: (3.17)

Derivation: Let the electron pass along the length y of the condenser at
a velocity u in the time t D y=u. During this time, the electron falls through
a distance x D 1

2a t2. Here, a is the acceleration of the electron in the
direction opposite to the electric fieldEwhich produces it. From the funda-
mental equation of mechanics, the force F D ma and thus with Eq. (3.4),
e E D ma. Inserting the values of a and t yields Eq. (3.17). (Compare this
also with the parabolic flight path treated in Vol. 1, Sect. 4.9.)

Finally, we make one more not-unimportant remark: A dropper bot-
tle can dispense its medicine only in “elementary quanta”, namely
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Figure 3.12 A cathode-ray tube with a heated cathode. The latter consists
of a glowing tungsten filament C just behind a negatively-charged collimator
(focussing) tube F (“WEHNELT cylinder”). In modern versions, the cathode
itself is not imaged on the fluorescent screen, but instead a strongly demagni-
fied image of the cathode. The condenser plates D and D0 (‘deflection plates’)
serve to deflect the electron beam.

x
y

Figure 3.13 The deflection of electrically-charged beams by the homoge-
neous electric field of a parallel-plate condenser

as individual droplets. This of course does not prompt us to assume
that droplets exist independently inside the bottle. Similarly, the Mil-
likan levitation experiment doubtless shows that there is a lower limit
to the divisibility of electric charges. But it by no means proves the
same subdivision of charge within the interiors (or on the surfaces)
of objects! The existence of individual, countable charge “quanta”
within a charge carrier remains for the moment only a very useful
assumption.C3.10C3.10. This assumption ap-

pears to have been confirmed
only recently by the fol-
lowing observation: The
electrical properties like
currents or capacitances of
metallic or semiconduct-
ing particles of the order
of 100 nm in diameter can
be varied over orders of
magnitude by changing
their electric charges (the
“COULOMB blockade” effect,
“single-electron transistors”;
see M.A. Kastner, Physics
Today, Jan. 1993, p. 24).

3.7 The Energy of the Electric Field

In an empty space of volume V, suppose there is an electric field of
magnitude E. How much energy is contained in this field?

We imagine that the field is produced by a charged parallel-plate con-
denser. Let the area of its plates be A and their spacing l, so that the
field volume is V D A l. The one plate attracts the other and pulls
it along a distance � l, performing work in the process, for example
work of lifting according to the schematic of Fig. 3.14. It does this
with the constant force

F D "0

2
E2A ; (3.11)

since the charge Q and thus the field strength E D D="0 remain un-
changed. For the work performed, equal to the energy previously
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of the energy of an electric
field. The plates are not con-
nected to a current source.

∆l

stored in the electric field, we then find

�We D F� l D "0

2
E2A� l ;

or, integrating (� l ! dl) over the full spacing of the plates from 0 to
l,

We D "0

2
E2V (3.18)

�
"0 D 8:86 � 10�12 A s=Vm

�
:

Equation (3.18) holds quite generally, in spite of our having derived
it for a specific case.C3.11

C3.11. This means that it
holds also for inhomoge-
neous electric fields. In
a volume element dV, con-
taining an electric field E, the
energy

dW D 1

2
"0E

2dV

is stored. Often, one quotes
instead the energy density:

dW

dV
D 1

2
"0E

2 :

From this, it follows that in
general

We D "0

2

Z
V

E2dV :

Only small amounts of energy can be stored in practice in the form of
electric fields. For example, in one liter (D 10�3 m3) at a technically
practicable field strength of E D 107 V/m, the stored energy is only
0.44W s.

Equation (3.18) for the energy of an electric field is often written
differently, i.e. by making use of Eqns. (2.4) and (2.2):

We D 1

2
QU ; (3.19)

and continuing with the aid of Eq. (2.10),

We D 1

2
CU2 : (3.20)

Here, Q denotes the charge on a condenser of arbitrary form, U its
voltage and C its capacitance.C3.12

C3.12. The fact that the two
equations (3.19) and (3.20)
hold not only for empty
parallel-plate condensers,
but in general, i.,e. for ex-
ample when the condenser
contains a dielectric, can be
derived from the following
considerations: The en-
ergyWe stored in a charged
condenser is completely con-
verted into JOULE heat by
discharging the condenser
through a resistor R. If we
insert Eq. (2.23) for I into
the expression for the power,
PWeDI2R (Eq. (1.7)) and in-
tegrate over time, we obtain
these two equations.

3.8 The Electric Potential. Equipotential
Surfaces

To represent electric fields, in addition to the field-line patterns, effec-
tive use is often made of the electric “equipotential surfaces” (contour
maps). In Fig. 3.15, we show an electric field between a plate and
a wire which is parallel to it. Directly above the plate, there is a small
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Figure 3.15 A schematic drawing of electrical
equipotential surfaces 50 V 30 V

10 Vn c b a
Q0

charge carrier with the charge Q0 (test charge). This carrier can be
moved to the point a; that would require performing the work W .
In electric units, this work is Q0U (Eq. (3.2)), where U is the volt-
age between the starting and end points of the path along which the
carrier is moved. We then repeat the same experiment but with dif-
ferent starting points above the surface of the plate and different end
points in other regions of the field. Each time, we stop when the
work W D Q0U has been performed. The carrier is then at one of
the end points a; b; c; : : : n. The set of all such points which can be
reached by performing the same amount of work is called an equipo-
tential surface.

To characterize an equipotential surface, we make use of the ratio

Work QU performed against the force QE of the field

Charge Q on the carrier
D U :

(3.21)

U is the voltage between the equipotential surface and the conven-
tional reference point; in Fig. 3.15, this is the plate. This electric
tension or voltage is also called the potential difference and is de-
noted by the symbol �'. The reference point is often connected
to the earth’s surface (“grounded”); then the potential at a particu-
lar point in the field means the voltage between that point and the
earth’s surface. The “potential” is thus a name for the voltage be-
tween an arbitrary point within a field and a conventional reference
point, and the equipotential surfaces are surfaces of constant poten-
tial. In Fig. 3.15, and in other fields produced by two charged bodies,
the positive sign of the potential implies a negative charge at the ref-
erence point.

Justification: If the carrier in Fig. 3.15 has a positive charge Q0, then
the work W D Q0 � ' must be performed on it in order to bring it from
a negative reference point to the equipotential surface. ThenW is positive.
Therefore, in Eq. (3.21), the numerator and the denominator have the same
sign and the voltage U D �' D W=Q0 is positive. (At the same time,
the path integral

R
E � ds (in Eq. 2.3) is negative, since the direction of the

field points by convention from C to � and therefore the carrier is moved
against the field into regions of increasing potential; i.e. E and ds point in
opposite directions.)

The potential ' can be specified at only a single point within the field;
this is not true of the voltage U, which always applies between two
points (it is the potential difference). If one refers to a voltage as a po-
tential, this implies that a reference point was previously agreed upon
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fortunately, the words ‘potential’ and ‘voltage’ are often used loosely
as synonyms and not correctly distinguished. The potential differ-
ence between two points within a field is the voltage between those
two points.C3.13 C3.13. The relationship

between the voltage U or
potential difference �' (be-
tween two points 1 and 2),
and the path integral

R
E � ds,

is thus found (in agreement
with the above justification in
petit type) to be

U D �' D �
2Z

1

E � ds :

In Eq. (2.3), for simplicity,
the sign was not taken into
account.

Example: Consider the potential distribution (potential field) of a charged
metal sphere (carrying a charge Q0 at radius r). Assume that the refer-
ence point (where the potential is zero) is at R D 1. The electric field
strength within the sphere is zero, and outside the sphere, it is given by
E D Q0=4�"0R2 for R � r (Eq. (2.15)). Then we find in the region out-
side the sphere the potential:

' D �
RZ

1
E dR D � Q0

4�"0

RZ
1

1

R2
dR D 1

4�"0

Q0

R
; (3.22)

and within the sphere,

' D 1

4�"0

Q0

r
D const : (3.23)

Thus, for Q0 > 0, the potential decreases as 1=R outside the sphere and is
constant in its interior. The equipotential surfaces are concentric spherical
shells (for R � r).

3.9 The Electric Dipole. Electric Dipole
Moments

The fundamental equation F D QE for the appearance of forces
in an electric field requires not only the field itself, but also a body
carrying an electric charge. Considered superficially, this would ap-
pear to contradict our long-established experience: We observe forces
on light-weight uncharged bodies in electric fields. Imagine some
scraps of paper in the neighborhood of a piece of amber which has
been rubbed with fur; or the dancing dolls below a glass plate which
has been charged with static electricity.

To understand these phenomena, we need two new concepts: the
electric dipole and the electric dipole moment. We suppose that in
Fig. 3.16, two “pointlike” electric charge carriers with the chargesCQ
and �Q are attached to the ends of an extremely thin and ideally in-
sulating rod of length l. This dumbbell-shaped object is called an
electric dipole. Its electric field is similar to those shown in Figs. 2.8
and 3.3.

We further imagine this dipole to be oriented as in Fig. 3.16 with its
long axis (dipole axis) perpendicular to the field lines of a homoge-
neous electric field. Then a torque acts on it:

Mmech D 2QE
l

2
D Q lE : (3.24)
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Figure 3.16 An electric dipole which is oriented
perpendicular to electric field lines E

F –Q

+Q –Fl

We call the product Q l the electric dipole moment p of the dipole
(unit: ampere second meter, A sm). The electric dipole moment must
be described as a vector; its direction is defined to be along the con-
necting line between the two charges from � to C. This then leads in
general to

Mmech D p � E : (3.25)

This vector productC3.14C3.14. For the vector prod-
uct, see Vol. 1, Comment
C6.1.

means that the mechanical torque which acts
on the electric dipole is maximal when p is perpendicular to E (as
drawn in Fig. 3.16 and assumed in Eq. (3.24)), and that it vanishes
when p is parallel to E.

The idealized dipole as defined above is not found in reality. How-
ever, positive and negative charges of equal magnitude can be local-
ized at a particular separation within matter in a number of ways, and
a measurement procedure can be used to define the dipole moment
of a structure of this type. Such a procedure makes reference to an
experiment in mechanics:

In Fig. 3.17, a rod S is mounted at the end of a spoke R. The force
couple F and �F produces a torque S � F where S is the vector that
points from the point of action of �F to the point of action of F. The
length of the spoke R is then completely unimportant.

Now we suppose that in some arbitrary body, N dipoles have been
formed by some sort of localization of charges. Each of them ex-
periences a torque M 0

mech in an applied electric field E. All of these
individual torques can be added vectorially, in spite of their different
distances from the mutual axis of rotation of the body. We thus obtain
the overall (observable) torque:

Mmech D
X

M 0
mech D

X
.p0 � E/ ; (3.26)

or

Mmech D p � E : (3.27)

Figure 3.17 For a torque, only the length
of the lever arm S is important, not the
length of the spoke R r

F

A
R S

–F
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electric field (the field direction is upwards (Cx direc-
tion), and E decreases with increasing x)

+Q

–Q

F0=Q·E0

Fu=Q·Eu

Here, p denotes the total, macroscopically observable electric dipole
moment of the body which is the vector sum of the individual, un-
known microscopic dipole moments within it.

This overall dipole moment can always be represented in terms of
an idealized dumbbell-shaped dipole: Two pointlike charges CQ and
�Q are fixed at a separation l. The rod in this dumbbell points along
the direction of its electric dipole moment.

This defining equation suggests a measurement procedure for electric
dipole moments (which is however unimportant in practice): We mount
an object on a rotatable axis perpendicular to an electric field and find its
rest position. Then we rotate its axis by 90ı out of the rest position and
measure the required torque as the product of force and force arm (lever).
This torque is then divided by the strength of the homogeneous electric
field E to give the overall dipole moment p.

So much for an electric dipole or a body with an electric dipole mo-
ment in a homogeneous field. The field acts on the dipole, producing
a torque, and orients the dipole with its axis parallel to the field di-
rection, as long as its rotation is not hindered. The same holds true in
an inhomogeneous electric field. The dipole in Fig. 3.18 is supposed
to have already oriented itself along the field direction (positive x
direction). In addition, however, in an inhomogeneous field, some-
thing new occurs: In an inhomogeneous field, along the direction of
increasing field @E=@x, there is a force

F D p
@E

@x
: (3.28)

Derivation: The upper C charge experiences the force QEo upwards, while
the lower � charge experiences the force �QEu, downwards. Combining
these, the overall force

F D Q.Eo � Eu/ (3.29)

acts on the dipole. Furthermore, we have

Eo D Eu C @E

@x
l : (3.30)

Equations (3.29) and (3.30) together yield Eq. (3.28).
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3.10 Induced and Permanent
Electric Dipole Moments.
Pyro- and Piezoelectric Crystals

We have thus far introduced the concepts of the electric dipole and
its dipole moment without referring to experiments. Now we ask
the question: How can we produce electric dipoles within matter in
practice? We must distinguish between two cases:

1. Electric dipole moments produced by influence. Every material
body acquires an electric dipole moment in an external electric field,
due to influence: The field displaces the positive and negative charges
relative to each other within every material body which is brought
into it. In a conductor, they move to its surfaces; in an insulator,
there are displacements within the individual molecules, giving rise
to a polarization (or “electrification”) of the dielectric (Fig. 2.56).

As a result of this “induced” dipole moment, produced by influ-
ence, oblong bodies orient themselves in all electric fields parallel
to the field direction4. The parallel orientation is energetically fa-
vored relative to all other possible orientations (Fig. 3.19). This is
how e.g. field-line patterns are made visible with fibrous powder. In
inhomogeneous fields, all bodies are in addition pulled towards re-
gions of higher electric field strength, regardless of their shapes.

At the delimiting boundaries of the field (e.g. on the plates of a condenser),
well-conducting bodies immediately become charged, and then, as “charge
carriers”, they fly over to the opposite electrode, where the process repeats
itself with opposite sign. In the case of insulators or poor conductors, the
charging requires some time (several seconds). During this time, the object
sticks to the electrode. This can be seen very clearly in a shadow projection
using small cotton balls.

Figure 3.19 Forces on an uncharged
object in an electric field; top, a small,
oblong object made of metal, or an insu-
lator which is mounted on a rotation axis
perpendicular to the plane of the page
(a “versorium”: WILLIAM GILBERT,
1600, physician in London and originator
of the word “electric”).C3.15C3.15. See A. Loos, “Vier

Jahrhunderte Spannung”,
Physik in unserer Zeit 31,
159 (2000); English: See
https://en.m.wikipedia.
org/wiki/William_Gilbert_
(astronomer) .

4 The polarization of the oblong body attains itsmaximum value in this orientation,
and with it, the induced dipole moment (this is because the depolarization factor
(see Sect. 13.6) has its smallest value along the long axis).

https://en.m.wikipedia.org/wiki/William_Gilbert_(astronomer)
https://en.m.wikipedia.org/wiki/William_Gilbert_(astronomer)
https://en.m.wikipedia.org/wiki/William_Gilbert_(astronomer)
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denser, charges of both signs are displaced relative to one another.
As a result, most charged condensers have their own electric dipole
moment. It is lacking only when one of the condenser electrodes
surrounds the other in the form of a closed hollow box.

Unfortunately, an electric field produces a dipole moment even in every
uncharged condenser due to influence. Therefore, in Sect. 3.9, we did not
start from experiments; every one of our dipoles would have still moved
in the field even if they had originally not possessed permanent dipole
moments.

b). We put a mixture of liquid wax and resin into an electric field and
allow it to solidify there. Its induced electric dipole moment (due to
influence) is frozen in and thus has become permanent. As a result,
the solidified object (preferably cut into the form of long sticks after
solidification) acts as an electret. It appears to be a good electric in-
sulator with positive electric charges at one end and negative charges
at its other end. These charges can be measured in an influence ex-
periment using a ballistic galvanometer (Sect. 1.10). The leads of the
galvanometer are connected to metal cartridges and these are wiped
simultaneously over the two ends of the electret; the induced charges
separated in the cartridges by influence are then measured by the gal-
vanometer.

Electrets of this type maintain their polarization for years, as long
as they are kept in a well-fitted metal protective housing; otherwise,
over the course of time, they attract charge carriers (ions) from the
air and thereby cover their ends with a layer of charges of opposite
sign, so that their electric dipole moments are no longer detectable to
the outside world.

c). Pyroelectric crystals, e.g. tourmaline, have permanent electric
dipole moments owing to the arrangement of their charged micro-
scopic components (F. U. T. AEPINUS, 1756). Their directions fall
along a polar crystalline axis; in the case of an oblong tourmaline
crystal, for example, along its long axis. Normally, this permanent
dipole moment is not apparent, due to the covering layer of ions as
mentioned above. It becomes active only when one changes the el-
ementary electric dipoles by thermal expansion or contraction. For
example, if we dip an oblong tourmaline crystal of ca. 5 cm length
into liquid nitrogen, then only part of the covering layer compensates
the dipolar charges. The crystal now appears to be a good electret,
attracting scraps of paper, etc. (Fig. 3.20).

Liquid nitrogen is often clouded by fine ice crystals. They can be removed
by dipping a tourmaline electret into the liquid.

Figure 3.20 A coating of powder attracted to the
ends of an electret (tourmaline)
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Figure 3.21 A tourmaline crystal acquires an
electric dipole moment when pressed (detected by
a ballistic galvanometer or a static voltmeter)

G

Pyroelectric crystals are at the same time piezoelectric, i.e. they
change their electric dipole moments also as a result of mechanical
deformation (compression or tension). This can be demonstrated by
again using a rod-shaped tourmaline crystal. One fixes it between
two insulated electrodes, connects them to a galvanometer, and com-
presses the crystal along its long axis using a vice (Fig. 3.21).C3.16

C3.16. Conversely, piezo-
electric crystals are deformed
by an electric field (they be-
come longer or shorter). We
can for example produce
sound waves (ultrasound gen-
erator), or control very small
length changes by an applied
voltage, as in a scanning tun-
nel microscope.

Exercises

3.1 Refer to Video 3.1: In the video, the brass plate is lifted by
applying a voltage of 460V, which is just sufficient to make it stick
to the stone when lifted. Compute the average spacing l between the
stone and the brass plate. For simplicity, we assume that the entire
voltage drop occurs across the gap l. We want to check this assump-
tion. The brass plate has a volume of 5 � 8 � 0:5 cm3 and a density
of % D 8 g/cm3 (Sect. 3.4). (Note that the roles of the metal plate and
the stone slab are reversed in Fig. 3.7 as compared to the video!)

3.2 A water droplet is charged with a single electron. How large
must the radius R of the droplet be if it can just be levitated by the
electric field of the earth (130V/m, Sect. 2.12)? (Sect. 3.6).

3.3 A parallel-plate condenser with a capacitance C is connected
to a current source with the voltage U. Find the change in the en-
ergyWe stored in the condenser when the spacing of its electrodes is
changed by the factor 1=n (Sect. 3.7).

For Sect. 3.7, see also Exercises 2.11, 2.15, and 2.16;
for Sect. 3.8 see also Exercise 2.7.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_3) contains supplementary material, which
is available to authorized users.

https://doi.org/10.1007/978-3-319-50269-4_3
https://doi.org/10.1007/978-3-319-50269-4_3
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4.1 The Production of Magnetic Fields
by Electric Currents

(H. Ch. OERSTED, 1820). The introductory summary in Chap. 1
mentioned three characteristics of electric currents in a conductor:
1. A magnetic field; 2. a heating effect; and 3. chemical changes in
the conducting medium.

These three characteristics are by no means of equal importance.
Chemical changes are lacking in the technically most important con-
ductors, the metals. Heating of the conductor (JOULE heating) may
also be lacking under certain conditions (superconductivityC4.1). C4.1. For remarks on

superconductivity,
see Comment C10.3.

However, the magnetic field is present in all cases. A magnetic field
is the inseparable companion of every electric current.

A magnetic field – just like an electric field – can exist in empty
space (the vacuum). The presence of air molecules (cf. Fig. 2.14)
is practically unimportant. Magnetic fields, like electric fields, can
be studied only experimentally. We observe different phenomena in
a magnetic field from those in ordinary (field-free) space. This is the
decisive fact here. The most important of these phenomena which
we have already encountered was the orientation of iron filings or
powder into chain-like patterns, providing images of the magnetic
field lines.C4.2 C4.2. For the concept of field

lines, see Comment 2.1.
We now want to delve deeper into the nature of magnetic fields. We
start by considering some of the typical geometric forms taken by
magnetic fields:

The magnetic field lines of a long, straight current-carrying conduct-
ing wire are concentric rings (Fig. 1.4).

If the conductor is formed into a ring, we obtain field lines as shown
in Fig. 4.1. The “circles” appear to be pushed eccentrically outwards
and to be somewhat deformed. We wind the wire around a circu-
lar form, so that several circular windings are adjacent to each other
(Fig. 4.2). Now, the field-line patterns from each winding are super-
posed to give an overall field pattern. One could imagine that each
circular winding has its own current source; more conveniently, they
are connected in series so that the same current flows through all of
them, forming a coil (by winding the wire continuously onto a spool
in a helical pattern; cf. Figs. 4.3 and 4.4).

87© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_4

https://doi.org/10.1007/978-3-319-50269-4_4
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Figure 4.1 The magnetic field
lines from a current-carrying
circular ring, made visible with
iron filings

Figure 4.2 The magnetic
field lines from three parallel
circular rings, each carrying
the same current

Figure 4.3 The magnetic field lines from a short current-carrying coil. The
arrows denote compass needles, and their arrowheads are the north poles.
Here, the C pole of the current source is connected to the end of the coil at
the upper left.C4.3

C4.3. If we look at the coil
from the left, the current is
seen to be circling in a clock-
wise sense around its axis.
Within the coil, it produces
a magnetic field which points
to the right in the plane of the
page. The left-hand end of
the coil is its south pole (just
like the left-hand end of the
compass needle within the
coil).

One end of a compass needle normally points to the north; this end
is called its north pole and is often marked by an arrowhead. In the
magnetic field of a coil, the compass needle points along the direction
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Figure 4.4 The magnetic field lines from a long current-carrying coil. In the
interior of the coil, there is a (nearly) homogeneous magnetic field.C4.4 C4.4. The field distributions

shown here, obtained using
iron filings to trace the pat-
tern of the field lines, are
quite similar to the real field
distributions, as can be seen
here in the figure:

–50

0

cm

50

–50 0 50 cm

This figure shows the field
distribution of a coil as com-
puted from the MAXWELL

equations (Sect. 6.5); the ra-
tio of length to diameter of
the coil was taken to be 5 : 1,
corresponding to the coil
shown in Fig. 4.4 (computed
by J.A. Crittenden, Cornell
University). The inhomo-
geneous regions of the field
(near the poles) are discussed
in more detail in Sect. 8.6.

Figure 4.5 The magnetic field of a bundle of long, thin coils. The individual
coils were completely separate in this model experiment. The apparent zig-
zag shaped connections are only simulated by the accumulation of iron filings
between neighboring wires.

of the field lines (Fig. 4.3). The direction in which the arrowhead
points is defined by convention to be the positive direction of the field.

The same field as with a single large coil can be obtained with a bun-
dle of identical long, thin coils, if the bundle has the same cross-
sectional area and all the coils are carrying the same current. Fig-
ure 4.5 shows a field-line pattern obtained in this way. Compare
it to Fig. 4.4. This experimental finding is readily understood: In
Fig. 4.6, we have drawn a bundle of coils in cross section; for sim-
plicity, the cross sections of all the individual coils have been chosen
to be square. In the inner parts of this drawing, one can see that
neighboring currents are opposite and thus cancel. Only the thick
black windings around the perimeter of the bundle contribute to the
field. Only this current path need be considered.

At the ends of the coils, field lines project out into the open space
outside the coils. They emerge not only through the two open ends of
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a b

Figure 4.6 Schematic of a bundle of long, square coils. a–b corresponds to
the plane of the picture in Fig. 4.5.

Figure 4.7 Top: Accumulation of iron filings around a current-carrying coil;
Bottom: The poles of a permanent bar magnet made visible with iron filings
(the magnet is made of a ceramic: ferrite powder with a binder, shaped and
sintered in a magnetic field). This magnet has the same geometry as the coil
in the top image. The bar is composed of 100 flat slabs which have been
pressed together.

the coils, but also near the ends, out of the sides of the coils through
their windings. These regions where the field lines emerge from a coil
are called its poles, in analogy to a permanent bar magnet. A current-
carrying coil behaves very much like a bar magnet: If it is suspended
or balanced on an axis horizontally, the coil will orient itself like
a compass needle in the north-south direction. If iron filings are
scattered over it, a coil will attract them to its poles (Fig. 4.7). The
middle section outside a coil will remain free of iron filings. The field
lines emerge only at the regions called “poles”. As a coil becomes
longer and longer, the poles become less and less important relative
to the field in the interior of the coil. Compare for example Figs. 4.3
and 4.4.

It is also possible to fabricate coils which have no poles. The coil
must be wound in the form of a closed ring. Figure 4.8 shows an
example. In the coil shown, the cross section of the windings is con-
stant all around the ring, but this is not necessary; by the right choice
of the spacing of neighboring windings, it is possible to produce coils
without poles but with a variable cross-sectional area.
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field lines in the field
of a current-carrying
ring coil (torus)C4.5 C4.5. Such “toroidal” mag-

netic fields are used for
example to contain the hot
plasma for research into
nuclear fusion (Tokamak
principle). For these experi-
ments, large superconducting
coils with diameters of sev-
eral meters are employed.

We summarize: The geometric distribution of the magnetic fields of
current-carrying conductors is determined solely by the geometry of
the conductors themselves.

In the case of long, thin coils, the magnetic field lines within the
coil are practically straight lines, apart from their polar regions. We
are then dealing with a homogeneous field .C4.6 C4.6. The field becomes

more and more homogeneous
the longer the coil (see the
figure in Comment C4.4.)

The homogeneous
magnetic field of a long coil plays a similar role in the treatment
of magnetic fields as does the homogeneous electric field of a flat
parallel-plate condenser in the discussion of electric fields.

The magnetic fields of bar magnets or, in general, permanent mag-
nets are in no way different from those of current-carrying coils; that
is, we can replace the magnetic field of any bar magnet in the space
surrounding it by the field of a coil of similar size and geometry. We
need only adjust the distribution of the windings correctly. We will
discover the reason for this similarity in Sect. 4.4.

In Chap. 2, we made use of the homogeneous electric field of
a parallel-plate condenser to define two quantities which allowed
us to quantitatively characterize any electric field; those were the
field quantities E and D. Analogously, we will now use the homoge-
neous magnetic field of a long coil to define two new quantities with
which we will be able to quantitatively characterize any magnetic
field. These are the fields H and B. Initially, we will consider only
the field H.

4.2 The Magnetic Field H

Like the electric field, the magnetic field must be described quan-
titatively by a vector. This follows from the readily-seen preferred
directions of the magnetic field lines. The vector is called the mag-
netic field H.
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Figure 4.9 The quantitative deter-
mination of the magnetic field of
a long coil (schematic!). (R is the
variable resistor or rheostat used to
adjust the current I through the field
coil)

A
I R

S

The magnitude of an electric field, i.e. its electric field strength can
be measured in volt/meter (V/m). Correspondingly, the magnitude of
a magnetic field, called the magnetic field strength, can be measured
in ampere/meter (A/m). This can be confirmed by a new series of
experiments. They require two components, namely

1. long coils of various designs; and

2. an arbitrary indicator for the magnetic field.

The indicator need only be able to identify two spatially or temporally
separated magnetic fields as equal; it is not required to measure them,
but only to determine that the two fields have the same strength.

As our indicator, we choose a small magnetic needle1 (compass nee-
dle) connected to the axle of a spiral-spring torsion balance (Fig. 4.9).
The resting position of the needle is determined by the relaxed posi-
tion of the spiral spring. (For simplicity, we neglect the influence of
the earth’s magnetic field.)

We insert this magnetic needle into the homogeneous field of a coil
and rotate the pointer until it is in its resting position on the scale S
(spring relaxed). Then we wind up the spring by rotating the pointer
until the needle is oriented perpendicular to the field lines (and thus
perpendicular to its own resting position). The required tension of the
spring can then be read off the scale; it is a measure of the torque re-
quired to rotate the needle to a position perpendicular to the magnetic
field .C4.7C4.7. This is completely

analogous to the torque that
an electric dipole experi-
ences in an electric field
(cf. Fig. 3.16 and Eq. (3.25)).

We now replace the coil by a series of different ones, and continue
repeating the experiment through the whole series of coils. These
may have different cross-sectional areas A, different lengths l and
different numbers of turns N. Some of these coils have a single layer
of windings, while some have many layers. By varying the current
through the coils (using the rheostat R), we adjust the torque required
to rotate the compass needle to a perpendicular orientation so that it

1 The needle must be small compared to the linear dimensions of the field, in order
to have sufficient spatial resolution.
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tion of the magnetic field in the neighborhood
of an electron current (see also Fig. 1.5)

Direction of
motion of the
electrons

Compass
needle

Current
direction

H

H N S

has the same value as with the first coil in every case. This equality
of torques means that the magnetic fields also have equal strengths.

In this way, we find experimentally a very simple result: The mag-
netic fields are equal, as long as the quantity

Current I � Number of turnsN

Coil length l

has the same value. The cross-sectional area and the number of wind-
ing layers have no influence on the field strength. The homogeneous
magnetic field of a long coil is determined uniquely by the ratio NI=l;
or, in words, by the “current times number of turns divided by the
length of the coil”.C4.8 C4.8. One must take care to

avoid the end regions of the
coils in these measurements;
there, the field strength de-
creases markedly (see the
figure in Comment C4.4).

For this reason, we use the ratio NI=l in order
to arrive at a first definition of the magnetic field strength in a long
coil; it is:

H D NI

l
: (4.1)

(The product NI of the current and the number of turns in the coil
winding is sometimes abbreviated as ‘ampere-turns’). The unit of H
is thus 1A/m. The direction of the magnetic field vector is parallel
to the long axis of the coil. Its sign is indicated in Fig. 4.3 (see also
Fig. 4.10).

The next step takes us to an important generalization. By making
a comparison to the homogeneous field of a long coil, we can mea-
sure the fieldH, its magnitude and direction, at any arbitrary location:
We replace its individual small regions (which are practically homo-
geneous) by the equally strong and similarly oriented field of a small,
long coil and determine the vector H for this coil using Eq. (4.1) and
the direction of the coil and its current.

As a measurement prescription, one can proceed in several different
ways: We could for example calibrate the arrangement in Fig. 4.9 and
thus convert it into a magnetometer. The calibration is accomplished
by varying the current I in a long coil and thus changing its field
strength H as defined by Eq. (4.1). We find that the torque required
to orient the needle is proportional to H. For example, the demon-
stration model used in the lecture hall at Göttingen has a calibration
factor of 50A/m per angular degree.
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Figure 4.11 The magnetic field lines
of the earth’s field. The arrows indi-
cate the direction of the field .C4.9C4.9. By comparison with

Fig. 4.3, we can see that the
geographic north pole of the
earth is in fact a magnetic
south pole!

N

S

With a magnetometer which has been calibrated in this way, we want
to measure the magnetic field of a bar magnet at a pointP about 10 cm
in front of its north pole. We bring the needle with its spring relaxed
along the direction of the field lines, i.e. in the direction of the field.
Then we turn the needle by rotating the frame until the needle is
perpendicular to the field and read off the scale S that the spring has
been tensioned by rotating through an angle of 10 angular degrees.
Therefore, at the point P, the strength of the field is H D 500A/m.

Analogously, we can measure the earth’s magnetic field. Figure 4.11
shows a schematic drawing of its field lines. The component which is
parallel to the surface of the earth is called the horizontal component;
in Göttingen, it has a value of about 16A/m.

Magnetometric measurements are time-consuming and therefore
somewhat tedious. They are however indispensable when one needs
to measure very small fields; they are then carried out with a different
technique, as will be discussed in Sect. 8.6. In the great majority of
cases, one calculates the field strength. Examples can be found in
Sect. 6.3.

4.3 The Motion of Electric Charges
Produces a Magnetic Field.
ROWLAND’s Experiment (1878)

An electric current within a conductor consists of moving charges
along its length (Sect. 2.10). Now we consider a surprising fact:
It is simply this motion of the electric charges which produces the
magnetic field. No other details of the process are important. The
conductor, e.g. a copper wire, acts only as a guide for the moving
charges; or, roughly speaking, as a pipe through which they flow.
This is shown by ROWLAND’s experiment:

Figure 4.12 shows a plan view of a circular carrier of electric charge
at the outer edge of an insulating disk (which is shaded in the fig-
ure). This conducting ring is interrupted by a narrow slit between a
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(the diameter of the ring-shaped charge
carrier is � 20 cm)

a
b

c

M

c

N S

Figure 4.13 The magnetic field lines
which surround a positive charge that is
moving at a velocity u towards the observer

H

u
H

+ +
++

and b. The lower image shows the same charge carrier from the
side; it is mounted on a vertical shaft and enclosed in a grounded
metal housing. Between the ring-shaped carrier and the housing,
a voltage of about 103 V can be applied, so that the ring then car-
ries a positive charge Q of around 10�7 A s. At the point M, there
is a sensitive magnetometer, indicated schematically in the figure;
it could be a compass needle with a mirror and light pointer. (In
its resting position, the long axis of the needle is perpendicular to
the plane of the page). The charged carrier rotates at N revolutions
within the time t; its rotational frequency is N=t � 50Hz. During
the rotation of the charged ring, the needle indicates the presence
of a magnetic field.C4.10 C4.10. The magnetic field

produced in this apparatus
was 50 000 times weaker
than the horizontal compo-
nent of the earth’s magnetic
field (see Fig. 4.11) at the
location of the experiment
(� 16A/m in Berlin; see
H. A. Rowland, Am. J. of
Science and Arts, 3rd Series,
Vol. 15, p. 30 (1878)). More
sensitive measuring instru-
ments such as are available
today, e.g. a HALL probe or
a SQUID (superconducting
quantum interference device),
were not available back then!

Thus, a charge set mechanically in motion
produces a magnetic field, just like a charge moving through a con-
ductor. Its magnetic field lines are drawn schematically in Fig. 4.13.
They surround the cross-sectional area of a section of the rotating
ring (enlarged in the drawing), to the right of the axle c; the section
is moving towards the observer with the velocity u.

In the second part of the experiment, the charge carrier is discharged;
then leads are attached at the points a and b in Fig. 4.12 and a cur-
rent I is passed through the ring (� 10�5 A). It produces an identical
magnetic field to that of the rotating charged carrier. We see that

I D Q
N

t
: (4.2)

We then introduce the velocity u of the carrier and its path l D 2�r
into this equation, obtaining

u D Nl

t
or

N

t
D u

l
: (4.3)
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Inserting this quotient into Eq. (4.2) yields the important relation:C4.11C4.11. This is the definition
of an electric current:

Q

t
D I D Q l

l t
D Q

l
u : I D Q

u

l
; (4.4)

or in words: A charge Q which is moved along the path l at the ve-
locity u acts as a current I D Qu=l. We will return to this significant
experiment in Chap. 7.

4.4 The Magnetic Fields of Permanent
Magnets are also Produced by the
Motion of Electric Charges

In our first experiments, we produced magnetic fields with the aid
of electric currents in metal conductors (wires). Then we saw that
magnetic fields also result from the mechanically-producedmotion of
charges. Now, we consider as the third possibility the oldest method
of obtainingmagnetic fields: their production by permanent magnets.
How do the magnetic fields of permanent magnets come about?

We again refer to experiment and take a current-carrying coil
(Fig. 4.14). Its magnetic field is supposed to be just detectable at
the point P; a compass needle set up there shows a small angular
deviation ˛. How could we amplify the magnetic field and increase
the signal ˛?

Either: We increase the current I through the coil, or its number of
turns N or both. In any case, we would increase the product NI, the
number of ‘ampere-turns’ of the coil.

Or: We introduce a previously non-magnetic piece of soft iron into
the coil, an ‘iron core’.

This leads us to conclude that the iron effectively increases the num-
ber of ampere-turns. Of course, it neither increases the number of
turns in the coil winding, nor does it increase the current, which we
monitor continuously with an ammeter. Therefore, within the iron,
there must be microscopic currents flowing along invisible paths in
the same sense as the macroscopic current in the coil. Their ‘ampere-
turns’ add to those of the windings of the coil. This notion causes no
difficulties: According to ROWLAND’s experiment, we need only as-
sume that some sort of orbital motions of electric charges are present

Figure 4.14 Inserting an iron
core acts like an increase in
the number of turns or the
current (i.e. the ‘ampere-
turns’) in a coil (solenoid)

P
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lar currents

within the iron. We know that electrons are present in all material ob-
jects. We can imagine their motion within the iron to be microscopic
circular (orbital) motions .C4.12 C4.12. This idea occurred

to Ampère as early as 1826.
He called them ‘circuital cur-
rents’ and presumed that such
currents were responsible for
“material magnetism”, i.e. the
magnetism of permanent
magnets.

This preliminary but already quite
serviceable concept is called the model of molecular currents. It can
be represented roughly by a drawing as in Fig. 4.15. Compare this
figure with the cross-section through a bundle of thin coils in Fig. 4.6.

These molecular currents must have been present in every piece of
iron even before it is put into a magnetic field; but they are on the
average not ordered. Only in the magnetic field of the coil do they
become ordered: Their rotational axes all line up parallel to the long
axis of the coil. The individual molecular-current orbits act like the
small rotatable coil in Fig. 1.10.

We can reduce the magnetic field of the coil either by pulling the
iron core back out or by interrupting the current through the coil.
Then the field produced by the iron for the most part disappears, but
not completely. The majority of the molecular currents rotate back to
their original disordered arrangement; only a certain portion maintain
the orientation that they received in the magnetic field. The iron is
then said to exhibit “remanent” magnetism (Chap. 14). It has become
a permanent magnet (like a compass needle).

Only one single point is essential in this model: The existence of
some sort of orbital motions of electric charges (e.g. the electrons) in
the interior of the iron. This decisive point can be tested experimen-
tally: The mechanical angular momentum of the orbiting charges can
be demonstrated and measured (Einstein-de Haas experiment, 1915).

We remind the reader of the following experiment in mechanics:
A person is sitting on a swivel chair and is holding a rotating ob-
ject, e.g. a wheel. Its plane of rotation is in some arbitrary orientation
relative to the figure axis, and the chair is at rest. Then the person
moves the rotational axis of the wheel so that it is perpendicular to
the figure axis (Fig. 4.16). This tipping of the rotating wheel gives
the person an angular momentum, causing a rotation (of person and
chair) around the figure axis. This rotation gradually comes to a stop
due to friction in the bearings of the chair and with the air.

Now we imagine that the person on a swivel chair is replaced by
an iron rod, and the wheel by the disordered orbiting elementary
charges. The iron rod is hanging as shown in Fig. 4.17 along the
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Figure 4.16 Conservation of angular momentum

long axis of a coil. When the current in the coil is switched on, the
rotational planes of all the orbiting charges are oriented perpendicular
to the axis of the rod and the coil. The iron rod takes on the result-
ing angular momentum and rotates (just like the person in the swivel
chair). Details of the experimental results and analysis are given in
Sect. 14.9.

For the practical implementation of the experiment, we could use
a current pulse lasting only around 10�3 s (discharging a condenser
through the coil). This method makes make use of the small fraction
of the molecular currents that remain parallel after the current goes
to zero, and thus give rise to the remanent magnetism of the iron. If
the current were kept constant, the unavoidable inhomogeneities of
the magnetic field in the coil would disturb the measurement. The
iron rod would be gradually pulled into the region where the mag-
netic field is strongest, as in the experiment illustrated in Fig. 1.11
(solenoid action).

For their fundamental experiment, Einstein and de HaasC4.13C4.13. In the original
Einstein-de Haas experiment,
the resonant alternating-
current method was used. For
the history and description
of these experiments, see
V.Ya. Frenkel, Usp. Fiz.Nauk
128 (1979), p. 545 (in En-
glish; online at http://www.
physics.umd.edu/grt/taj/
411c/EinsteindeHaas.pdf). In
modern demonstration exper-
iments of the EINSTEIN-DE

HAAS effect (the “magneto-
mechanical parallelism”), this
method is also employed. In
this way, the experiment can
be readily demonstrated in
the lecture room.

applied
a sinusoidally-varying current to the coil, and the corresponding si-
nusoidal magnetic field H.t/ acted as a driving force for the weakly-
damped torsional pendulum formed by the iron rod and its suspen-
sion fiber (cf. Fig. 4.17). At its resonance frequency (see Vol. 1,
Sect. 11.10 and this volume, Sect. 11.7), the resonance enhancement
(Vol. 1, Eq. (11.7)) makes the oscillation amplitude of the torsional
pendulum large and readily detectable in the laboratory or lecture

Figure 4.17 Schematic of the
experiment to demonstrate the
molecular currents in iron. The ho-
mogeneity of the magnetic field in
the coil is not sufficient to observe
the rotation using continuously
flowing currents; therefore, the
field-reversal or the pulsed-field
method must be used. (M is a mirror
for the optical pointer)

M

http://www.physics.umd.edu/grt/taj/411c/EinsteindeHaas.pdf
http://www.physics.umd.edu/grt/taj/411c/EinsteindeHaas.pdf
http://www.physics.umd.edu/grt/taj/411c/EinsteindeHaas.pdf
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ment, see Eq. (3) in the paper by Frenkel, Comment C4.13.), the
angular momentum can be obtained, and comparison to the maxi-
mum magnetization M0 of the iron rod (measured separately) yields
the “gyromagnetic ratio”, i.e. the ratio of the magnetic moment to the
angular momentum of the “molecular currents”. See also Sect. 14.9.

After this experimental detection of the angular momentum of the
molecular currents, we can say today with certainty that the mag-
netic fields of permanent magnets are also produced by the motions
of electric charges.

In earlier times,magnetic substanceswere held to be the origin of the mag-
netic fields of permanent magnets. Similarly to the electric field lines, it
was presumed that the magnetic field lines would begin on one body and
end on another. At their ends, there would be magnetic “charges” or poles
of opposite signs (called “magnetic monopoles”). All efforts to separate
the magnetic charges have been futile to this day. Even the relatively prim-
itive model of molecular currents makes this failure understandable. In this
model, a permanent magnet is in the end the same as a bundle of current-
carrying thin coils, and there, we know that there are only closed field lines
in the form of loops without beginning or end. A refinement of this model
will be discussed in Chap. 14.
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5.1 Preliminary Remark

For an observer at rest, electric charges at rest produce only an elec-
tric field, but charges in motion produce a magnetic field in addition.
This relation between magnetic and electric fields follows from the
ROWLAND experiment. A still closer connection between the two
kinds of fields is revealed by induction phenomena. This chapter
presents the experimental facts relating to induction in a vacuum
(i.e. – for all practical purposes – in air). Chapters 6 and 7 will then
deal with their evaluation and explanation.

5.2 Induction Phenomena
(M. FARADAY, 1832)

We start with an inhomogeneous magnetic field of arbitrary origin,
e.g. the field from the short current-carrying coil (the field coil FC)
in Fig. 5.1. A second coil J is placed in this magnetic field; it will
be called the induction coil from now on. Its ends are connected to
a voltmeter with a short response time. With this setup, we carry out
a series of experiments which can be organized into three groups:

1. We leave the induction coil at rest in the magnetic field and change
the strength of the field by varying the current through the field coil
(rheostat R and switch).

2. We change the position of the induction coil and the field coil
relative to one another by sliding or rotating one of them.

Figure 5.1 Induction experi-
ments

FC

J

R

To the
voltmeter
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Figure 5.2 Two voltage
impulses of the same mag-
nitude

R
U dt, measured in

volt second (V s)

Time (s)

Vo
lta

ge
 (V

)

a

b

Figure 5.3 A rotating-coil
galvanometer G connected
to an induction coil J
(cf. Fig. 5.5) is calibrated
in volt second for the meas-
urement of voltage impulses

G

2 V

0.1 Ω 2000 Ω

J

10–4 V

3. Instead of the induction coil J as drawn, we use a ring-shaped
coil made of flexible insulated wire. We deform this ring-shaped
induction coil in the magnetic field, i.e. we vary its cross-sectional
area by moving some parts of its windings relative to other parts.

In all three cases, we observe an induced voltage between the ends
of the windings of the induction coil J during the action. Its mag-
nitude depends on the speed of the process. For example, when
one coil is rotated rapidly, we observe a voltage curve as shown in
Fig. 5.2a: high voltages during a short time period. When the motion
is slower, we see a curve like that shown in Fig. 5.2b: lower voltages
over a longer time.

The area of the shaded regions is the time integral of the voltage
.
R
U dt/, and is also called the voltage impulse; it is measured e.g. in

volt second (V s). This quantity is analogous to the time integral of
the current, measured for example in ampere second (A s), which we
treated in detail in Sect. 2.11.

For a quantitative investigation of induction phenomena, we mea-
sure the voltage impulse from the induction coil using a galvanometer
with a slow response time (ballistic galvanometer). In the following
sections, we thus use the ballistic galvanometer in a different way
from that in Chap. 2, where we measured current impulses in order
to determine the quantity of electric charge.

Its calibration in V s is carried out analogously to the calibration in A s
which was described in Sect. 1.10 (cf. Fig. 5.3). During short, precisely
measured time intervals, we apply known voltages to the galvanometer.
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FC

To the galvanometer

S S'
u

J

Figure 5.4 In the frame of reference S, the field coil FC is at rest and the in-
duction coil J is moving at the velocity u. In S’, the situation is reversed. The
galvanometer is in each case in the frame of reference in which the observer
is at rest. C5.1 This principle, formu-

lated only for uniform, linear
motions, along with the fact
that light always propagates
with the same velocity in
vacuum, independently of
the state of motion of the
light source which emits
it, together form the basis
for EINSTEIN’s theory of
special relativity ( Annalen
der Physik, Vol. 17, (1905),
p. 891). A good account of
the historical development
of this theory is given by
F. Hund, “Geschichte der
physikalischen Begriffe”,
BI-Hochschul-taschen-
bücher, Vols. 543 and
544, Mannheim, 2nd edi-
tion, 1978. English: See
e.g. M. BORN, “Einstein’s
Theory of Relativity” (Dover
Publications, 1965) (avail-
able online for download at
https://archive.org/details/
einsteinstheoryo00born );
or https://en.wikipedia.org/
wiki/History_of_special_
relativity .

A known voltage of suitable magnitude is obtained from a voltage divider
circuit as shown in Fig. 1.27.
We observe the galvanometer deflection ˛ for various values of the prod-
uct Ut, then take ratios BU D (Voltage impulse Ut/Impulse deflection ˛),
and obtain the same value in all cases, e.g.

BU D 2:4 � 10�5 V s

scale division
:

This is the ballistic calibration factor of the galvanometer.

We make use of the calibrated galvanometer and repeat the three ex-
periments described above. This leads us to an important discovery:
In the experiments of the second group, only the relative motion be-
tween the induction coil and the field coil plays a role. In order
to emphasize the significance of the statement printed in italics, we
mention that it led EINSTEIN to the “principle of relativity”1.C5.1

1 The relativity principle mentioned here can be expressed in terms of the follow-
ing two equivalent statements: 1. “It is impossible to determine by experiment
whether one is at rest or in a state of uniform motion”. 2. “When two experiments
are carried out under the same conditions in two frames of reference which are
moving relative to each other at a constant velocity, both experiments will lead
to the same conclusions”. In order to make the relativity principle clear in terms
of the setup for an experiment of group 2 as shown in Fig. 5.1, the one frame of
reference S is chosen so that the field coil FC is at rest in it. The induction coil J
is then moving in that frame at the velocity u, e.g. to the right. In order to measure
the induced voltage impulse, the galvanometer is located in frame S (Fig. 5.4). In
the other frame of reference S’, the induction coil J is at rest and the field coil is
moving with an equal but opposite velocity, e.g. to the left; then the measurement
is carried out with a galvanometer which is at rest in S’. In both frames of refer-
ence, the observers measure a voltage impulse when the coils are well separated
from each other. Their descriptions are different: The observer in S says that the
induction coil is moving through the magnetic field; the other observer, in S’, says
that the magnetic field within the fixed induction coil is changing. The relativ-
ity principle now postulates, in agreement with experiment, that both observers
measure an identical voltage impulse in spite of their different descriptions of the
process.

https://archive.org/details/einsteinstheoryo00born
https://archive.org/details/einsteinstheoryo00born
https://en.wikipedia.org/wiki/History_of_special_relativity
https://en.wikipedia.org/wiki/History_of_special_relativity
https://en.wikipedia.org/wiki/History_of_special_relativity
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As a result, we can always discuss these experiments together with
those of group 1. We need only to change our frame of reference and
to consider the experiments of group 2 from the point of view of the
induction coil (that is, in S0; see the footnote). There the induction
coil is at rest; only the magnetic field which penetrates it changes, as
in the experiments of group 1.

Quantitatively, we will describe separately induction that is due to
a change in the current through the field coil, or alternatively to
a change in the distance between the two coils or the relative orienta-
tions of the field coil and the induction coil: ‘Induction in conductors
at rest’ in Sect. 5.3, and ‘Induction in conductors in motion’ in
Sect. 5.5. This separation is quite important for our understanding of
the phenomena. A summary will follow in Sect. 5.6. Furthermore,
experiments from the second group will be treated in detail in both
frames of reference, in terms of the theory of relativity, in Chap. 7.

5.3 Induction in Conductors at Rest

In order to treat induction quantitatively, we first make use of the
homogeneous magnetic field within a long field coil (solenoid). Its
field strength is given by

H D NI

l
: (4.1)

Furthermore, we employ induction coils of differing geometries and
numbers of turns NJ. The first induction coil J surrounds the field
coil FC on its outside (Fig. 5.5, left), while the second is completely
inside the homogeneous magnetic field in the interior of the field coil
(Fig. 5.5, right). A third induction coil has the form of a flat rect-
angle and consists of several hundred turns of insulated wire. This
third coil can either be pushed into the field coil from the side be-
tween two of its windings, so that part of its cross-section is inside
the field coil, or else it can be put completely inside, with varying
angles relative to the field lines, and fixed in a tilted position (it can
be rotated around the axis a, cf. Fig. 5.6). In all cases, the induction
coil encloses a magnetic field of cross-sectional area A, measured in
the plane perpendicular to the field lines. Examples:

The induction coil of cross-sectional area AJ is supposed to be en-
tirely inside the field coil (Fig. 5.5, right). Then A D AJ when the two
coils are oriented with their axes parallel. A is equal to AJ=

p
2 when

the angle between the axes of the coils is 45ı, and is equal to AJ=2
when half the area of the induction coil projects into the interior of
the field coil through a slit in its side.

If the induction coil surrounds the field coil on its outside (Fig. 5.5,
left), then A is equal to AFC, the cross-sectional area of the field coil,
independently of its orientation, etc.
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Figure 5.5 Setups for the experimental derivation of the law of induction
(Video 5.1) Video 5.1:

“Induction in Conductors
at Rest”
http://tiny.cc/ebggoy
For the experimental setup,
see Fig. 5.8.

Figure 5.6 A section through
a rectangular induction coil which
is located within a homogeneous
magnetic field and rotated relative to
the field by a certain angle

G

a
H

Figure 5.7 An unwanted reduction
of the induced voltage impulse due to
“backwards-running” (returning) field
lines from a short field coil

G

J

In the latter case, one has to take care to avoid the error source illustrated in
Fig. 5.7: A reduction of the induction signal due to “backwards-running”
field lines (compare Fig. 4.3). The diameter of the induction coil must not
exceed the diameter of the field coil by too great a margin.

Now to the experiments: The current I in the field coil is alternately
switched on and off, so that its magnetic field builds up or dies out.
In each case, we observe a voltage impulse

R
Udt between the ends

of the induction-coil windings. We find that it is proportional

http://tiny.cc/ebggoy
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1. to the current I;

2. to the ratio N=l, that is the ratio of the number of turns N to the
length l of the field coil;

3. to the number of turns NJ of the induction coil J; and

4. to the cross-sectional area A of the bundle of magnetic field lines
which pass through the induction coil.

All of these experimental results can be combined into a single equa-
tion. Let �0 be a constant factor, i.e. a constant of proportionality;C5.2

then we have

C5.2. As we already did
in Chap. 2 (Eq. (2.3)), we
ignore the sign here for sim-
plicity. This topic will be
discussed in the following
chapter (see also the para-
graph in fine print below).
The equations up to and in-
cluding those of Sect. 5.5
should thus be understood
as involving only magni-
tudes. This applies also to
Videos 3.2 and 5.1, where
only the change of the sign
between switching on and
switching off the field or
reversing the direction of
motion can be seen.

R
Udt

NJA
D �0

NI

l
: (5.1)

The value of the factor �0 in air is practically the same as in
vacuum:C5.3

C5.3. In connection with the
definition of the unit of elec-
tric current, the ampere (see
Comment C1.6), the value of
�0 has today been fixed by
law: �0 D 4� � 10�7 V s/Am
(4� � 12:56637: : :).

�0 D 1:257 � 10�6 V s

Am
:

Common names for �0 are the magnetic field constant or the per-
meability constant of vacuum. Its ‘official’ name is the magnetic
constant.

Equation (5.1) is one formulation of the law of induction.

The sign of the voltage impulses has been left out of our considerations so
far, since it is not of decisive importance. When current through the field
coil is switched on, the electric fields in the windings of the induction coil
and in those of the field coil are directed opposite to each other; therefore,
there is a minus sign on the right-hand side of Eq. (5.1). When the current
in the field coil is switched off, the two fields are in the same direction. We
will return to this question in Sect. 6.1 (see also Sect. 5.6).

Instead of the voltage impulse
R
Udt, in a homogeneous field, at least

for a limited time, one can maintain a constant voltage U. To do this,
it is only necessary to ensure that the magnetic field has a constant
rate of change PH D dH=dt. Using an induction coil as in Fig. 5.5
with several hundred turns in its winding, we employ a rheostat with
small steps and move its sliding contact at a constant speed; then we
will obtain a constant induced voltage:

U D �0NJA PH : (5.2)

5.4 The Definition and Measurement
of the Magnetic Flux ˚ and the
Magnetic Flux Density B

For applications of the law of induction, we define the magnetic
fluxC5.4

C5.4. The general definition
of ˚ in vector notation is
obtained in terms of a surface
integral:

˚ D
Z

B � dA . ˚ D �0AH (5.3)
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vector field B, which differs
from the magnetic field H
only by a factor of propor-
tionality �0, might seem
superfluous here. Indeed, the
description of magnetic fields
in vacuum requires only one
of the two field quantities;
in general, B is preferred. In
some textbooks, the field H
is in fact not even mentioned,
and B is defined without fur-
ther ado as the magnetic field.
However, when matter, in
particular magnetic materi-
als are present, the simple
relation B D �0H no longer
suffices. Then, both of the
field quantities are generally
required (see Chap. 14).

B D �0H : (5.4)

The unit of ˚ is seen to be 1 volt second (V s), and the unit of B is
thus 1 V s/m2 D 1 tesla (T). (Sometimes, the older cgs unit Gauss
(G) (1 Gauss OD10�4 T) is also still used.)

Using these two new quantities, Eqns. (5.1) and (5.2) take on the
forms Z

Udt D NJ�˚ ; (5.5)
Z

Udt D NJA�B ; (5.6)

U D NJ P̊ : (5.7)

For NJ D 1, i.e. an induction loop instead of an induction coil, Eq. (5.5)
becomes Z

Udt D �˚ ;

Voltage impulse D change in the magnetic flux; this is formally analogous
to the important mechanical equation (Vol. 1, Sect. 5.5):

Z
Fdt D �p ;

(Mechanical) impulse D change in the momentum:

Making use of Eq. (5.5), we can measure the magnetic flux of a field
coil in a very simple way. As in Fig. 5.5, we surround the field coil
by an induction coil, switch the current in the field coil on or off, and
measure the resulting voltage impulse

R
Udt. Then we have ˚ DR

Udt=NJ, the magnetic flux of the field coil, as sought.

Figure 5.8 shows an example. There, NJ D 1, i.e. instead of an induc-
tion coil with NJ turns in its winding, a simple induction loop is used.
From the magnetic flux ˚ of the field coil, we obtain its magnetic
flux density B (also called the magnetic induction field) by dividing
˚ by the cross-sectional area of the field coil.

The law of induction makes it possible to readily measure the mag-
netic fieldH or the magnetic flux densityB D �0H in inhomogeneous
fields as well: We need only make use of an induction coil or loop of
sufficiently small area.

As an example, we measure the magnetic flux density between the flat
poles of the electromagnet in Fig. 8.2. We set up a small induction coil
J (Fig. 5.9), often called the probe coil, perpendicular to the field lines in
the region of the field that we want to measure, and connect the ends of
the coil to a calibrated ballistic galvanometer. We then observe the voltage
impulse when the field is switched on or off, and divide it by the number
of ‘area turns’ NJA of the probe coil. We thus find for the electromagnet of
Fig. 8.2: B D 1:5V s/m2 or 1.5 tesla (that is, H D B=�0 D 1:2 � 106 A/m).
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Figure 5.8 Measurement of the
magnetic flux ˚ of a long coil us-
ing an induction loop J (NJ D 1)
(Video 5.1)Video 5.1:

“Induction in Conductors
at Rest”
http://tiny.cc/ebggoy
In this video, instead of
an induction loop, a coil
with NJ turns is used. The
data of the setup are: Field
coil: N D 2400, l D 0:8m,
diameter D 5:8 cm,
I D 0:8A; induction coil:
NJ D 40; and the ballis-
tic calibration factor of
the galvanometer is BU D
3:2 � 10�5 V s/scale division.
Note that when the measure-
ment is carried out with the
induction coil at the end of
the field coil, the resulting
voltage impulse is half as
large as if the induction coil
were inside the homogeneous
field. See also Sect. 8.6 and
Exercise 5.1.

J

G

Figure 5.9 Probe coil for measuring the magnetic flux
density of an electromagnet (one turn with an area of
3 cm2; this corresponds to NJA D 3 � 10�4 m2 ‘area
turns’)

5.5 Induction in Moving Conductors

In Sects. 5.3 and 5.4, we made use of fixed coils and varied the mag-
netic field strength only. In the resulting Eq. (5.1), the cross-sectional
area A of the field region and the field strengthH occurred as equally-
important factors. Now, we will describe an experiment belonging to
group 3 as defined in Sect. 5.2: We keep the field strength H (or B)
constant, but vary the cross-sectional area A. Again, we make use of
a homogeneous magnetic field. In Fig. 5.10, we are looking paral-
lel to the field lines into a long coil (H � 5000A/m). In the circular
field of view, we see at the left two metal wires which are bent at right
angles. Their ends emerge from the field coil through slits in its left
side and are connected to a ballistic galvanometer, calibrated in volt
second. At the right, the two horizontal wires are bridged by a slider
of length L which can slide along them; it can be moved along an
arbitrary distance�x using the handle at right. This changes the area
of the loop by �A D �x L. At the same time, we observe a volt-
age impulse. Its magnitudeC5.6C5.6. Here, again, the sign

is not taken into account. It
could however be determined
unambiguously from the
experiment in Fig. 5.10.

is determined experimentally by the
galvanometer to be:

Z
U dt D �0H�A D B�x L : (5.8)

As an application of Eq. (5.8), we measure the horizontal component
of the earth’s magnetic field in Göttingen. For such measurements,
one generally employs a flat induction coil J about as large as a hu-
man hand, with several hundred turns in its windings. In this case,

http://tiny.cc/ebggoy
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Figure 5.10 Induction in moving conductors; the induction loop contains
a slider C �A of length L on one side. The magnetic field is perpendicular to
the plane of the page, pointing towards the observer. It is produced by a field
coil with 10 turns per centimeter of length, i.e. N=l D 1000=m. (The measur-
ing instrument (galvanometer) is outside the magnetic field.) (Video 5.2)

Video 5.2:
“Induction in Moving Con-
ductors”
http://tiny.cc/hbggoy
Field coil: N=l D 1000=m,
I D 6A, L D 6:5 cm,
�x D 8 cm. As an intro-
duction, the experiment is
first shown when turning
on the current in the field
coil. We then observe the
same voltage impulse as in
the experiment in Video 5.1
when the current in the field
coil was switched off while
the coils remained fixed.
(Exercise 5.2)it is not called a probe coil, but rather an earth inductor. To pro-

duce the voltage impulse, the plane of the coil is oriented vertically
(perpendicular to the component to be measured) and the coil is then
rotated by an angle of 180°.C5.7 C5.7. Here, the area of the

coil is not changed, but due
to the change in its angle, the
projection of its area onto the
field direction is varied; or,
expressed differently: The
scalar product B � A changes
(in this experiment by 2BA),
and the voltage impulse is
proportional to its change
(Exercise 5.3).

We obtain Bhor D 0:2 � 10�4 Vs/m2

(corresponding to a field strength of Hhor D 16A/m).

With induction in fixed coils (Sect. 5.3), we were able to maintain
a constant voltage U instead of a voltage impulse, at least for a short
time. We had only to give the magnetic field a constant rate of
change PH D dH=dt. We can carry out a similar experiment using
induction with moving conductors as described above; we can move
the slider along the x direction at a constant velocity u D dx=dt. Then
from Eq. (5.8), we obtain a constant voltage between the ends of the
induction loop:

U D BuL : (5.9)

This is a formulation of the law of induction for a moving conductor
which stays within a region of constant flux density during its mo-
tion. Note that in this and the next sections, we use a fast-responding
galvanometer calibrated in volts, not a ballistic galvanometer, to de-
termine the induced voltage U.

One must avoid bringing the voltmeter or galvanometer, including its lead
wires, into the magnetic field and moving it with the slider; it then might
not indicate the correct voltage U. More details on this topic will be given
in Sect. 7.3.

In Eq. (5.9), the essential quantity is the velocity u with which the
slider is moving perpendicular to the direction of the field lines and
relative to the source of the magnetic field (the field coil). We can
demonstrate this in a very dramatic way: We replace the slider wire
(Fig. 5.10) by a broad metal ribbon (Fig. 5.11). It consists of an
endless band which is moving through the field coil. It permits us to
maintain a constant velocity of motion u for an arbitrarily long time
and to observe the resulting constant induced voltage.C5.8

C5.8. If we use instead
a metal disk which can rotate
around an axle perpendicular
to the plane of the page, we
would have constructed a so-
called “BARLOW’s wheel”.
PETER BARLOW (1776–
1862), “unipolar inductor”,
1823.

http://tiny.cc/hbggoy
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Figure 5.11 Induction in moving conduc-
tors; here, as slider, we use an endless metal
ribbon which is joined to form a loop out-
side the field coil like the blade of a band
saw (the magnetic field is the same as in
Fig. 5.10.) (Exercise 5.4)

V

U

L
C

A

u

V V

AA

C C

R
N N

L

a b

Figure 5.12 Induction of a constant voltage in moving conductors within
a radially-symmetric magnetic field (produced by the bar magnets (shaded)).
The conductors (“rotors”) which are moving relative to the source of the mag-
netic field consist in part a) of a short piece of metal tubing R, and the surface
of the magnet itself in part b). They follow circular paths, perpendicular to
the field lines.

For qualitative experiments, the simple arrangement sketched in
Fig. 5.12 is sufficient. We surround the pole region of a bar magnet
loosely by a short piece of metal tubing R which can be rotated using
a crank. The magnetic field lines pass nearly perpendicular through
the walls of this rotor, and its path velocity u is perpendicular (like
that of the endless band in Fig. 5.11) to the direction of the field
lines (Fig. 4.7). The voltage U is induced between the two ends of
the tube (length L). The usual name for this arrangement is unipolar
induction.

We could also connect the tube rigidly to the bar magnet and let it rotate
around its long axis. Then the tube would become superfluous; it would be
sufficient to let the sliding contacts slip over the surface of the bar itself –
see Fig. 5.12b. Keep in mind that the field lines are not fixed on the surface
of the bar magnet like the bristles of a brush!C5.9C5.9. For a detailed descrip-

tion of these experiments, see
J.W. Then, American Journal
of Physics 30, 411 (1962). 5.6 The Most General Form

of the Law of Induction

A general form of the law of induction can be found if we relin-
quish our requirement of a homogeneous and time-independent mag-
netic field and also take the sign found in the experiments into ac-
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Icount2. Then one can define experimentally the voltage induced in

a loop:C5.10 C5.10. Equation (5.10) holds
for all induction experiments
in the three groups described
in Sect. 5.2.

U D � d

dt

Z
B � dA : (5.10)

The integral on the right-hand side can be decomposed into two parts:
A time-dependent change of the magnetic flux density B, and a spa-
tial change of the curve around the perimeter s of the integrated area
A (the induction loop) at whose ends the voltage is measured. We
find:C5.11 C5.11. For the derivation of

Eq. (5.11), see for example
P. Lorrain and D. R. Cor-
son, “Electromagnetic Fields
and Waves”, 2nd edition,
W.H. Freeman & Co., San
Francisco 1970, Chap. 8.

U D
I

s.A/

E � ds D �
Z
A

dB
dt

� dA C
I

s.A/

.u � B/ � ds : (5.11)

(Here, u is the velocity with which a line element ds of the perimeter
curve is moving relative to the frame of reference in which U and B
are measured).

The direction of the surface element in the first term and the direction
of the integration along the path integrals when combined have to
yield a right-hand screw. With this formulation, the law of induction
has the correct sign (see Sect. 6.1).C5.12 C5.12. The velocity u is by

no means necessarily con-
stant along the perimeter
curve (examples: experi-
ments of group 3, or also
Fig. 5.10).

The attribution of the induced voltage to the two parts of the integral
can change when the frame of reference is changed. Some examples
of this: In experiments from group 2 in Sect. 5.2, only the first term
on the right is present when the position of the induction coil is used
as the frame of reference. However, if the position of the field coil
defines the frame of reference, both terms have to be taken into ac-
count (of course, then dB=dt has a different value). Or if in Fig. 5.6,
we let the induction coil rotate and use the field coil as the frame of
reference, then only the second term on the right of Eq. (5.11) con-
tributes. But within the frame of reference of the induction coil, only
the first term contributes (Exercise 5.6). In contrast, in Fig. 5.11, only
the second term is present, since there, dB=dt D 0 (Eq. 5.9).C5.13 C5.13. The description of this

experiment in the frame of
reference of the metal band
is most readily formulated
using the theory of relativity
(see Sect. 6.1).

Equation (5.10), while often used, is sometimes not very suitable for
practical calculations, e.g. when the area over which the integration is
carried out is not uniquely determined, as in Fig. 5.11. In such cases,
one should return to Eq. (5.1) or to Eq. (5.8).

Exercises

5.1 Using the information given in Video 5.1, calculate the ex-
pected voltage impulse

R
U dt and compare it with what was ob-

served in the video. (Sect. 5.4)

2 Compare the small-print paragraph near the end of Sect. 5.3 for remarks about
the sign.
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5.2 With the information given in Video 5.2, compute a) the ve-
locity u with which the slider in Fig. 5.10 must be moved in order
to obtain a voltage of U D 1mV from the induction loop (measured
with a voltmeter having a rapid response time); and b) the expected
voltage impulse

R
U dt which would be observed with a slowly-

responding galvanometer, cf. Sect. 5.2. Compare the latter with what
was observed in the video. (Sect. 5.5)

5.3 The measurement of the earth’s magnetic field in the Göt-
tingen lecture hall: An earth inductor with a cross-sectional area
of 103 cm2 and 200 turns in its windings is oriented with the aid
of a compass needle so that its axis points in the magnetic north-
south direction. Then the axis is moved to a horizontal orientation.
If the earth inductor is now rotated around a diameter by 180°, we
observe a voltage impulse of 10�3 V s. a) Determine from this result
the horizontal componentBh of the earth’s magnetic field. b) In a sec-
ond experiment, the axis of the earth inductor is oriented vertically.
When it is rotated around a diameter by 180°, now a voltage impulse
of 2:25 � 10�2 V s is observed. Find the angle ' between the direction
of the earth’s field and the horizontal (called the angle of inclination).
(Sect. 5.5)

5.4 The endless metal band in Fig. 5.11 is 10 cm wide and takes
the form of a circle with a diameter of 1m. The magnetic field is the
homogeneous field at the center of a 50 cm long field coil with 1000
turns, carrying a current of 1.2A. Find the frequency 
 at which the
band would have to rotate in order to generate a voltage of 1mV
between the slip contacts A and C. (Sect. 5.5)

5.5 An aircraft with a wingspan of 50m is flying at a constant
altitude with a velocity of 960 km/h. The pilot has a voltmeter which
is attached to the wingtips with insulated wire leads. The wings and
fuselage of the aircraft are electrically conducting and are connected
together. The vertical component of the earth’s magnetic field is 6 �
10�5 T. What voltage will be indicated by the voltmeter? (Sects. 5.5
and 7.3)

5.6 Making use of Eq. (5.10), compute the voltage U which will
be induced in the rotating coil from Sect. 5.3 (Fig. 5.6), if it is rotated
around an axis perpendicular to the plane of the page. The cross-
sectional area of the coil is A, it has N turns in its windings, and its
rotational frequency is 
. (Sect. 5.6)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_5) contains supplementary material, which
is available to authorized users.
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6.1 Detailed Treatment of Induction.
MAXWELL’s Second Law

We return to the first experiment (in group 1) of Sect. 5.2, and recon-
sider induction in the simplest possible case: An induction coil with
only one turn, i.e. an induction loop, is supposed to enclose a time-
dependentmagnetic field of flux density B along some arbitrary curve
swith a cross-sectional area A (Fig. 6.1). Then at the ends of the loop,
we observe the induced voltage (without taking its sign into account):

U D PBA : (5.2)

This experimental result can be interpreted in a more profound sense
as follows: The conductor, the single loop of wire, is quite unimpor-
tant and insignificant. The actual phenomenon does not depend on
the accidental presence of the wire loop. It consists of the appearance
of electric field lines along closed paths around the time-dependent
magnetic field (Fig. 6.2).C6.1

C6.1. A very impressive
demonstration of such field
lines on closed paths is
given by the betatron; this is
a device in which electrons
can be accelerated, and it
is described in many intro-
ductory physics textbooks.
However, to understand it
properly, one needs to know
about the LORENTZ force,
which we introduce in the
following chapter. (See
e.g. The Feynman Lectures
on Physics, Addison-Wesley
1964, Vol. II, Chap. 17
(online at http://www.
feynmanlectures.caltech.
edu/); cf. also Fig. 11.11).

Electric field lines in the form of closed
circles are something quite new and completely unexpected. Up to
now, we have encountered only electric field lines with ends; at their
ends were electric charges.

Let us continue our investigation: The wire loop is merely an indi-
cator to detect the electric field. Along its length, it measures the

J

A

Ḃ

V

Figure 6.1 Schematic of an induction experiment with an induction coil of
only one turn (NJ D 1). The vector field PB is the time derivative of the vector
field B. The instrument represents the induced voltage.
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Figure 6.2 The deeper signif-
icance of the phenomenon of
induction

A

E

Ḃ

Figure 6.3 The function of the wire loop in
the induction experiment

U U

UU

α

path integral of the electric field strength E, i.e. the induced voltage
U D R

E�ds. It has no other function than the wire ˛ in the schematic
in Fig. 6.3: The wire is a conductor and causes the electric field to
decay in its interior. The charges move to its ends and thus the volt-
age acting all along its length is compressed into the remaining gap.

In the electric fields which we have thus far investigated, the path
integral of the field E along a closed loop was always zero. It was,
independently of the exact path s followed, just equal to the voltage
between the beginning and the end of the path (see Eq. (2.3)). It was
therefore zero whenever the beginning and the end approached each
other closely; at the limit of a vanishing gap, it vanished exactly.

The situation is different with the fields that we encounter in this
induction experiment, which form endless loops; here, the electric
voltage along a closed path has a finite value. Furthermore, when
the number of turns is increased to NJ, so that the magnetic field is
circled NJ times, the voltage increases correspondingly (Eq. (5.2)).

In this way of looking at the experiment, the electric field that is
induced during an induction process is the primary phenomenon. The
observed voltage is the path integral of that electric field E. It has the
value (compare Eq. (2.3)):

U D
I

E � ds : (6.1)

Then, taking the sign into account, Eq. (5.2) takes the following
form:C6.2

C6.2. Written completely and
consistently in vector form,
Eq. (6.2) becomesI
s.A/

E � ds D � d

dt

Z
A

B � dA .

As already agreed upon in
Sect. 5.6, the path of integra-
tion s encloses the area A in
such a way that ds is positive
(it curves in a “right-hand”
sense when one looks along
the direction of the surface-
element vector A). The sign
will be treated in detail once
more in Sect. 8.3; it is given
by LENZ’s law.

I
E � ds D � PBA D ��0 PHA : (6.2)

This equation yields the electric field that is produced by the change
of a magnetic field. It summarizes the essential content of the second
of the four MAXWELL’s laws.
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Figure 6.4 Taking the path integral of the electric field E along the perimeter
of a surface element dx dy; the z axis is perpendicular to the plane of the page
and points towards the reader (right-handed coordinate system). The path
of integration (curved arrow) is in the clockwise sense (to the right) as seen
along the z direction (similar to Fig. 6.15).

The equation can be written in a differential form and can then be applied
to arbitrary inhomogeneous magnetic fields. Its derivation from Eq. (6.2)
can be accomplished by taking the path integral along the perimeter of
a surface element dx dy. This computation is explained in Fig. 6.4. One
thus obtains (taking the sign of PB in Fig. 6.2 into account!):

@Ey

@x
� @Ex

@y
D �PBz

or, after taking account of the other components, in vector notation,

curlE D � PB D ��0 PH : (6.3)

In words: At each point within a magnetic field, a time-dependent change
in the field strength or direction produces an electric field. The latter is
a vortex field, and the curl of the field E is equal to the negative rate
of change of the field B. (For the definition of the “curl”, see Vol. 1,
Sect. 10.7).

The third of MAXWELL’s laws contains another, analogous relation
between the two fields, but with the roles of E and H reversed. Its
experimental derivation is our next goal.

6.2 Measuring Magnetic Potential
Differences

We know from ROWLAND’s experiment (Sect. 4.3) that every motion
of electric charges represents an electric current, and every current
produces a magnetic field. We can indeed measure the magnetic field
using the current. But we still lack a general experimental frame-
work for the relation between the current and the resulting magnetic
field, as described in MAXWELL’s third law. We can arrive at it by
measuring the magnetic potential difference.
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H1

∆s1

∆s2 ∆s3

H2
H3

Figure 6.5 Schematic of a magnetic potentiometer (A. P. CHATTOCK, Phil.
Mag. 24, 94 (1887); W. ROGOWSKI and W. STEINHAUS, Arch. f. Elek-
trotech. 1, 141 (1912))

In an electric field, we found that the electric potential difference or
voltage is given by the path integral of the electric field:

U D
Z

E � ds : (2.3)

Its unit, as usual, is 1 volt.

In a corresponding fashion, in a magnetic field, we can define the
path integral of the field H as the magnetic potential difference:

Umag D
Z

H � ds : (6.4)

Its unit can be seen to be 1 ampere.

The magnetic potential difference can be measured with a very sim-
ple instrument, the magnetic potentiometer. A magnetic potentiome-
ter is in principle simply a very long induction coil, wound for ex-
ample on a long strap. It is wound with two layers and the leads are
brought out at the center of the outer layer of windings (Fig. 6.6).
(A coil with only a single layer would, in addition to the long coil as
intended, also represent a large, flat induction coil formed by a single
loop of helically-coiled wire).

We want to elucidate the operation of this magnetic potentiometer:
The magnetic potential difference is to be measured along a path
s. This path is divided up in Fig. 6.5 into a broken curve with
segments (path elements) �s1; �s2; : : : ; �sn. Let us denote the
components of the field in the direction of the path elements �s
as H1; H2; : : : ; Hn. The magnetic potentiometer extends along the
whole path s. It has N turns in its winding and the length l. Its n-th
path element has the length�sn. Then there are Nn D N ��sn=l turns
in this element. If the field H is increasing or decreasing, then a cer-
tain voltage impulse will be induced in the magnetic potentiometer,R
U dt (Eq. (5.1)). This is composed of the sum of the contributions

from each of the path elements; thus, if A is the (rectangular) cross-
sectional area of the windings of the potentiometer (the sign holds
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Z
U dt D �0 AH1N�s1=l C �0 AH2N�s2=l � � � C �0 AHnN�sn=l ;

(6.5)Z
U dt D �0 AN.H1�s1 C H2�s2 C H3�s3 � � � C Hn�sn/=l ;

(6.6)Z
U dt D �0 AN

�Z
H � ds

�
=l D �0 AN Umag=l ; (6.7)

Umag D l

�0 N A

Z
U dt : (6.8)

This induced voltage impulse, measured for example in volt second,
after multiplication by the the apparatus constant l=.�0NA/, yields
directly the magnetic potential difference as sought, in ampere. The
apparatus constant need be determined only once; A, l andN by direct
measurement, while �0 D 1:257 � 10�6 V s/Am.

We employ a magnetic potentiometer which is 1.2m long. Its apparatus
constant has the value 5 � 105 A/V s. The coil has 9600 turns, each with
a cross-sectional area of 2 cm2. The induced voltage impulse is measured
using the ballistic galvanometer described in Sect. 5.2; it can be calibrated
as shown in Fig. 5.3 (J is the magnetic potentiometer). (cf. Video 6.1) Video 6.1:

“The Magnetic potentiome-
ter”
http://tiny.cc/obggoy
The potentiometer shown
in the video has practi-
cally the same dimensions.
Its apparatus constant is
4:58 � 105 A/V s.
The ballistic calibration
factor of the galvanome-
ter has the value BU D
1:1 � 10�4 V s/scale division
(Exercise 6.1).

6.3 The Magnetic Potential Difference
of a Current. Applications

The operation of the magnetic potentiometer is explained in Fig. 6.6.
The magnetic potential difference Umag of a field coil is to be mea-
sured between the points 1 and 2 along the path 1 ! 2. The po-
tentiometer is shaped so that it corresponds to the path from 1 to 2;
then the magnetic field is varied by switching the current in the field
coil between zero and its maximum value, and the resulting induced
voltage impulse is observed with the galvanometer.C6.3

C6.3. We see here that the
operation of the magnetic po-
tentiometer involves simply
an application of the law of
induction (Eq. (5.5)). The
magnetic potentiometer is
just an induction coil with
a particular shape with which
voltage impulses

R
U dt can

be measured.

In this way,
we reach the following conclusions:

1. Along an open path (Fig. 6.6), the magnetic potential difference
depends only on the position of the end points 1 and 2, and not on the
shape of the path itself. The path can even include loops, as long as
they do not enclose any currents.

2. In Fig. 6.7, the path which the potentiometer follows is closed, and
it encloses no currents. The resulting magnetic potential difference is
zero.

3. In Fig. 6.8, the path defined by the potentiometer encloses a cur-
rent I once within a closed loop. The magnetic potential difference

http://tiny.cc/obggoy
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Figure 6.6 Operation of
the magnetic potentiome-
ter

G

Galvanometer

a

I I

1 2

Figure 6.7 A closed path for
the magnetic potentiometer
which encloses no currents

To the 
galvanometer

I I

Umag is again independent of the exact shape of the path (circular,
rectangular etc.).

4. Quantitatively, we find in Fig. 6.8 the magnetic potential difference
equal to the current I in the conductor which is enclosed in the path

Figure 6.8 Enclosing a cur-
rent one time with a magnetic
potentiometer (I D 50 to
100A, a 2-volt storage bat-
tery is sufficient to provide the
current) (Video 6.1)Video 6.1:

“The Magnetic Potentio-
meter”
http://tiny.cc/obggoy
In the video, the potentiome-
ter which encloses a current
is moved relative to the
current-carrying conduc-
tor; but no voltage impulse
is observed as a result of this
motion.

To the
galvanometer

I

I

http://tiny.cc/obggoy
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Figure 6.9 A current enclosed twice within the path of a magnetic poten-
tiometer – at left, within a closed loop, and at right within an open curve
whose upper and lower ends are one above the other vertically (Video 6.1)

of the potentiometer. We have

Umag D
I

H � ds D I : (6.9)

This equation is known as “AMPERE’s law”.

A numerical example: I D 83A. A deflection of the ballistic galvanometer
of 12 cm corresponds to

R
Udt D 1:7 � 10�4 V s. Multiplication by the

apparatus constant of the magnetic potentiometer, i.e. by 5 � 105 A/V s,
yields the magnetic potential differenceUmag D 1:7�10�4 V s � 5�105 A/V s
D 85A.

5. In Fig. 6.9 (left), the path of the potentiometer encloses the cur-
rent twice (double loop). The magnetic potential difference is then
doubled. Continuing in this manner, we find for an N-fold enclo-
sure of the current I that the measured magnetic potential difference
becomes

Umag D
Z

H � ds D NI : (6.10)

6. In Fig. 6.9 (left), the current I is enclosed twice within the path of
the potentiometer, and its beginning and end points are held together.
This is however not necessary; the potentiometer could just as well
be in the form of an open helix with N turns enclosing the current N
times and with open ends (Fig. 6.9 (right)).
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Figure 6.10 HELMHOLTZ

coils

I

I

z

a

Summary: The magnetic potential difference along an arbitrary
curve is simply equal to the strength of the current if the latter is
enclosed one time within the curve. When it is enclosed N times,
the potential difference becomes N times the current. This result is
expressed by Eq. (6.10) in compact form.

To remind us of these important facts, the following three examples of
applications can be helpful:
1. The homogeneous magnetic field of a long coil (Fig. 6.11). The mag-
netic potentiometer is threaded through the coil and closed outside it along
an arbitrary path. Its path thus encloses once each N wires carrying the
current I. Therefore, the magnetic potential difference along the whole
path is Umag D N I. Umag is composed of two additive terms, Umag;i

and Umag;o (‘inside’ and ‘outside’). Within the coil, the magnetic field is
homogeneous, apart from the short pole regions (coil ends), and its field
strength H is constant.C6.4

C6.4. In order to get an im-
pression of the homogeneity
of the field of a long coil, the
following figure shows the
strength of the axial field,
i.e. the “field profile” of long
coils.

Distance from the center of the coil (cm)

b a

0–100 100

10–4 T

0

10

20

The longitudinal component
of the B field was computed
along the axis of two coils,
both with N I=l D 1800A/m.
The field strength in their
interior at the center is B D
22:5 � 10�4 T.
Curve a): length/diame-
ter = 100 cm/10 cm; b):
50 cm/10 cm (the same ge-
ometry as in Fig. 4.4). The
decrease of B in the neighbor-
hood of the ends of the coil
is practically independent of
the length of the coil. (The
calculation was performed
by J.A. Crittenden, Cornell
University.)

Thus, Umag;i D Hl. We find that the term due to the region outside the
coil, Umag;o, is negligibly small compared to Umag;i (Fig. 6.11b). Then we
have

Hl D NI or H D NI

l
:

This is just the same as Eq. (4.1) from Sect. 4.2. It proves here to have
been a special case of the general equation (6.10)1

2. The magnetic field H.r/ at a distance r from a current-carrying straight
wire. The magnetic potential difference along one of its circular field

1 We mention without derivation that the field strength at the center of a cylindrical
coil (solenoid) of radius r and length l is given by

H D NI

l

lp
4r2 C l2

: (6.11)

For r � l, we see that Eq. (4.1) applies, and at the center of a current-carrying
circular ring (N D 1, l D 0), we find

H D I=2r : (6.12)

An often-used arrangement for producing homogeneous fields consists of two
such circular rings, called HELMHOLTZ coils (Fig. 6.10).

If the spacing of the two coils (each with radius a and N turns in their windings)
is equal to their radius, then the field H along the z axis (z D 0 at the center
between the coils) is given by

H D H0.1 � 1:15.z=a/4 C : : :/ with H0 D 0:716NI=a ;

and thus, along the z axis for jzj 	 0:1 jaj, it is constant to within 10�4.



6.3 The Magnetic Potential Difference of a Current. Applications 121

Pa
rt
I

G
G

ba

Figure 6.11 The distribution of the magnetic potential difference in the field
of a long coil. The coil has 900 turns in its windings, a length of 0.5m
and a diameter of 0.1m. A current of 1 A passed through the coil produces
a magnetic field H D 1800A/m. a): The magnetic potentiometer is passed
through the entire length of the field coil. Switching the current off or on
yields a voltage impulse of 1:7 � 10�3 V s, i.e. from Eq. (6.8), Umag D 850A.
The length and position of the ends of the potentiometer coil outside the field
coil are practically unimportant. Thus, the field outside the field coil makes
no significant contribution to the magnetic potential difference.
b): The potentiometer follows an arbritrary path completely outside the field
coil. The voltage impulse which is induced in it is only about 9 � 10�5 V s.
Umag thus has a value in the region outside the field coil of only around 45A,
and can therefore be neglected relative to the magnetic potential difference
of 850A measured within the field coil. The path integral

R
H � ds for the

outside region is indeed practically negligible, even for this field coil which
is not really very long. (Video 6.1)

Video 6.1:
“The Magnetic Potentiome-
ter”
http://tiny.cc/obggoy
In this experiment, the mag-
netic potential difference in
the region outside the coil
is � 10% of that measured
within the coil. The data of
the field coil are: Windings:
N D 4300, length l D 40 cm,
diameter D 11 cm, current
I D 0:15A.
UB D 3:2 � 10�5 V s/scale
division.

(Exercise 6.2)

lines (Fig. 1.4) with a radius r can be found from Eq. (6.10), taking the
symmetry of the problem into account:C6.5 C6.5. “taking the symmetry

into account” means here
that one can find no reason
why the tangential compo-
nent of the magnetic field
on a concentric circle (of ra-
dius r) around the current
path (wire) should not be
constant. It must therefore be
constant. The fact that the ra-
dial and axial components are
both zero can however not be
concluded from symmetry
alone; it is instead an exper-
imental finding (the absence
of a radial component can be
clearly seen in Fig. 1.4, for
example).

Umag D 2�rH.r/ D I ;

and thus

H.r/ D 1

2�

I

r
: (6.13)

The field is directed tangentially, and its strength is determined only by r
(for its sign, see Fig. 4.10).
3. Magnetic potential difference measurements in the magnetic fields of
permanent magnets. Our treatment has emphasized the essential similarity
of the magnetic fields of current-carrying conductors and those of perma-
nent magnets. This can be reinforced once more by measurements with
the magnetic potentiometer. In Fig. 6.12, the magnetic potential differ-
ence between the poles of a horseshoe magnet is being determined. For
these measurements, the magnet is pulled away from the potentiometer
rapidly. The potential difference is once more found to be completely in-
dependent of the path which is investigated with the potentiometer (i.e. the
shape of the curve which the potentiometer represents). On a closed loop,
it is always zero. The potentiometer can of course not enclose individual
molecular currents; it would have to be threaded through single molecules
for that! Every hole that might be bored through a permanent magnet
however passes not through the individual molecules, but rather between
them.

In a few cases with simple geometry in which the strength of the mag-
netic field along the magnetic potentiometer is constant, we could use

http://tiny.cc/obggoy
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Figure 6.12
A magnetic po-
tentiometer in the
field of a perma-
nent magnet. The
experimental setup
corresponds to the
one in Fig. 6.11b.
(Video 6.1)Video 6.1:

“Magnetic Potentiometer”
http://tiny.cc/obggoy

N

S

To the
galvanometer

the potentiometer to determine the field strength, for example in the
case of a single current-carrying wire. The importance of this exper-
iment is however much more far-reaching. The measurement setup
as shown in Fig. 6.8 corresponds to the one in Fig. 5.5: The current
density2 j corresponds to the field PB and the magnetic potential dif-
ference

H
H �ds corresponds to the voltage H E �ds. Experiments have

shown that the magnetic potential difference is equal to the enclosed
field of the current density j. It then follows, in analogy to the deriva-
tion given in Sect. 6.1, that the relation between H and j can be given
in the form of a differential expression as:

curlH D j ; (6.14)

where the sign on the right side is to be determined by comparison
with Fig. 4.10. This equation is AMPERE’s law in differential form.
It is a part of the third of MAXWELL’s laws, which will be treated in
the following section.

6.4 The Displacement Current
and MAXWELL’s Third Law

The experimental result that
H
H � ds D I (Eq. 6.9) was general-

ized by MAXWELL in an audacious manner. His train of thought can
be explained by referring to Fig. 6.13. A condenser is discharged
through an external circuit. During its discharging, a current I flows
through its leads, and within the condenser, its electric field E is de-
caying at the same time. The current I in the wires is surrounded
by concentric circular magnetic field lines. We imagine that this fig-
ure could contain field lines around all the wires in the circuit. Then
we can say, roughly but unmistakably, that the whole wire is sur-
rounded by a “tube” of magnetic field lines. This tube ends at both
sides of the condenser, where the wires meet the plates (electrodes)
of the condenser. MAXWELL maintained, on the contrary, that the
tube of magnetic field lines has no ends; it forms a closed torus:

2 The current density j is the current per cross-sectional area, j D dI=dA; or, more
generally, in vector notation, I D R

j � dA.

http://tiny.cc/obggoy
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Figure 6.13 Schematic drawing of the magnetic field from a conduction cur-
rent and a displacement current (I corresponds to the conventional current
direction from C to �)

Figure 6.14 Schematic draw-
ing of the magnetic field of
a displacement current. The
vector field PE is the time
derivative of the vector field
E (the arrows show the direc-
tion of a displacement current
Iv which is pointing upwards).

A
H

E∙

The varying electric field within the condenser is also surrounded
by circular magnetic field lines. Such circular magnetic field lines
are however one of the principal characteristics of an electric cur-
rent. The corresponding current is referred to – somewhat strangely
– as the displacement current. All of the usual meanings of the word
current, ‘flowing’ or ‘streaming’ in analogy to a current of water no
longer apply to this ‘current’. The word displacement current here
indeed refers only to the fact that an electric field is changing with
time (Fig. 6.14).

Following the introduction of this new type of current, we can say
that: In nature, there are only closed current loops. In a conductor,
these are conduction currents, and in an electric field (e.g. of a con-
denser), they are displacement currents. Electric currents have no
spatial ends or beginnings. At the end of the conduction current, the
displacement current begins, and vice versa.

Like every current, the displacement current can be measured in am-
pere. On the other hand, it is supposed to be a quantity which is
determined by the time derivative of an electric field. The latter field
would therefore have to have the unit ampere second. This is the case
for the product

Displacement densityD

� Cross-sectional areaA of the field D DA D "0E A

(for example: D in A s=m2, A in m2, E in V=m, DA in A s, "0 D 8:854 �
10�12 A s=Vm).

The displacement density D (Sect. 2.13) is related to the electric field
E via D D "0E (Eq. 2.5). We denote the rate of change of D and E
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again with a dot above the field symbol, i.e. PD D dD=dt and PE D
dE=dt. Then we obtain the displacement current

Iv D PDA D "0 PE A : (6.15)

The quantity PD D Iv=A is also called the “displacement current den-
sity”.

So much for the measurement of the displacement current. AM-
PÈRE’s law I

H � ds D I (6.9)

was originally discovered through experiments with the conduction
current. MAXWELL extended this law by a term containing the dis-
placement current, written asC6.6C6.6. Written completely in

vector notation, Eq. (6.16)
becomesI
s.A/

H � ds D

"0
d

dt

Z
A

E � dA :

Here, the path of integra-
tion s encloses the area A in
such a way that ds is positive
(i.e. it curves clockwise) if
one is looking in the direc-
tion of the surface-normal
vector A.

I
H � ds D PDA D "0 PE A : (6.16)

This equation yields the magnetic field which is produced by the
change in an electric field.

The relation described by Eq. (6.16) can be obtained as a differential equa-
tion by referring to Fig. 6.15; its derivation is similar to that of Eq. (6.3),
above. We have to compute the path integral of H along the perimeter of
a surface element dx dy; we thus obtain

@Hy

@x
� @Hx

@y
D PDz D "0 PEz ; (6.17)

or, after including the other components in vector notation,

curlH D PD D "0 PE : (6.18)

In words: At every point within an electric field, a change of the field with
time produces a magnetic field. The latter is a vortex field, and the curl
of this magnetic field is equal to the time derivative of the displacement
current density. We have assumed here that the surface element dx dy is
penetrated by only a displacement current. If in addition a conduction
current I passes through the surface element, then on the right side of the
equation, its current density j D dI

dx dy must be added as a second term.

We have thus obtained MAXWELL’s complete third law:

curlH D j C PD D j C "0 PE : (6.19)

Unfortunately, we cannot simply make the magnetic field lines from
the displacement current visible in Fig. 6.13 like those of a conduc-
tion current by using iron filings. That would be a didactically very
expedient, direct demonstration of the validity of the second term on
the right side of Eq. (6.19). However, for technical reasons, in elec-
tric fields with long field lines, we cannot produce a displacement
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Figure 6.15 Taking the path integral of the magnetic field H along the
perimeter of a surface element dx dy; the z axis points out of the plane of the
page (right-hand coordinate system) and the sense of the integration (curved
arrow) is clockwise as seen in the z direction (as in Fig. 6.4)

current of sufficient strength. But such a demonstration would in any
case not prove that the origin of the magnetic field was to be found in
the displacement current; one could always claim that the magnetic
field observed in Fig. 6.13 was due to the conduction current in the
leads to the condenser plates.

A real proof of the origin of the magnetic field from the displacement
current can be obtained only by referring to circular, closed electric
field lines. We will do this in Chap. 12, by the detection of freely
propagating electromagnetic waves. Until then, the magnetic field of
the displacement current remains only a plausible hypothesis.

6.5 MAXWELL’s Fourth Law

At this point, we want to introduce the last of the four MAXWELL

equations. In integral form, it is given by:
I

B � dA D 0 ; (6.20)

i.e. the magnetic flux (Eq. (5.3)) through a closed surface, integrated
over the whole surface area, vanishes. In differential form, this be-
comes

divB D 0 :

These equations are analogues of Eqns. (2.9) and (2.8) in Chap. 2,
which related electric fields to electric charges. The observation that
magnetic field lines have no beginnings and no ends, as shown by the
experiments in Chap. 4, means that there is no magnetic analogue of
electric charges, i.e. there are no magnetic charges. This explains the
zero on the right-hand side of the two equations above.
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We summarize MAXWELL’s four laws (also known as the Maxwell
equations); they describe electric and magnetic fields in vacuum (and
thus practically also in air). Note that in vacuum, D D "0E and
B D �0H. The four laws in differential form (for E and B) are:

divE D %

"0
; (6.21)

curlE D � PB ; (6.22)

curlB D �0j C �0"0 PE ; (6.23)

divB D 0 : (6.24)

The experimental justification of these equations (with the excep-
tion of the displacement current density in the third equation) has
been given in the preceding sections (for example, in Sect. 2.14 for
Eq. (6.21), Sect. 6.1 for Eq. (6.22)), and Chap. 4 for Eq. (6.24).

Exercises

6.1 Referring to Video 6.1: Determine using the description of
the magnetic potentiometer in Sect. 6.2

a) The current I in the vertical conductor in Fig. 6.8;

b) the average magnetic field H in the long coil of Fig. 6.11 (its data
are given in the figure caption); and

c) the magnetic potential difference
R
Hds of the permanent magnet

in Fig. 6.12 (Sect. 6.3).

6.2 We imagine a bundle of identical long coils with square cross-
sections as in Fig. 4.6. Their windings have N turns, their length is
l, and all of them are carrying the same current I. One coil is pulled
out of the interior of the bundle.

a) In the ‘tunnel’ which is left where the coil was removed, we insert
a magnetic potentiometer. How large is the magnetic potential dif-
ference Umag when the ends of the potentiometer are touching each
other outside the bundle?

b) Compare the magnetic potential differences which would be mea-
sured if the potentiometer is either completely within the tunnel
(Umag;i), or, as shown in Fig. 6.11, it forms a curve completely
outside the bundle (Umag;o) (Sect. 6.3).

6.3 In Fig. 6.12, the magnetic potential Umag;a was measured out-
side a permanent magnet between its ends (Video 6.1). Now imag-
ine that a thin channel has been bored through the magnet along its
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sured along this channel between its ends, with Umag;a. (Sect. 6.3,
14.5)
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the Frame of Reference 7
7.1 Preliminary Remarks

In this chapter, we want to show that electric and magnetic fields de-
pend upon the frame of reference from which they are observed. This
fact will lead us to a deeper understanding of induction in moving
conductors, as already described in Chap. 5, Sect. 5.2 in the groups 2
and 3.

7.2 A Quantitative Evaluation
of ROWLAND’s Experiment

In ROWLAND’s experiment (Sect. 4.3), the magnetic effects of a con-
duction current could be imitated by moving charges alone. But this
is not the true significance of the experiment; that lies in a logical
conclusion which can be drawn directly from it.

We return to Fig. 4.12 and imagine that a condenser consists of two
rings which are rotating in the same direction around a common axis,
so that they are moving with an orbital velocity u. Then we observe
the field-line pattern as sketched in Fig. 7.1. The magnetometer M
is placed in this sketch at rest between the two plates, that is in the
region of greatest strength of the electric field E.

As a result of the motion of the condenser, in addition to its electric
field, a magnetic field is produced. Its field lines are perpendicular
to those of the electric field and also perpendicular to the direction of
the relative motion. This is a very significant fact; we now deal with
its quantitative formulation.

If the ring-shaped charge carriers have a very large radius r, we can
neglect their curvature over comparatively long regions and consider
the direction of their velocity u to be constant. Between the plates,
which have an area of A D b l (l D 2�r), there is an electric displace-
ment density D of magnitude D D Q=A (see Sect. 2.13, Eqns. (2.4)
and (2.5)). The rotating charged rings produce a magnetic field H. It
has a non-zero magnitude only between the two closely-spaced rings
and is to a good approximation homogeneous there. On a closed path
of length 2b which passes around one of the rings, the magnetic po-
tential difference is Umag D Hz b (neglecting the field in the exterior

129© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_7

https://doi.org/10.1007/978-3-319-50269-4_7


Part
I

130 7 How the Fields Depend on the Frame of Reference

u

u

b

MHz

S'
x'

z'

y'

y S
x

z

D'y

Figure 7.1 Magnetic field lines from positive and negative electric charges
which are moving parallel to each other (perpendicular to and into the plane
of the page) with their plate-shaped carriers, both at the same velocity u. Left:
Two right-handed coordinate systems. The upper system S0 is at rest relative
to the plates, while the lower system S (the ‘laboratory system’) is at rest
relative to the room and the magnetometer M (a compass needle with a light
pointer). S0 is moving relative to S at the velocity u. Above and below the
pair of plates, the magnetic fields essentially cancel each other.

region). This is equal to the current I D Qu=l enclosed by the path.
Then the observer in S finds: Hzb D Qu=l, or

Hz D uQ

lb
D u

Q

A
D uDy ;

and, in general form and vector notation,

H D .u � D/ or B D "0�0.u � E/ : (7.1)

This field occurs in addition to the electric field when the condenser,
the carrier of the electric field, is moving relative to the observation
apparatus (the magnetometerM in Fig. 7.1) with the velocity u. The
definition of the vector u can be seen from Fig. 7.1.

In order to obtain Eq. (7.1) with the aid of the theory of relativity,C7.1

C7.1. Introductions to the
special theory of relativ-
ity can be found in many
textbooks. See for example
M. Born, “Einstein’s The-
ory of Relativity” (Dover
Publications, 1965) (avail-
able online for download at
https://archive.org/details/
einsteinstheoryo00born ).
Other introductions with
examples include R.P. Feyn-
man, Lectures on Physics,
Vol. I, Chaps. 15–17 and 34,
and Vol. II, Sect. 13.6 for
a relativistic treatment of
moving charges. This can be
read online at http://www.
feynmanlectures.caltech.edu/
See also “Electricity and
Magnetism” by E.M. Pur-
cell and D.J Morin, 3rd ed.,
Cambridge University Press
(2013), Sec. 5.9.

let us consider the condenser to be at rest in the system S0 and the
magnetometer to be at rest in the system S. S0 is moving at the veloc-
ity u in S.C7.2

C7.2. See Fig. 5.4 in
Sect. 5.2.

Then the theory states that:

B D �"0�0.u � E0/ ; (7.2)

E D �E 0 ; � D 1p
1 � u2=c2

; (7.3)

where c D 3 � 108 m/s is the velocity of light in vacuum. For u � c
(i.e. � � 1), we obtain from Eq. (7.2) the equation (7.1), which
can thus be considered to be experimental evidence for the theory of
relativity.C7.3

C7.3. The principle of rela-
tivity requires that even an
observer in S0, where the
charges are at rest, so that
only an electric field, but no
magnetic field is present,
would find that the magne-
tometer (compass needle)
is subject to a torque. This
is certainly the case, but the
demonstration that a mag-
netometer which is moving
relative to an electric field
experiences a torque, analo-
gous to the LORENTZ force
(Sect. 7.3), was too diffi-
cult even for a scientist like
HENRY ROWLAND (1848–
1901)!

The origin of the factor � is the LORENTZ contraction,
which makes the condenser, at rest in S0, appear to be foreshortened
along the direction of u in S (see also Sect. 7.4). This increases the
charge density on its plates, and thereby also E and B. This (small)
effect was neglected in deriving Eq. (7.1).

https://archive.org/details/einsteinstheoryo00born
https://archive.org/details/einsteinstheoryo00born
http://www.feynmanlectures.caltech.edu/
http://www.feynmanlectures.caltech.edu/
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The earlier experiments (Figs. 5.10 and 5.11) are summarized in
a schematic sketch in Fig. 7.2. There, the points where the magnetic
field lines of the homogeneous field perpendicular to the paper pass
through the plane of the page are shown as black dots. The slider
of length L is moving relative to the frame of the magnetic field
(the field coil) at the velocity u perpendicular to the direction of the
magnetic field lines. The observer finds negative charges at the point
C, and positive charges at A; and, using the arrangement shown in
Fig. 5.10, the magnitude of the induced voltage is found to be:

U D BuL : (5.9)

This experiment can demonstrate the validity of the principle of rel-
ativity convincingly, by moving either the conductor (slider) or the
field coil which produces the magnetic field. In both cases, the same
induced voltage is observed. The interpretation of this result depends
on the frame of reference of the observer.

Initially, the observer is at rest next to the field coil in the reference
frame S, and describes the induction effect as follows:

‘Like every object, the slider contains electric charges, an equal num-
ber of each sign. These charges participate in the motion of the slider
at the velocity u. During the motion, they collect at the points A
and C (Fig. 7.2); the slider can serve as a current source. Therefore,
within it, there must be forces F which separate the charges, as in
any current source. Here, they are a result of the motion. They pull
positive charges downwards and negative charges upwards’.

While these forces F are piling up charges at the points A and C,
according to Eq. (5.9), an electric voltage is produced between A and
C. It, in turn, causes a restoring force F 
 to act on the two separated
charges (Eq. (3.1)). In vector form, this restoring force is given by:

F 
 D Q.B � u/ : (7.4)

For positive charges, it acts upwards, and for negative charges it acts
downwards. If only these forces were acting, the charges would again
be pulled together. The experimentally-observed stationary state is

Figure 7.2 Schematic drawing of in-
duction in moving conductors. The
magnetic field points perpendicular
to the plane of the page towards the
reader. The circular cross-section of
the field coil seen in Fig. 5.10 has
been replaced here by a rectangular
cross-section. The rod A-C corre-
sponds to the slider in Fig. 5.10.

C

A S

uL

Current I

Current I Negative charges

Negative charges
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therefore possible only if the forces F that separate the charges are
equal and opposite to the forces F
 in Eq. (7.4), i.e. F D �F
. Then
for the forces F, we have

F D Q.u � B/ : (7.5)

These forces, named for H.A. LORENTZ, act perpendicular to both
u and B on the charges Q which are moving at the velocity u in the
magnetic field B. For the observer who is at rest in the frame of the
field coil, the LORENTZ force is a new experimental fact.

Now, we let the observer move with the slider (in the frame of ref-
erence which we have called S0). For this observer, the charges are
at rest. Therefore, the magnetic field with its LORENTZ force cannot
be acting on them, but instead, only an electric field. This field, as
shown by the experiment, is given byC7.4C7.4. All of the quantities

measured in the system S0,
insofar as they are different
from those measured in S,
will likewise be written with
a prime.

E 0 D F 0

Q
D u � B : (7.6)

From this point of view, an electric field occurs in S0 in addition to the
magnetic field, when the field coil, the source of the magnetic field,
is moving at the velocity �u relative to the observation apparatus
(the slider in Fig. 7.2). Induction in moving conductors is therefore
a counterpart to ROWLAND’s experiment – only the roles of the elec-
tric and the magnetic fields have been reversed.

An electric field which appears during the relative motion in the
frame of reference S0 would be observable in principle without a con-
ducting slider. Imagine that the slider is a rod made of a heated
artificial resin. During the motion, it would cool and its interior state
would be “frozen in”. When it was removed from the field, the rod
would act as an electret (Sect. 3.10, Point 2b), with negative charges
at the top end and positive charges at the bottom.

Wilhelm WIEN passed fluorescent molecules at a high velocity
through a homogeneousmagnetic field instead of moving a slider rod.
The electric field which then acts on the electrons in the molecules
was detected via the STARK effect, which is a splitting of the spectral
lines into several components in an electric field (13th edition of “Op-
tik und Atomphysik”, Chap. 14, Sect. 47; or see e.g. hyperphysics.
phy-astr.gsu.edu/hbase/atomic/stark.html).

7.4 Fields and the Principle of Relativity

In Chap. 5, we had to distinguish experimentally between two types
of induction, namely induction in a coil at rest (Sect. 5.3), and induc-
tion in moving conductors (Sect. 5.5).

In the former case, the explanation was as follows: With induction in
a coil at rest, the forces that separate the charges are produced by an
electric field. This field occurs in addition to the magnetic field, dur-

hyperphysics.phy-astr.gsu.edu/hbase/atomic/stark.html
hyperphysics.phy-astr.gsu.edu/hbase/atomic/stark.html
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with closed, circular electric field lines (Sect. 6.1, Fig. 6.2; the math-
ematical formulation is given as the MAXWELL equation (6.22)).

According to Sect. 7.3 also, in the second case, that is induction in
moving conductors, the forces which separate the charges are due to
an electric field (which is seen by an observer who is at rest relative
to the moving conductor). However, it remained completely unex-
plained just how the motion was able to produce an electric field.
The answer is given only by the theory of relativity:C7.1 It states that
the windings of the field coil are no longer exactly electrically neu-
tral during its motion. They acquire an excess of charges of each
sign, and between the excess charges, an electric field acts. We can
already show this here; from the theory of relativity, we need only
the LORENTZ contraction: An observer whose frame of reference
(the S system) is at rest relative to some object measures its length
to be l. An observer who is moving parallel to this length relative to
the object with a velocity u measures in his/her frame of reference S0
a reduced (‘contracted’) length

l 0 D l
p
1 � u2=c2 (7.7)

.c D light velocity in vacuum D 3 � 108 m=s/:

Following this brief but sufficient introduction to the LORENTZ con-
traction, we repeat in Fig. 7.3 the content of Fig. 7.2. The termi-
nology needed is given in the caption of this figure. – Initially, an
observer is at rest relative to a field coil through which the current I is
flowing (S system). In the windings of this coil, the positive charges
(the lattice ions) are fixed, and the negative charges (the electrons)
can move at a rather small velocity1 ue, i.e. we have ue � c. The
magnitudes of the charges q and their densities are equal within the
windings of the field coil; the conductor is electrically neutral, so that

%C D %� D q

V
D % (7.8)

.V D ld2 is the volume of a wire of length l/:

For an observer at rest relative to the slider (S0 system), the positive
charges which are fixed within the wires are moving at the velocity
�u (Fig. 7.3); for this observer, in the windings of the field coil just
below (3) and just above (1) in the figure, the positive charges have
the same charge density

%0
C D q

d2l0
D q

d2l
p
1 � u2=c2

D %p
1 � u2=c2

;

or, for u � c (i.e. � � .1 C u2=2c2/)

%0
C D %

�
1 C 1

2

u2

c2

�
: (7.9)

1 Compare the footnote in Sect. 8.3.
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Figure 7.3 Induction in a moving conductor. The sketch shows the rectan-
gular cross-section of a long field coil, whose long axis is perpendicular to
the plane of the page. It is at rest in the frame of reference S, whose z axis is
also perpendicular to the plane of the page. The coil has along its length l

all together N turns in its windings, made of wire with a square cross-section
of area d2. When a current I is passed through this coil, it produces a homo-
geneous magnetic field of magnitude H D NI=l
. This field is perpendicular
to the plane of the page and points towards the reader, and the passage of its
field lines through the page is marked by dots. The slider (of length L) is at
rest in the frame of reference S0, which is moving at the velocity u parallel to
the x axis (as is sketched to the right in the figure for clarity). The length l,
the current I and the velocity of the electrons (drift velocity) ue are all mea-
sured in S. The excess charge densities (C and �) are observed in S0, as is the
electric field E0

y0 . As observed in S0, the system S is moving to the left (at the

velocity �u).C7.5C7.5. The goal of the follow-
ing calculations is to derive
the electric field (in the form
E0 D D0="0) which is ob-
served in the moving system
S0, moving with the velocity
u of the slider. The field is
shown in Eq. (7.14) to be

E0 D �

"0

Nq

l l 
 � ue u
c2

:

This field is caused by the
relative motion of the slider
and the magnetic field source.
It is a relativistic effect and
does not appear in the lab-
oratory frame S, where the
field source is at rest. As seen
in Eq (7.16), the field E’ is
proportional to u and B.

(Exercise 5.6)

For the same observer in the S0 system, the negative charges (elec-
trons) in the upper section of the windings (3) have a velocity (u�ue),
and in the lower section (1) a slightly greater velocity (u C ue). This
observer thus finds the charge density of the negative charges in the
S0 system (with ue � u) in the upper section of windings just below
(3), to be

%0
� D %p

1 � .u � ue/2=c2
D %

�
1 C 1

2c2
.u2 � 2uue/

�
; (7.10)

and for the lower section of windings, just above (1),

%0
� D %p

1 � .u C ue/2=c2
D %

�
1 C 1

2c2
.u2 C 2uue/

�
: (7.11)

For the upper section of the coil containing N wires (3), combin-
ing Eqns. (7.10) and (7.9) with Eq. (7.8) yields an excess of positive
charges:

�Q0
C D N�q0

C D Nqueu

c2
: (7.12)

For the lower section of windings (1), the combination of Eqns. (7.11)
and (7.9) with Eq. (7.8) yields an excess of negative charges:

�Q0
� D N�q0

� D �Nqueu

c2
: (7.13)
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produced by the LORENTZ contraction. Dividing�Q0C by the cross-
sectional area l0l
 of the windings gives its displacement densityD0 D
"0E0, and thus the electric field:C7.6

C7.6. The lengths l
 and d
have no components along
the direction of u, so they are
not affected by the LORENTZ

contraction.E0 D 1

"0

Nqueu

l0l
c2
D 1

"0

Nqueu

ll
c2
p
1 � u2=c2

D �

"0

Nqueu

ll
c2
(7.14)

.� was defined in Sect. 7.2/:

We know that que D Il and �0NI=l
 D B. Inserting these quantities
into (7.14) gives

E0 D � u

"0�0c2
B : (7.15)

Applying the relation 1=c2 D "0�0 (see Sect. 8.2) and taking the
directions into account, we finally obtain the electric field in vector
notation:C7.7

C7.7. This field can also be
derived directly from the
theory of relativity. For this
derivation, we consider that
the field coil is at rest in the
frame S (Fig. 5.4 in the foot-
note in Sect. 5.2) and the
charge Q is at rest in S0. Then
we have

E0 D �.u � B/ ;

and

B0 D �B :

In S0, then, the force F0 D
Q�.u � B/ will be observed.
Using a relativistic transfor-
mation, we can compute from
it the force F which will be
observed in S. The transfor-
mation equation for forces in
this case (where the geometry
is particularly simple) gives

F D 1

�
F0 D Q.u � B/ :

This is precisely the
LORENTZ force! It thus
follows directly from the
theory of relativity. (Note
again: The field E measured
in S is zero.) More details
may be found for example in
P. Lorrain, D. R. Corson, and
F. Lorrain, “Electromagnetic
Phenomena”, Freeman, New
York (2000), Chap. 13.

E 0 D �.u � B/ ; (7.16)

and for u � c, Eq. (7.6) follows from this. The field E 0 is directed
downwards in Fig. 7.3: The electric field which results from the mo-
tion of the field coil relative to the slider in S0 thus has the magnitude
and direction that were determined empirically in Sect. 7.3. Result:
The observer who is at rest relative to the slider can explain the ob-
served charge separation in terms of the LORENTZ contraction.C7.8

C7.8. The explanation given
here can also be applied to
the experiment shown in
Fig. 5.11. The reader should
also try to apply it to BAR-
LOW’s wheel!

Now, finally, we are in a position to understand the experiments of the
second group in Sect. 5.2 in detail: As seen from the reference frame
S of the field coil, the LORENTZ force produces the induced voltage
in the induction coil, which is at rest in S0. As seen from the induction
coil in the reference frame S0, the LORENTZ contraction of the charge
densities in the field coil produce the same voltage in the induction
coil. In the general case of induction in moving conductors, one must
of course also take into account (in addition to the LORENTZ force
or the LORENTZ contraction) the possible time dependencies of the
magnetic field, as described in Sect. 5.6.

7.5 Summary: The Electromagnetic
Field

Because of their importance, the results of this chapter will be briefly
summarized here:

1. An observer can place a measuring apparatus (the magnetometer
in Fig. 7.1 or the moving conductor in Fig. 7.3) at rest within a frame
of reference which is moving at a velocity u relative to the source
of the field (condenser or field coil). Then she or he will observe
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in addition to the electric field also a magnetic field (Fig. 7.1) or in
addition to the magnetic field also an electric field (Fig. 7.3). In the
first case, Eq. (7.1) applies, and in the second case, Eq. (7.6). For
u D 0, the additional fields vanish. They are thus purely relativistic
effects.

2. Electric fields and magnetic fields are not autonomous and inde-
pendent of one another. They are both parts of an electromagnetic
field. Their presence or absence depends upon the frame of reference
chosen for the observations.C7.9C7.9. Making use of this

newly-found information, the
reader should reconsider the
remarks made at the end of
Chap. 5 following Eq. (5.11)!

3. Induction in moving conductors can occur as a result of the
LORENTZ contraction. Or, conversely: Induction in moving conduc-
tors is an experimental verification of the existence of the LORENTZ

contraction.
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8.1 Demonstration of the Forces
on Moving Charges

From our detailed consideration of induction in moving conductors,
we became aware of the existence of the LORENTZ force

F D Q.u � B/ (7.5)

(F for example in newton (D 1N), B in V s/m2 (D 1T), u in m/s, Q in
A s).

This force acts on a charge Q which is moving at the velocity u in
a magnetic field of flux density B. As can be seen from the vector
product, the force is perpendicular both to the magnetic field and to
the velocity of the charge (Fig. 8.1):

Unfortunately, we cannot verify this equation (7.5) with a demon-
stration experiment using a mechanically-moved macroscopic charge
carrier, for example a charged soap bubble. We cannot make the
product Qu sufficiently large for such a large carrier of charge.C8.1

C8.1. This difficulty is
avoided by using an electron
beam, as shown here in the
figure (Photo: K. Lechner,
IWF Göttingen):

In a glass bulb containing
hydrogen gas at a pressure of
p D 1 Pa (from the Leybold
Co., Cologne), an electron
beam is moving through
a magnetic field that points
perpendicular to the plane
of the page. The beam is
accelerated by a voltage of
ca. 200V, so that its orbital
velocity u is ca. 107 m/s. The
field is produced by a pair
of HELMHOLTZ coils (B
ca. 8 �10�4 T, directed towards
the reader). The beam is de-
flected into a circular orbit
by the field (Lorentz force),
with a counter-clockwise
sense of rotation and a ra-
dius r D 6 � 10�2 m. The
LORENTZ force is thus con-
stant at every point along the
orbit and is perpendicular to
the momentary orbital veloc-
ity, acting towards the center
of the circular orbit.

However, we can test Eq. (7.5) and its consequences as shown in
Fig. 8.1 experimentally in other ways.

In Sect. 4.3 (the ROWLAND experiment), the macroscopic motion of
a charge carrier was found to be equivalent to the invisible motion of

B B B

F

F

F

u u u u I

Figure 8.1 Forces F D Q.u � B/ on moving charges. They are perpen-
dicular to both the velocity u and to the magnetic flux density (also known
as the magnetic induction field) B. In the two left-hand images, the charges
have opposite signs but the same direction of motion (as e.g. in Figs. 5.10 to
5.12b). In the right-hand image, they have opposite directions of motion. In
the general case, u and B are not perpendicular to each other.
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Figure 8.2 A horizontal current-carrying conductor perpendicular to the
homogeneous magnetic field of an electromagnet. The conductor appears
foreshortened due to the perspective. Numerical example: I D 15A, l D
5 � 10�2 m, B D 1:5V s=m2, F D 1:5V s=m2 � 15A � 5 � 10�2 m D 1:13W s=m
D 1:13Nm=m D 1:13N.

Figure 8.3 The field-line pattern corre-
sponding to Fig. 8.2. The conductor is
perpendicular to the plane of the page.C8.2C8.2. Compare the field-line

patterns in Fig. 8.3 with the
patterns of the electric field
lines in Fig. 3.9. In perfect
analogy to the electric case,
the force is determined by
the magnetic field of one
current distribution (here: of
the electromagnet) and the
current in another conductor
(see Eq. (8.1)).

electric charges within a conductor.

The frequency of rotation
of the electrons, the so-
called cyclotron frequency,
is given by 
 D QB=2�m
(m D 9:11 � 10�31 kg is the
mass of the electron), and
is independent of the (non-
relativistic!) velocity u (See
Exercise 8.1).

The observer can use the charge
carriers of either sign, Q or �Q, within a conductor of length l as
a ‘rest’ frame of reference. In that frame, only the other charges have
a velocity u. Quantitatively, we found

Qu D I l : (4.4)

This equation for the magnitudes can be inserted into Eq. (7.5), lead-
ing to the force on a section of conductor of length l which carries
a current I perpendicular to the field B:

F D IB l : (8.1)

To verify this equation, we make use of a horizontal, linear conduc-
tor in a homogeneous magnetic field as in Fig. 8.2. The field B is
produced by an electromagnet and is directed perpendicular to the
conductor. The conductor forms a trapeze with its two rigid lead
wires and is hanging from a force meter (balance). A numerical ex-
ample is given in the legend of the figure. The pattern of field lines is
shown in Fig. 8.3.
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Currents

As an application of Eq. (8.1), we compute the forces between two
parallel, straight conductors of length l at a distance r from each other,
which are carrying the currents I1 and I2 (Fig. 1.9). The current I1
produces

the field strength H D 1

2�

I1
r

(6.13)

at a distance r, that is

the flux density B D �0

2�

I1
r
: (8.2)

Equations (8.1) and (8.2) together yield the attractive force (when the
currents in both conductors are flowing in the same direction) or the
repulsive force (when they are opposite):

F D �0

2�

I1I2l

r
: (8.3)

Numerical example: I D 100A, l D 0:5m, r D 1 cm, �0 D 4� �
10�7 V s/Am, F D 10�1 N.

We now apply Eq. (8.3) to a special case: We imagine that the two
currents are carried by two identical strings of charges which flow be-
side each other through space (Fig. 8.4) (these could be electrically-
charged particle beams with a linear charge density Q=l). Thus, in
contrast to the usual conductivity currents in metals, etc., the ‘back-
ground charges’ of opposite sign are missing here. As a result, in ad-
dition to the attractive magnetic force Fmagn between the two strings,
there is a repulsive electrical force Fel perpendicular to the direction
in which the charges are moving.

For the magnetic attractive force, we obtain from the combination of
Eqns. (8.3) and (4.4):

Fmagn D �0

2�

Q2u2

rl
: (8.4)

Figure 8.4 Two parallel strings of charges of the same sign, mov-
ing in the same direction
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For the electrical repulsion, we find

Fel D 1

2�"0

Q2

rl
: (8.5)

Derivation: The charge string at the left produces an electric field strength

at a distance r on a cylindrical surface of E D 1

2�"0

Q

rl
. This acts according

to Eq. (3.5) on the charge string at the right, exerting a force

Fel D QE D 1

2�"0

Q2

rl
:

Taking the ratio of Eqns. (8.4) and (8.5) yields

Fmagn

Fel
D "0�0u

2 : (8.6)

In this equation, the product "0�0u2 must be a pure number; it rep-
resents the ratio of two forces. Therefore, 1=

p
"0�0 must refer to

a velocity. A calculation gives

1r
8:859 � 10�12

A s

Vm
� 4� � 10�7

V s

Am

D 2:998 � 108 m
s
:

This velocity1 is exactly the same as the velocity of light c in vacuum!
We thus have the experimental result that

1p
"0�0

D c : (8.7)

This is not simply an accidental agreement, but rather a fundamental
relation between the velocity of light and electromagnetic phenom-
ena. The first to recognize this fact in its wide-ranging consequences
was James Clerk MAXWELL, in 1862: He explained light waves as
short-wavelength electromagnetic waves (at the time experimentally
still unobserved!).

Inserting Eq. (8.7) into Eq. (8.6), we obtain

Fmagn D Fel
u2

c2
: (8.8)

In words: Under similar geometric conditions, the magnetic forces
produced by moving electric charges are smaller by the factor u2=c2

than the electric forces between the same charges at rest. We want to
elucidate this statement by referring to Fig. 8.5:

1 W. WEBER and R. KOHLRAUSCH in 1856 described this velocity simply as
a “critical” value which could make magnetic forces just as strong as electrical
forces.
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Figure 8.5 A numerical example to elucidate Eq. (8.8): Two parallel copper
wires of length l D 1m and 1mm2 cross-sectional area are a distance r D
0:1m apart, and carry a current of I D 6A. According to the footnote below,
the current I is due to negative charges of Q D 1:36 � 104 A s which are
moving at a velocity u D 0:44mm/s. We thus find .u=c/2 D 2:16 � 10�24.
The current flowing on the right produces a magnetic flux density (induction
field) of B D 1:2 � 10�5 V s/m2 at the position of the left wire (Eq. 8.2).
This causes a force Fmagn D QuB D 7:23 � 10�5 N to act on the charge Q
there. From Eq. (8.5), the mobile negative charges Q alone (i.e. without the
presence of the equally strong positive background charges) would repel each
other with a force Fel D 3:34 �1019 N. Then the ratio of forces is Fmagn=Fel D
2:16 � 10�24 D .u=c/2.

Fig. 8.5 shows schematically two current-carrying wires (not to
scale!). The mobile negative charges (electrons) within them move
as gray clouds through the lattice of fixed positive charges (lattice
ions), at velocities which are normally less than 0.5mm/s.2 Thus,
.u=c/2 is only a tiny fraction, on the order of 10�24! If the pos-
itive ions were lacking, the two clouds of negative charge would
repel each other with the force Fel. The magnetic field generated
by their motion produces an attractive force between them of only
Fmagn � 10�24 Fel.

For this reason, Eq. (8.8) leads to the following conclusion: The pro-
duction of magnetic forces through electric currents is certainly of

2 The copper wires used in everyday house wiring are normally limited to current
densities of less than 6A/mm2. A copper wire with a cross-sectional area of 1mm2

and a length of 1m has a mass m D 8:95 g, and thus the amount of substance
n D 0:14mol (Vol. 1, Sect. 13.1). It contains copper ions, each carrying one
positive electrical elementary charge. For these ions, the FARADAY constant is the
quotient

Charge Q

Amount of substance n
D 9:65 � 104 A s

mol
:

The copper wire therefore contains a positive ionic charge of Q D 1:36 � 104 A s.
The mobile negative charge Q between the lattice ions is just as large. Inserting
this quantity of charge into Eq. (4.4) gives

u D I l

Q
D 6A � 1m

1:36 � 104 A s
D 4:4 � 10�4 m

s
D 0:44

mm

s
:
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eminent importance for electrical technology; but physically, it be-
longs among the “second-order effects” or “relativistic effects”.C8.3

C8.3. The derivation of this
equation based on the theory
of relativity can be found
in “Electricity and Mag-
netism” by E.M. Purcell
and D.J. Morin, 3rd edition,
Cambridge University Press
(2013), Sect. 5.9, p. 264.
Here, instead of two rows of
point charges, the repulsive
electric force and the attrac-
tive magnetic force between
two point charges (protons)
moving with the same ve-
locity v and separated by
the distance r have been de-
rived (in Eq. (5.29) there; the
first term on the left and the
term on the right). Their ratio
yields Eq. (8.8).

8.3 LENZ’s Law and Eddy Currents

Induction processes give rise to electric fields, currents and forces.
The sign of their direction is determined from the rule formulated by
H. F. E. LENZ (1834):

The electric fields, currents and forces produced by induction are
always directed to oppose the processes which give rise to that in-
duction. This results from the conservation of energy. If the sign
were opposite, the process causing the induction would be subject to
a positive feedback and would increase without limit, creating energy
from nothing. Examples (see also Video 8.1):

Video 8.1:
“LENZ’s Law”
http://tiny.cc/mcggoy
The video shows an im-
pressive demonstration
experiment of LENZ’s law
from the collection of physics
demonstrations at Cornell
University. (Note as well the
wobble oscillations exhib-
ited by the aluminum ring at
the end of the video (see also
Video 11.12 in Vol. 1,
http://tiny.cc/qcgvjy).)

1. In Fig. 5.5, the induction was caused by the increase of the mag-
netic field from the field coil. According to LENZ’s law, the current
induced in the induction coil must impede this increase of the mag-
netic field. It must therefore flow in the opposite direction to the
current in the field coil.

2. In Fig. 8.6, an aluminum ring as “induction coil” is hanging be-
tween the conical pole pieces of a horseshoe magnet. We pull the
magnet away on its guide rail. The ring follows it. Their separation,
which is the cause of the induction, is opposed.

3. Now we reverse the experiment, i.e., we push the magnet towards
the ring and try to force the ring into the region between the mag-
net pole pieces where the field is strongest. The ring moves away
from the approaching magnet; its approach, which is the cause of the
induction, is again avoided.

4. In cases 2 and 3, we could make the hole in the ring as small as we
want; finally, it becomes just a disk of metal. The currents which are
induced in that disk are called eddy currents.

Figure 8.6 A ring-shaped “induction coil”
is hanging like a pendulum between the
poles of a horseshoe magnet which can be
slid along a guide rail (an optical bench)

http://tiny.cc/mcggoy
http://tiny.cc/qcgvjy
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ver coin in an inhomogeneous magnetic field
(Video 8.2) Video 8.2:

“The Eddy-Current Brake”
http://tiny.cc/1bggoy
A round aluminum disk is
released as close as possible
to the center in the region of
strongest field (and therefore
also the greatest field gradi-
ent). It has been previously
cooled to the temperature
of liquid nitrogen (77K),
which strongly enhances its
electrical conductivity and
therefore the braking effect.
Then, a long aluminum plate
is pulled through the field to
demonstrate the astonishingly
strong forces, which increase
with the velocity of the plate.

N S

N S

S

S

N

N
a b c

d

Figure 8.8 A rotating magnetic field with various “induction rotors”. Part b
shows a schematic drawing of the rotating magnetic field produced by the
apparatus in a, at two different positions separated by 60ı. The small circles
mark the axis of rotation for an observer who is looking directly down from
above. The magnetic field lines between its rotating poles S-N are indicated.
Parts c and d show two rotors which can be used above the rotating magnet
in place of the rectangular frame. The application of rotor d is a reversal of
the experiment shown in Fig. 8.9. (Video 8.3)

Video 8.3:
“Induction Rotor”
http://tiny.cc/5bggoy
The principle of an induction
motor is demonstrated with
a setup as shown in a shadow
projection in Fig. 8.8 a.

If we drop a silver coin through the inhomogeneous magnetic field
of a large electromagnet (Fig. 8.7), then it doesn’t fall freely with the
usual acceleration in the air. Instead, it sinks slowly as if it were in
a sticky fluid. Here, again, the induction process impedes its origin,
in this case the falling motion of the coin.C8.4 C8.4. Modern coins which

are made of alloys have lower
electrical conductivities. This
makes the induced currents
smaller, and thus also the
forces which slow the coin’s
fall.

5. We replace the linear motion by a rotation; in Fig. 8.8, we rotate
a horseshoe magnet around its long axis and thereby obtain a “rotat-
ing magnetic field”. Into this rotating field we then bring an “induc-
tion coil” which is mounted on bearings so that it can also rotate; it
takes the simple form of a rectangular metal frame. The frame fol-
lows the rotation of the field. The angular motion between the field
and the frame, which is the origin of the induction in the frame, is
impeded. Soon, the frame is rotating almost as fast as the magnet. It
cannot move exactly as fast; in that case, the field change within the
area of the frame would no longer be present, so there would be no
induction at all. The fractional velocity difference between the coil
and the rotating field is called the slip. For the technological applica-
tion of this experiment, the simple rectangular frame is replaced by
a metal cage (Fig. 8.8c); one then refers to it as an induction rotor or
‘shorted rotor’ (see Fig. 9.21).

http://tiny.cc/1bggoy
http://tiny.cc/5bggoy
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Figure 8.9 Eddy currents slow the
rotation of a circular disk made of
aluminum. Its axle lies far behind the
plane of the page. The front surfaces
of the magnet poles could also be
parallel to each other, but then only
the inhomogeneous regions at their
edges would play a role in the brak-
ing process. (See also Video 8.2)

6. In the fourth experiment, we encountered eddy currents. They
were produced by moving an inhomogeneousmagnetic field through
a metal plate of limited size. The magnetic flux passing through the
plate changed with time.

Eddy currents can however also be produced without any changes
in the geometrical arrangement of the components. In Fig. 8.9, we
see a circular aluminum disk which extends into the inhomogeneous
magnetic field of an electromagnet. The axle of the disk is well be-
hind the plane of the drawing. The disk is hard to rotate; it shows
a tough resistance to motion which is surprisingly strong. Induction
of eddy currents again opposes its cause, the rotation of the disk.

The production of these eddy currents is best understood in terms of induc-
tion in moving conductors. In Fig. 8.10, we have sketched a cross section
of the magnetic field and a segment of the disk. The small, dashed cir-
cle indicates a closed path for the electrons within the metal disk. All the
electrons participate in the rotation of the disk. Therefore, they are mov-
ing perpendicular to the field lines, and LORENTZ forces F D Q.u � B/
(Sect. 8.1) act, as indicated by the arrows. The flux density B of the field
is greater below than above in the figure. F3 is thus larger than F1, and
this gives rise to a circular motion of the electrons in a counter-clockwise
direction. Furthermore, the forces F2 shift the electron orbits to the right.
These two motions are superposed and result in a cycloidal motion for the
orbits of the eddy currents.

Figure 8.10 The production
of eddy currents in the moving
disk of Fig. 8.9 (B is perpen-
dicular to the plane of the
page and points along the line
of sight of the reader)

Cross-sectional
view of the 
field coils

Axis of
rotationF3

F2

F1

F2
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of Rotating-Coil Instruments.
The Creeping Galvanometer.
Magnetic Flux Circuits

We refer to the second experiment in the previous section. There, we
saw in Fig. 8.6 a metal ring mounted as a pendulum in a magnetic
field. When it was set into swinging motion, it was seen to come to
rest after only a few swings – it was strongly damped. The forces due
to induction impede the oscillations of the pendulum (LENZ’s law).
This induction damping is often used to prevent unwanted vibrations.
It is also called “eddy-current damping” or “eddy-current braking”.
Imagine the ring in Fig. 8.6 to be replaced by a metal disk.

Induction damping is in particular indispensable in the construction
of various kinds of measurement instruments (includingmodern elec-
tronic analytical balances). It is used to prevent the annoying and
time-consuming oscillations of the pointer before it settles down to
its final position. As a rule, the aperiodic limit3 can be reached, so
that the pointer comes to rest in its final position after a minimal time.

We offer as one example the induction damping of a rotating-coil am-
meter (Fig. 1.19). As a rule, it consists of two parts: First, one uses
a rectangular metal frame as support for the coil windings. It acts
like the ring in Fig. 8.6, and analogously for rotational oscillations.
Second, the rotating coil itself can act as a closed-loop induction
coil. The instrument is part of an electrical circuit; thus the ends
of the rotating coil can be connected in some manner by a conduct-
ing link (“short circuit” or “shunt”) as needed. The resistance of this
shunt (for example in Fig. 1.33, around 106�) is called the “external
resistance”. A suitable choice of its magnitude allows experienced
observers to attain the aperiodic limit for the pointer oscillations.

When the damping is too strong, the pointer creeps to its equilibrium
position, without oscillating, but very slowly. This makes the instru-
ment useless for measurements of the momentary values of currents
or voltages. However, in contrast, a creeping galvanometer is very
useful for the measurement of “current impulses” .

R
I dt/ and “volt-

age impulses .
R
U dt/: It sums a series of impulses over a longer time

of observation automatically.C8.5

C8.5. This is also the oper-
ating principle of the first
telegraphic systems for
use over long distances.
C. F. GAUSS and W. WEBER

set up a telegraphic connec-
tion in 1833 over a distance
of ca. 1 km between the Göt-
tingen Observatory and the
Physical Academy. Positive
and negative voltage impulses
were used to cause a light
pointer to deflect to the left or
the right by a small amount.
The apparatus can still be
seen in the Historical Collec-
tion of the Physics Institute at
the University of Göttingen.

It is the limiting case of the ballistic
galvanometer treated in Sects. 1.10 and 2.11. A mechanical analogy
may be helpful:

In Fig. 8.11, a gravity pendulum is shown with its lower end dipping
into a very viscous liquid, for example honey. This causes its motion
to be strongly damped. We apply a hammer blow to the pendulum,
giving it a mechanical impulse .

R
F dt/. The pendulum is deflected

with a jerk and then practically stands still: due to its strong damping,

3 This is not yet the “creeping” pointer setting; see below!
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Figure 8.11 The operation of a creeping
galvanometer

it can return to its rest position only very slowly, after several min-
utes. A second impulse (another hammer blow) would thus strike the
pendulum at the end point of its first deflection, so the second deflec-
tion would add to the first. An impulse from the opposite direction
(hammer blow from the left) would be correspondingly subtracted.

Creeping galvanometers were formerly used for measurements,
mainly for registering voltage impulses. They can be calibrated as
shown in Fig. 5.3, for example in volt second. As an example of the
application of a creeping galvanometer, we investigate the effect of
an iron core on the magnetic flux ˚ of a current-carrying coil (see
also Fig. 4.14). In Fig. 8.12, we can see that the coil is framed by an
improvised induction loop. The pointer of the galvanometer is near
the zero point of the scale (bottom image in Fig. 8.12). Now to the
experiments:

1. The current in the field coil (about 3A) is switched on. The gal-
vanometer pointer begins to move to position a. This corresponds to
10�4 V s. That is the magnetic flux ˚ of the empty field coil.

a b c d

0 105 ∙ 10–3 V s

Figure 8.12 The effect of an “iron core” on the magnetic flux of a coil. The
flux is measured using a creeping galvanometer, the same instrument as in
Figs. 2.36, 2.38 etc., but now strongly damped by the small “external re-
sistance” of the induction loop. The cross-sectional area of the iron core is
around 25 cm2. To amplify the deflections of the galvanometer, one could use
several turns instead of only a single induction loop.
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pointer moves to position b, since the flux ˚ has increased to 1:3 �
10�3 V s.

3. We bring an iron closure bar slowly into position on the U-shaped
iron core and finally lay it firmly onto the core, closing the magnetic
circuit. The pointer moves stepwise to position d, and the flux ˚ has
now reached a value of 9:4 � 10�3 V s.

4. We switch off the current to the field coil, and the pointer of the
galvanometer moves back to position c on the scale; the “remanent”
magnetization of the iron core has a magnetic flux of 2:2 � 10�3 V s.
Finally, we remove the closure bar and the iron core. The pointer
returns to the zero point. The field coil with no current and no iron
core is once again free of magnetic flux.

A qualitative evaluation can be made readily using the simple model
of molecular currents (Sect. 4.4). The magnetic field of the field coil
aligns the magnetic fields of the molecular currents in the iron so
that they are all parallel to each other and to the external field. Then
the invisible ampere turns within the iron add to the visible ones in
the field coil, greatly increasing the strength of the magnetic flux
density B. We will treat this topic quantitatively later, in Chap. 14
(Sect. 14.11, ferromagnetism). For the next chapters, the experience
gained from these measurements will suffice: The magnetic flux˚ of
a current-carrying coil can be increased nearly 100-fold by inserting
an iron core. Furthermore, it can be conveniently varied by changing
the magnetic circuit of the core.

8.5 The Magnetic Dipole Moment m

The simplest and most convenient indicator of a magnetic field is no
doubt a compass needle. The magnetic field exerts a torque Mmech

on a suitably-mounted bar magnet. The latter can also be replaced by
a current-carrying coil, for example as in Fig. 1.10. How does this
torque come about, how can we describe it quantitatively? We give
the answer first for the case of a current-carrying coil. The planes
of its windings are parallel to the direction of the magnetic field, as
shown in Fig. 8.13. We show only one turn of the windings instead
of the whole coil; for simplicity, it has a rectangular cross section. Of
the four sides of the coil, two (the vertical sides) are perpendicular
and the two others are parallel to the field. Therefore, a force F D BIl
acts on the first two. The two forces act as a force couple on the lever
arms r and produce the torque:C8.6

C8.6. To avoid confusion
with the magnetization M
(Chap. 14), the symbol for
the mechanical torque M
is denoted by a subscript
“mech”, as already used in
Sect. 3.9. For many of the
equations in the following
paragraphs, just the mag-
nitudes are sufficient. The
directions can be read off
from the figures.

Mmech D B I l 2r D B I A (8.9)

A is the area of the windings, independently of the shape of the coil (rect-
angular, circular etc.).
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Figure 8.13 The origin of the
magnetic moment (the current I is
flowing in the conventional direc-
tion)

r r

F
F

m

I

l

Now we introduce a new quantity, the magnetic moment. We define
it by the equation

m D I A (8.10)

�
unit: 1Am2

�
:

The magnetic moment m is a vector quantity. Its direction is perpen-
dicular to the area enclosed by the current path, i.e. parallel to the
surface vector A which denotes the orientation and magnitude of the
current path. An observer looking in the direction of A sees the cur-
rent I flowing in a clockwise direction (or: the curved fingers of the
right hand point in the direction of current flow, when the thumb is
parallel to A and m). Then the torque is given by

Mmech D m � B : (8.11)
�
For example:Mmech in Nm; m inAm2; B inV s=m2

�
:

The vector product describes the torque for every orientation of m
relative to B. In Eq. (8.11), the vector B corresponds to the vector E
in the analogous equation (3.25) for an electric dipole in an electric
field.

Usually, instead of a single rectangular winding, one has coils with
many turns of arbitrary shapes (long or flat, with a constant cross-
sectional area A as in cylindrical coils (solenoids), or varying as in
multilayered coils, especially in flat coils). For these cases, we recall
for the second time an experiment from mechanics. In Fig. 3.17, we
saw a bar (vector S) attached to the end of a spoke R. The bar was
subject to a torque S �F produced by a pair of forces F, �F (a force
couple). The length of the spoke R plays no role here.

Analogously, we can simply add the torques that act on each of the
individual windings of a coil, independently of their distances from
the common axis; this is just the same as for an electric dipole mo-
ment, treated in Sect. 3.9. For the overall torque, we obtain

Mmech D I
�X

Ai

�
� B : (8.12)

In the case of well-defined cylindrical coils with only a few layers in
their windings, all N turns have practically the same area A and the
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Figure 8.14 A bar magnet and two iron-free coils, all with the same magnetic
moment, of magnitude m � 34Am2. The long coil has a diameter of 10.6 cm
and 4300 turns; the flat coil is 25.4 cm in diameter and has 730 turns. The
current in both coils is � 0:9A. The straight arrows show the directions of
the three equal magnetic moments m and also the direction of the magnetic
flux density B at the center of the flat coil. Looking in the direction of m, we
would see the current I circling clockwise (curved arrow, right-hand rule!).
The north pole N of a compass needle would point to the geographic north
pole of the earth.

same orientation. Therefore, their combined magnetic moment is

m D I N A : (8.13)

Two examples of the magnetic moments of coils are shown in
Fig. 8.14.

Permanent magnets of all kinds, and magnetized pieces of iron or
other magnetic materials, are no different (outside their own vol-
umes) from current-carrying coils or bundles of coils (Sect. 4.1); but
the orbits of the circulating charges within these materials are invis-
ible. As a result, we cannot compute the magnetic moment m of
a permanent bar magnet or a similar object in the same way as that
of a current-carrying coil (Eq. (8.12)). However, it can be measured
using Eq. (8.11), in the simplest case with m perpendicular to B,

m D Mmech

B
:

For this measurement, we mount the permanent magnet on bearings
(like a compass needle) with minimal friction, in a horizontal plane.
In equilibrium, that is Mmech D 0, its magnetic moment m orients
itself parallel to B (see Eq. (8.11)). Then we use a calibrated torque
(a spring balance F at the end of a lever arm r as in Fig. 8.15) to rotate
the axis between the poles of the magnet until it is perpendicular to
a homogeneous magnetic field of known flux density B (e.g. from
a field coil). Figure 8.15 shows a measurement of this type using
a bar magnet in the magnetic field of the earth.

Small torques Mmech cannot be measured with great precision as the prod-
uct of force times force arm; it is better to compute them from the oscilla-
tion period T of torsional oscillations. From Vol. 1, Eq. (6.13), we find the
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N F

North

Bh
r

S

Figure 8.15 Measurement of the magnetic moment of a bar magnet, mounted
horizontally and free to rotate in the earth’s magnetic field. (A counter-torque
Mmech D rF, for example F D 7:8 � 10�3 N with the lever arm r D 0:1m,
is produced by the spring, used as a force meter). The torque vector Mmech

from the spring points perpendicular to the plane of the page and into it.
The magnetic flux density of the horizontal component of the earth’s field is
Bh D 2 � 10�5 V s/m2. Then we find m D Mmech=Bh D 39Am2.

ratio of the torque to the rotation angle, termed the torsion coefficient, to
be

Mmech

˛
D 4�2 �

T2
(8.14)

(� D moment of inertia). If it is rotated out of its rest position through
the small angle ˛, a freely suspended, horizontal bar magnet (compass) is
subject to a restoring torque according to Eq. (8.11) of

Mmech D mB sin˛ � mB˛ : (8.15)

Equations (8.14) and (8.15) combined yield

m D 4�2�

T2B
: (8.16)

(For example T in s,� in kgm2, for a bar magnetD .1=12/mass � (length)2
(Vol. 1, Eq. (6.11)), B in V s/m2).

An arbitrary magnetic object (current-carrying coil, compass needle,
a paramagnetic molecule etc.) has amagnetic moment m. We bring it
into a magnetic field B. Then the object will orient itself, presuming
that it is free to move, so that its magnetic momentm is parallel to B.

Applying an external torque that is opposed to the torque produced
by B, we can rotate m by an angle ˛ relative to B. This requires that
the torque perform work:

W D mB

˛Z
0

sin˛ d˛ D mB.1 � cos˛/ : (8.17)

It is stored in the form of potential energy. For ˛ D 180ı, i.e. an anti-
parallel orientation of m and B, the work has its maximum value,
2mB.
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Current in the windings of the
small coil and field coil

anti-parallel parallel

F = 0 F F

N N N SSS

a b c

Figure 8.16 Part a: In a homogeneous field, a current-carrying coil, that is
an object with a magnetic moment m, is not acted on by a force. Parts b
and c: In an inhomogeneous field, in contrast, forces act. This is at the same
time a model of a diamagnetic substance (Part b) or a paramagnetic substance
(Part c).

In an inhomogeneous magnetic field, in addition to the torqueMmech,
there is also a force F. It pulls or pushes the object in the direction
of the field gradient, e.g. @B=@x. This important difference between
homogeneous and inhomogeneous fields is elaborated in Fig. 8.16.

We will elucidate the origin and the magnitude of this force by refer-
ring to Fig. 8.17. We imagine the magnetic field to be perpendicular
to the plane of the page and pointing towards the reader. The points
where the field lines pass through the page are marked with dots. The
field strength increases on going from top to bottom in the figure.

Our ‘object with a magnetic moment m’ is a rectangular wire loop
carrying a current I (its area is A D l�x). Its magnetic moment m
therefore points in the same direction as B. The forces directed to
the left and to the right, Fl and Fr, cancel each other. The forces
pulling upwards and downwards, Fu and Fd, however, have different
magnitudes. These are given by Eq. (8.1):

Fu D IlB and Fd D Il

�
B C @B

@x
�x

�
:

Therefore, the net force F D Fd � Fu is pulling downwards; i.e.

F D Il
@B

@x
�x D IA

@B

@x
;

Figure 8.17 The derivation of
Eq. (8.18). The current I flows in the
conventional direction and the vec-
tor field B points perpendicular to the
plane of the page towards the reader.
When m and B are parallel, the resul-
tant net force pulls downwards; when
they are anti-parallel, it pulls upwards.

I

∆x

l

Fu

Fd

Fl Fr
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or, with Eq. (8.10),

F D m
@B

@x
: (8.18)

This force pulls the object with the magnetic momentm into regions
with a stronger or weaker field strength4. The sign is found as shown
in Fig. 8.17. We can make use of Eq. (8.18) e.g. to determine an un-
known field gradient @B=@x using a test coil with a known magnetic
moment m.

A numerical example: In Fig. 8.16b and c, we had m D 0:116A � m2

(i.e. 2 turns with an area of 20 cm2 carrying a current of 29A); F � 0:2N.
Therefore, @B=@x D 1:72V s/m3.

8.6 The Localization of Magnetic Flux

In Fig. 4.7, the pole regions of a long current-carrying coil and a per-
manent magnet of similar shape made of a ceramic oxide material
were compared. For both, the magnetic flux ˚ could be localized
using a wire induction loop (measured e.g. as in Fig. 5.8; the result
is shown at the top of Fig. 8.18)5. For these two magnets, the po-
lar regions can be schematically defined as in Fig. 8.20. When the
magnetic flux is so strongly localized, we can apply a formal analogy
between magnetic flux ˚ and electric charge Q.

Suppose that in Fig. 8.13, the rectangular current path shown is one of
the N turns of a solenoid whose axis is perpendicular to the plane of
the page. It has a length l and is located in a homogeneous magnetic
field of flux density B. Its cross-sectional area is A and it is carrying
the current I. This current produces the magnetic field strength H0 D
NI=l inside the solenoid. In the homogeneous field B, it is acted on
by a torque Mmech D NIAB according to Eq. (8.12). This torque
corresponds to a force couple, with a force F D .NI=l/AB acting at
each end of the coil as shown schematically in Fig. 8.19. WithNI=l D
H0 D B0=�0 and B0A D ˚ 0, it then follows that (for simplicity we
leave off the prime on ˚ 0):

F D ˚H : (8.19)

Here, F andH are vectors and ˚ is a scalar quantity. Equation (8.19)
corresponds formally to the equation

F D QE (3.5)

4 Equation (8.18) also holds when the field gradient is parallel to the direction of
the field. Suppose that in Fig. 3.18, E is replaced by H and the charge Q by the
magnetic flux ˚ , as explained in the following section.
5 For bar magnets made of steel, which were formerly used extensively and can
still be found today, the flux distribution is shown by the lower image in Fig. 8.18.
There, one can localize the poles N and S at the “centers” of the shaded areas.
In the case of magnetic fields from flat current-carrying coils (as in the left-hand
image in Fig. 8.14), one can no longer speak of poles at all.
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Figure 8.18 The distribution �˚=�l of the magnetic flux ˚ . In the upper
part of the figure, a long current-carrying coil (solenoid) or a long bar magnet
made of a magnetic ceramic oxide. Lower part: a bar magnet made of steel.
An induction loop (as in Fig. 5.8) is slid stepwise along the length elements�l
and measures their contributions �˚ to the magnetic flux ˚ . (Exercise 8.3)

+Φ –Φ
–F = –ΦB/μ0

F = ΦB/μ0

l

Figure 8.19 Schematic of a magnetic dipole in a homogeneous magnetic
field. The field H or B lies in the plane of the page and points downwards,
perpendicular to the line l.

for a charge Q in an electric field E. By analogy, the magnetic
flux ˚ was previously termed the “magnetic charge”. It was pre-
sumed to correspond in the magnetic case to a quantity of electricity
or charge Q in an electric field E.

The implementation of Eq. (3.5) with an electric field was treated in
detail in Sect. 3.4. What was said there can be applied correspond-
ingly to the implementation of Eq. (8.19) with a magnetic field, i.e. in
particular: For H, in Eq. (8.19), one must use the undisturbed mag-
nitude, as measured before ˚ was present.

From Eq. (8.19), it follows that the magnitude of the torque which
acts in Fig. 8.19 is given by

Mmech D Fl D ˚Hl D 1

�0
˚Bl

and that of the magnetic moment is

m D Mmech

B
D 1

�0
˚ l : (8.20)

We list some additional formulations which follow from the analogy
between the magnetic flux and the electric charge:

1. The magnetic field at a large distance from a magnetic pole which
has the magnetic flux ˚ . Figure 8.20 shows a schematic drawing of
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Figure 8.20 The left end of a long, thin
solenoid whose field lines emerge with ap-
proximately radial symmetryC8.7C8.7. See also the calculated

field distribution in Com-
ment C4.4.

the field lines of a long solenoid (Fig. 4.4). For simplicity, we have
drawn only its left-hand end in this figure.

At some distance from the polar region, the pattern of the field lines is
to a good approximation radially symmetric (Fig. 8.20). The longer
the bar magnet or coil, the more precise is this approximation. The
magnetic flux distributes itself at large distances r symmetrically over
a spherical surface 4�r2. Therefore, at a sufficiently large distance,
we find for the magnitudes of B and HC8.8C8.8. The behavior described

by Eq. (8.21) can be exper-
imentally determined with
quantitative precision by us-
ing an induction coil (probe
coil).

Br D ˚

4�r2
or Hr D ˚

4��0r2
; (8.21)

once again completely analogous to the electric field of a point
charge.

2. The magnetic field directly in front of the flat face of a polar region.
In Fig. 5.8, we show the measurement of the magnetic flux ˚ of
a long coil. The measurement loop was near the center of the coil
before it was pulled out; in Fig. 8.20, this step corresponds to the
loop starting from far off to the right. It has cut through all the field
lines in the process of being withdrawn from the coil.

In contrast to this step, we now place the measurement loop directly
in front of the end of the coil, above the arrow. When it is pulled
away, only the field lines to the left of the arrow pass through it,
i.e. half of the total. That yields for the magnetic flux through the
face of a coil end ˚s D ˚=2 (cf. also Fig. 8.18). Division by the
cross-sectional area A of the coil gives the magnitudes of the fields
Bs and Hs directly at the face of the coil; we find the values:C8.9C8.9. A different derivation

of Eq. (8.22): In the interior
of a long field coil, we find
the magnetic flux ˚ . If we
now split the coil in half (in
a thought experiment), then
each of the newly-formed
ends will make the same
contribution to ˚ , from sym-
metry. Note that only the
axial component of B plays
a role here.

Bs D 1

2

˚

A
and Hs D 1

2�0

˚

A
: (8.22)

3. The magnetic field at a large distance R from an object with a mag-
netic momentm. Current-carrying coils (with or without an iron core)
and permanent magnets can have the samemagnetic momentsm even
if their shapes and compositions are quite different; we saw this in
Fig. 8.14.

In the neighborhood of such coils or permanent magnets, the pat-
tern of the field lines certainly depends on the shape of the magnetic
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object. But, at a sufficiently large distance, the fields B and H are
determined only by the magnetic moment m of the object. This is
shown for the two principal orientations in Fig. 8.21. Here, the car-
rier of the magnetic moment is a small bar magnet with its north and
south poles marked as N and S, often called a magnetic dipole.

Derivation: Each end of the bar (or coil) produces a flux density Br D
˚

4�R2
at the point of observation according to Eq. (8.21). Only the differ-

ence of the two values is important, so that in the first principal orientation

B D ˚

4�

�
1

.R � l=2/2
� 1

.R C l=2/2

�
: (8.23)

When the distance R is sufficiently large compared to the length l of the
bar or coil, we can neglect l2 relative to R2, and for the magnitude of B, we
then obtain

B D 1

2�

˚ l

R3
D �0

2�

m

R3
: (8.24)

Correspondingly, for the second principal orientation, we find

B D �0

4�

m

R3
: (8.25)

4. The measurement of unknown magnetic moments using one of
the principal orientations. Equations (8.24) and (8.25) are important
for measurements, in particular for the experimental determination
of unknown magnetic moments m. For this purpose, one measures
B in one of the principal orientations, either directly with a probe
coil (Sect. 5.4) or my making some sort of comparison with the
known horizontal component of the flux density of the earth’s field
(e.g. Bh D 0:2 � 10�4 V s/m2 in Göttingen). For example, one orients
the directions of B and Bh perpendicular to each other and finds the
angle ˛ between the directions of Bh and the vector sum of the two
fields (Fig. 8.22) with the help of a compass needle. Then the field
sought is given by B D Bh tan˛. Using this value of B, one then
computes the moment m from Eq. (8.25).C8.10

C8.10. In order to determine
all the magnetic quantities by
means of mechanical meas-
urements, one would first
have to measure the prod-
uct mBh (see Eq. (8.16)) by
means of the experiment de-
scribed in Fig. 8.15. Then
one would find, as shown
here, the angle ˛ which
the compass needle makes
with Bh (independently of
the magnetic moment of
the compass needle). From
Eq. (8.25), we then obtain

tan˛ D �0m

4�R3Bh
:

Combining this with
Eq. (8.16), it follows that

B2
h D ���0

T2R3 tan ˛
:

This permits us to measure
Bh without knowing the mag-
netic moment of either the
bar magnet (coil) or of the
compass needle; and from
it, the other magnetic quan-
tities follow (C. F. GAUSS

and W. WEBER, 1832; see
Wilfred Dudley Parkinson
(1983), “Introduction to
Geomagnetism” (Elsevier),
p. 353 ff).

Compensation methods are often favored. In these, one allows a sec-
ond, known magnetic moment to act on the compass needle in ad-
dition to the unknown moment (Fig. 8.23). The known moment is
produced by a current-carrying coil of well-known dimensions. The
magnetic moment of this “compensation coil” is computed using
Eq. (8.13).
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Figure 8.22 The determination of the flux density B of a dipole field in the
second principal orientation, by making use of the known flux density of the
horizontal component of the earth’s field

R R
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Figure 8.23 Measurement of an unknown magnetic moment by comparison
with a coil of known magnetic moment m (null method). This is a schematic
drawing (as is also Fig. 8.22); in reality, the distances R must be large com-
pared to the dimensions of the carriers of the magnetic moments (the bar
magnet S-N and the field coil).

5. Forces between the planar, parallel faces of two neighboring mag-
netic poles. One pole by itself produces the flux density

Bs D 1

2

˚

A
(8.22)

directly in front of its pole face. This field acts on the magnetic flux
˚ of the other pole according to Eq. (8.19) with the force

F D 1

2�0

˚2

A
D 1

2�0
B2A : (8.26)

This equation can be verified quite impressively by using a small
electromagnet (a “pot-type electromagnet”) with a diameter of only
5.5 cm (Fig. 8.24). When connected to a flashlight battery, it can pick
up more than 100 kgC8.11

C8.11. To estimate the mag-
netic field H in the solenoid,
one can use the expression
for the field in the interior
of a long coil or solenoid:
H D NI=l. With N D 500,
I D 0:1A and l D 1 cm,
we obtain H D 5000A/m.
From this value, with �0 D
4� � 10�7 V s/Am, we find for
the flux density B a value of
about 6 � 10�3 V s/m2, more
than two orders of magni-
tude smaller than the value
measured in the induction
experiment. This is a clear
indication that H and B are
not simply related by the
factor �0 in the presence of
magnetic material (here: the
iron core). Also, B depends
strongly on the geometry,
i.e. here on the width of the
gap (Video 8.4). More details
are given in Chap. 14.

6. The energy content of a homogeneous magnetic field of volume V.
In Fig. 8.25, the two faces of the magnetic poles approach each other
over a distance �x and can then lift a heavy load. In this process,
a magnetic field of volume V D A�x is excluded. At the same time,
the mechanical workC8.12

C8.12. In this thought ex-
periment, we have to take
care that the flux density B
is held constant in the space
between the pole faces (see
Comment C8.11). This can
be fulfilled approximately
by two permanent magnets
at a sufficiently small spac-
ing, so that stray fields can
be neglected. A still more
convincing demonstration of
magnetic field energy will
follow in Chap. 9.

W D F�x D 1

2�0
B2A�x D 1

2�0
B2V : (8.27)

was performed. Therefore, a homogeneous magnetic field of flux
density B and volume V contains the energy

Wmagn D 1

2�0
B2V : (8.28)
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Figure 8.24 An electromagnet (“pot-type magnet”) with a closed iron core.
The field coil is at the center, and above it, an induction loop for measuring the
flux density B. (The cross-sectional area A of the iron is 10 cm2 D 10�3 m2,
B D 2V s/m2, F calculated from Eq. (8.26) is 1:6 � 103 N). Using a flashlight
battery as current source, the windings of the field coil should have around
500 turns. (Video 8.4)

Video 8.4:
“Electromagnet”
http://tiny.cc/xbggoy
The strong attractive force of
the electromagnet is demon-
strated. It amounts to 530N.
In addition, it is shown how
sensitively this force de-
pends upon the width of
the gap. A few sheets of pa-
per are shoved between the
two halves of the magnet.
At a gap width of 0.4mm,
the force is only 15 N ! (see
Sect. 14.6).

Figure 8.25 The calculation of the magnetic
field energy

∆x

N S

A numerical example: The highest flux densities B which can be obtained
in iron cores are around 2.5V s/m2. Then in the field region between the
poles, a magnetic field energy of ca. 2.5W s/cm3 is stored.C8.13 C8.13. Using superconduct-

ing magnet coils with flux
densities of 5–15 V s/m2,
energy densities of 10–
90Ws/cm3 can be obtained
(for comparison: the stored
energy density in Ni/Cd stor-
age batteries is in the range
of 180–300W s/cm3; see
also the example in Vol. 1,
Sect. 19.8, Point 1). Such su-
perconducting magnetic en-
ergy storage devices (SMES)
have been under develop-
ment for some years. See
e.g. P.J. Hall and E.J. Bain
(2008), “Energy-storage
technologies and electricity
generation”, Energy Policy 36
(12), pp. 4302–4309.

Exercises

8.1 For the experiment described in Comment C8.1, find the field
B in which electrons that have been accelerated by a voltage of U D
100V will follow a circular orbit of radius r D 10 cm. (Sect. 8.1)

8.2

A flat coil carrying a current consists of 10 turns of wire with a cross-
sectional area A D 100 cm2; it is in a magnetic field, as shown in
Fig. 8.13. The current through the coil is I D 10 A and the flux
density of the magnetic field is B D 0:1 T. How large is the torque
Mmech which acts on the flat coil? (Sect. 8.5)

8.3 Estimate the magnetic flux ˚ in the long coil used for the
measurement results shown in Fig. 8.18, and compare it with the
measurements given in Video 5.1 (Fig. 5.8), which were carried out
on a different long coil. (Sect. 8.6)

http://tiny.cc/xbggoy
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8.4

Current is flowing through a helical conductor which is hanging
loosely and vertically. Due to the current, it contracts along its long
axis. Which force F would be necessary to keep it from contracting?
The number density of its windings is N=l D 2 cm�1 when I D 0,
the diameter of the helix is 2r D 5 cm, and the current strength
is I D 14A. Start by determining the magnetic field energyWmagn in
the helix. (Sect. 8.6)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_8) contains supplementary material, which
is available to authorized users.

https://doi.org/10.1007/978-3-319-50269-4_8
https://doi.org/10.1007/978-3-319-50269-4_8
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9.1 Preliminary Note. General Remarks
on Current Sources

Figure 9.1 serves to illustrate the general definition of the term cur-
rent source or generator. A pair of condenser plates or “electrodes” A
and C are connected through an ammeter. Between these electrodes
are charges of both signs; we can think of them as localized on charge
carriers. Two of them, a charge-carrier pair, are sketched in Fig. 9.1.
The distance between the positive and the negative charges, measured
along a horizontal line between the electrodes, can be increased by
some sort of charge-separation forces. During their motion (not only
when the charges reach the electrodes!), the ammeter indicates the
flow of a current. In order to move the charges, the charge-separation
forces must perform work. It is taken from a reservoir of mechanical,
thermal or chemical energy.

If the outer circuit between C and A is interrupted, no more charges
can flow between the plates. Then the charge-separation forces can
for a time continue to transfer more charges to the two electrodes and
thereby increase the voltage between C and A; but soon a limiting
voltage, often called the load-independent voltage, will be reached,
and it cannot be exceeded. The electric field between the plates it-
self produces forces on the charges between C and A and comes
into equilibrium with the charge-separation forces, preventing fur-
ther charging of the electrodes1.

A modern sewing machine can be characterized by two innovations:
the needle’s eye at the tip of the needle, and the use of two indepen-
dent threads. In a similar manner, the essential attributes of elec-
trical machines can be summarized in a few sentences. The un-
derlying physical principles and the decisive innovations are always

1 All of these charge-separation forces were called “electromotive forces” in the
past. However, that term was also used for the voltages that they produce, i.e. for
the load-independent voltage of the current source, and it was devalued by this
double usage. Besides that, it is much too long, so it is usually abbreviated as
‘E.M.F.’ In any case, one has to distinguish clearly between the charge-separation
forces and electrical quantities such as the voltage which results from the charge
separation.

159© Springer International Publishing AG 2018
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Figure 9.1 The definition of the term “cur-
rent source”. For demonstration experiments,
we use two ‘charge spoons’ (cf. Fig. 2.11)
as charge carriers (they are charged by an
influence machine).

C A

A
Electrons

simple. The great achievements of modern electrical engineering
are not a matter of physics, but rather of technology. Physical de-
scriptions of these technical applications should be limited to a brief
overview. In this chapter, we discuss the application of induction and
the LORENTZ force to electric generators and motors.

9.2 Inductive Current Sources,
Generators

We begin with the most important current sources in use today, gen-
erators which operate by induction. The charge-separation forces
which they employ are produced by induction processes. We defined
the terms ‘charge-separation forces’ and ‘current source’ on the basis
of Fig. 9.1. We repeat that picture here in Fig. 9.2 with two additions:
We adopt a viewpoint from within the ‘black box’ and suppose that it
contains a magnetic field, perpendicular to the plane of the page, and
also that the two electrodes C and A are connected by a conducting
block (shaded). We can now separate the charges within this conduc-
tor in two ways and give them velocities which propel them towards
the two electrodes:

1. We couldmove the conductor upwards in the direction of the arrow
with a velocity u, using it as a ‘slider’. This will cause a charge-
separation force, the LORENTZ force

F D Q.u � B/ (7.5)

to act on the charges Q and move them in opposite directions.

Figure 9.2 The definition of an “in-
ductive” current source (the magnetic
field points out of the page towards the
reader and is perpendicular to the plane
of the page; the current is flowing in the
conventional direction, C to �)

C Au

F F

B

I

Current Electrons
A
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2. We could change the magnetic flux density B of the magnetic
field which acts within the box. That would lead to an electric field
around the closed current loop in Fig. 9.2 (cf. Fig. 6.2 and Fig. 5.5),
and would move the charges between C and A by means of the forces
FC D QCE and F� D Q�E towards the electrodes.

As a rule, both of these processes are applied simultaneously in or-
der to use this device as a generator (current source) which produces
a voltage between C and A. We will explain this by taking as exam-
ples several types of generators:

a) The alternating-current generator with external magnetic poles
(Fig. 9.3). A coil J is rotated around an axle A in a magnetic field
produced in some way. The ends of the coil are attached to two slip
rings, which are electrically connected by two spring-loaded slip con-
tacts or “brushes” a and b to the output terminals of the machine. The
rotation of the coil represents the periodic repetition of a simple in-
duction experiment. The induced voltage is “alternating”. Its time
dependence can easily be registered using a voltmeter with a short
response time (ca. 1 s) if the rotation of the coil is not too fast. In the
special case of a homogeneous magnetic field and uniform rotation
(Fig. 9.4a), this voltage curve is sinusoidal. Its frequency 
 is equal
to the rotational frequency.C9.1 C9.1. A quantitative treat-

ment is given in Sect. 5.6, in
particular Eq. (5.10). More
details on alternating current
can be found in Sect. 10.3.

For practical applications, the coil has an iron core (Fig. 9.5). The
coil and the iron core together form the rotor. During their rotation,
not only does the magnetic flux ˚ through the rotor coil change, but
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Figure 9.4 a): The sinusoidal voltage curve of an alternating-current or
AC generator. b): The voltage curve of a direct-current generator with a sim-
ple coil rotor and a commutator (Fig. 9.6). The signs refer to the direction of
the electric field between the output terminals.
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N S SN

a b

Figure 9.5 The iron cores of the stator N-S (field coils or permanent magnet)
and of the rotor coils of a generator. At a, the magnetic flux ˚ and the flux
density B through the rotor are large, and at b, they are small.

Figure 9.6
A direct-current
generator with
a simple coil
rotor J, com-
mutator C, and
a permanent-
magnet stator

J
C

To the voltmeter

Figure 9.7 Cylindrical rotor
with two pairs of coils and com-
mutator

also the flux density B, the latter due to the effective variation of the
gap width (cf. Fig. 8.12).

b) The direct-current generator. Fig. 9.6 shows a demonstration
model, again as a shadow projection. The slip rings of the alternating-
current generator are now replaced by a simple switching device C
(the “commutator”). It reverses the connections between the ends
of the rotor coil and the output terminals of the generator after each
half rotation. This folds the negative portions of the curve shown in
Fig. 9.4a over to positive values; the voltage curve shown in Fig. 9.4b
results. Its voltage varies between zero and a maximum value, but its
sign always remains the same.

c) A direct-current generator with a cylindrical rotor. The arch-
shaped voltage curve in Fig. 9.4b can be “smoothed”. Instead of
a single coil J, one uses several, spaced at fixed angles relative to one
another. This results in a cylindrical rotor rather than a coil rotor.

Figure 9.8 The voltage curve (b)
of a cylindrical rotor with two pairs
of coils, and how it is produced
(superposition of a1 and a2)
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b

Time
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Figure 9.9 An old-fashioned direct-current generator with 2� 25 permanent
field magnets and a cylindrical rotor with 9 pairs of coils. At 8A and 12V,
it can bring a 100-watt incandescent lamp to full brightness. One has to pro-
vide a muscle power of 8 A�12V � 100W. The machine is “hard to crank”.
If the current is interrupted, however, it rotates freely, with hardly any resis-
tance. This experiment demonstrates clearly that we should appreciate the
energy content of a kilowatt hour and its commercial price (� 30 Eurocent;
see Comment C1.16.). As a demonstration object, the generator from an
automobile engine is also suitable. However, as shown in the schematic in
Fig. 9.10, it will require external excitation in the form of a current source for
its field coils FC.

Figure 9.7 shows a schematic, with two pairs of coils and a fourfold
commutator. In this example, two of the ‘arch’ curves from Fig. 9.4
(a1, a2) are superposed in an evident way. The result is the smoother
direct current shown in curve 9.8b. Figure 9.9 shows a model of
a direct-current generator with a cylindrical rotor which is suitable
for use in lecture demonstrations.

d) The direct-current dynamo. The generators mentioned so far ob-
tained their stator magnetic fields from permanent magnets. These
permanent magnets can be replaced by current-carrying coils, so-
called field coils (FC in Fig. 9.10). The current in the field coils may
be supplied by some sort of auxiliary current source. Figure 9.10
shows a schematic of this external excitation. However, the genera-

Figure 9.10
A direct-current
generator with
external excita-
tion

J C

FC

V
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tor itself can also supply the current for its own field coils. This is
the case with dynamos. Their principle is based on the presence of
iron in the coils. When they begin to rotate, the weak remanent mag-
netic field of the iron (Fig. 14.7) induces an initial voltage in the rotor
windings.

e) The alternating-current generator with internal poles. In the
external-pole generator as described in a), the magnetic field which
produces induction was fixed, and the rotor contained the induction
coil J. In the case of the internal-pole generator, the opposite is true:
The rotor consists of windings which carry a direct current. The
fixed induction coil J is mounted on the stator. In practice, there
are many coils which are arranged with radial symmetry. The rotor
is often in the form of a flywheel, with the field coils around its
circumference. The direct current for the field coils is provided by an
auxiliary generator mounted on the same shaft as the main generator.

f) Alternating-current generators with coil-free rotors. In all the
generators we have considered so far, the rotor, i.e. that part of the
generator which rotates, carried coils. It is however possible to vary
the magnetic flux within the induction coils J by means of a rotor
without windings. Rotors of this type have the advantage that they
are mechanically very stable and can therefore be operated at high
rotational frequencies. Figure 9.11 shows a machine of this type. It
is derived in a readily understandable manner from Fig. 8.12. The ro-
tor consists in this model of a narrow, rectangular iron bar E, which
causes the magnetic flux through the coils to vary, depending on its
orientation.

For technical applications, one often replaces the permanent field
magnets by electromagnets, i.e. coils carrying a direct current, with
iron cores. Furthermore, all the parts are arranged with radial sym-
metry and repeat themselves many times around the circumference
of the rotor and stator.

g) The telephone as an alternating-current generator. The essential
point in the design of the alternating-current generator with coil-free
rotors (Fig. 9.11) was the periodic variation of the iron-containing
magnetic circuit. The rotation can be replaced by a back-and-forth
oscillation (Fig. 9.12). M is an oscillating iron or steel diaphragm in
place of the moving rotor. This again is only a technical variation on
the experiment sketched in Fig. 9.11.

Figure 9.11 An
alternating-current gen-
erator with a bar-magnet
rotor E without windings.
It is the ‘closure bar’ of the
magnetic circuit formed by
the horseshoe magnet.

E

J

ba
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Figure 9.13 An antiquated telephone
as an alternating-current generator
(a rotating-coil ammeter is connected
through a rectifier D)C9.2 C9.2. The telephone shown

here is indeed quite anti-
quated, but even today, in
the age of mobile telephones
(“smartphones”), the same
principle is still used in tele-
phone receivers, loudspeakers
and even the little sound
converters in hearing aids.
Microphones, in contrast,
are increasingly based on
capacitance or piezoelectric
elements (see Sect. 3.10).

D

Figure 9.12 shows the schematic of a telephone transmitter. Here, it
is interesting only as an alternating-current generator. Its function is
to convert the mechanical energy of sound waves into electrical en-
ergy. To demonstrate this, we connect a telephone (Fig. 9.13) to an
alternating-current ammmeter. When we sing into the diaphragm, we
can observe weak currents of the order of 10�4 A. These alternating
currents have the rhythm of the human voice. In earlier times, the
audio currents were sent over long-distance telephone lines to the re-
ceiver telephone and converted there back to mechanical oscillations
(sound waves). Figure 9.14 shows a sketch of a typical arrangement.
Today, this setup is completely outmoded; human vocal cords are no
longer used as a motor to drive an alternating-current generator. In-
stead, the pressure of the sound waves from the voice simply controls
currents with the rhythm of speech (microphone)2.

S SN NJ J
Speaking Listening

Figure 9.14 An old-fashioned connection of two telephones for long-
distance calls (bar magnets instead of the horseshoe magnet as in Fig. 9.12)

2 This kind of “control” was already utilized by the inventor of electric telephony,
the teacher PHILIPP REIS (1861). The transmitter used by REIS was a micro-
phone in today’s terminology, with a vibrating contact made of platinum (instead
of carbon particles as introduced by D. E. HUGHES in 1878). The telephone re-
ceiver used by REIS would today be termed a “magnetostriction receiver”. In the
first publication by REIS (1861), he closes with the words: “Until a practical ap-
plication of the telephone becomes possible, there is still much work to be done.
However, for physics, it is already interesting, in that it opens up a whole new field
of research.”
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9.3 Electric Motors

All electric motors can in the end be reduced to the simple scheme
shown in Fig. 9.15. We imagine that within the box outlined in black,
there is a magnetic field with the flux density B perpendicular to the
plane of the page, and the conductorC-A is brought into this field. By
some means, we cause a current to flow through this conductor (for
example from a current source operating at the voltage U2). Then
the conductor contains moving charges Q. Their velocities are indi-
cated by the arrows uC and u�.C9.3C9.3. For details about the

velocities in Fig. 9.15, see
Sect. 8.2, in particular the
footnote near the end of that
section.

The magnetic field acts on these
charges by exerting LORENTZ forces F D Q.u�B/ (Eq. (7.5)). They
cause the charges to move in the direction of the arrow a, carrying
the conductor along with them (it is a simple ‘slider’). In practice,
a current-carrying coil is mounted as a “rotor” within the fixed mag-
netic field of the “stator”. The forces acting on the rotor produce
a torque.

We give here two examples:

a) The alternating-current synchronous motor. This motor is in prin-
ciple similar to an alternating-current (AC) generator. Figure 9.16
shows the same machine on the left as a generator and on the right as
a motor. The rotor coils of the generator are turning at a frequency 
;
thus it delivers alternating current with the same frequency 
. This
current passes through the connecting leads 1, 2 into the rotor coils
of the motor. There, it produces a torque which acts on the rotor
coils. The direction of rotation depends on the direction of the cur-
rent. Therefore, the torque must have the right direction at every
position of the rotor to ensure that it continues to rotate. This can be
guaranteed in a simple way:

Figure 9.15 A schematic definition of
an “electric motor” (B is perpendicu-
lar to the plane of the page, pointing
outwards towards the reader)

Electrons Current

a

C AB

U2

F+

u+ u–
F–

Generator Motor

1

2

N S

NS

Figure 9.16 An alternating-current synchronous motor connected to an
alternating-current generator with external poles
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In the rotor coils of the motor, the current produces a torque in the
direction of the arrow shown in Fig. 9.16 at the moment represented
there. After the time T D 1=
 (the rotational period), the current
has again exactly the same direction and strength. If the rotor is then
again at exactly the same position, then the torque will again act in
the required direction. We have only to start up the rotor with the
correct rotational frequency; thereafter, it will continue to rotate syn-
chronously with the alternating current from the generator.

For a demonstration experiment, we wind a string around the axle
of the motor in Fig. 9.16 and then pull it off, causing the rotor to
begin turning like a child’s spinning top. The alternating current from
the generator has a frequency of 
 D 50Hz and comes from the
power grid (i.e. it is produced by a large AC generator and passed
through the power transmission lines to our wall socket). In practice,
there are several convenient ways of synchronizing the rotor’s motion
with the current when the motor is switched on. Alternating-current
synchronous motors are widely used.

b) The direct-current motor is superficially similar to a DC gener-
ator. The simplified schematic of this motor is shown in Fig. 9.17.
Its torque turns the rotor around its axle and pulls its coils until the
plane of their windings is perpendicular to the page; then the direc-
tion of the current in the rotor coils is reversed, and so on after each
half rotation. The reversals are accomplished automatically by the
commutator C, which is rigidly attached to the rotor axle and acts as
a switching device through its slip contacts or “brushes”.

In this simple design, which is still used today, often in toys, the mo-
tor has a ‘dead point’. It will not start running if the plane of its rotor
coils is perpendicular to the magnetic field. In addition, its torque is
not constant during a rotation. These problems are avoided by the
cylindrical rotor. We already know its principle from DC genera-
tors (Fig. 9.7). Modern DC motors practically all use this design.
The fields of the stator are always produced by current-carrying coils
(electromagnets).

What determines the rotational frequency of the rotor? We repeat
the schematic of a motor from Fig. 9.15 here in Fig. 9.18, but with
two changes: First, for clarity, only the negative charges (electrons)
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Figure 9.18 The induction process in
the moving rotor of an electric motor.
(Is are insulators, and the direction of
B is perpendicular to the page, pointing
towards the reader).

Electrons Current

C A

A'

B u

a

Is Is
c

Ui

U2

C'

V

in the ‘rotor’ are shown. Second, we imagine that parallel to the
current-carrying conductor C-A (which represents the rotor), there
is a second conductor C0-A0 of equal length. The two conductors
are attached rigidly to each other, but are electrically insulated. The
electrodes C0 and A0 are connected to a voltmeter.

When the current source U2 is switched on, the conductor C-A (the
“rotor of the motor”) begins to move in the direction of the arrow a
(see Eq. (8.1)). This imparts a velocity in the direction of the arrow
to the electrons in the parallel conductor C0-A0. As a result of this
additional velocity in the magnetic field, a LORENTZ force acts on
the electrons in the direction c (that is, opposite to their velocity u
in the lower conductor!). This causes the voltmeter to register an
induced voltage Ui (cf. Sect. 7.3).

Nowwe suppose that the conductorsC0-A0 and C-A are fused into one
single conductor. Then we can see that the induced voltage Ui also
occurs in the current-carrying conductor C-A. During its motion, the
net voltage acting on the electrons in this conductor is U2 �Ui. In the
limit that Ui D U2, the current source can no longer deliver current
to the ‘rotor’. Then the acceleration due to the electromagnetic forces
no longer occurs, and the conductor (‘motor rotor’) moveswith a con-
stant limiting speed in the direction of the arrow a. How could we
increase this limiting speed? Either by increasing the voltage U2 of
the current source attached to the ‘rotor’, or by reducing the induced
opposing voltage Ui, i.e. by decreasing the magnetic flux density B
of the stator.

Both of these changes can be demonstrated on a motor with external
excitation (Fig. 9.19), preferably a typical motor with a power rating
of 1 kilowatt. When the current source is switched on with its voltage
U2, a strong ‘short-circuit current’ of many ampere flows through the
rotor3. The resistance Ri of the coils of the rotor is not large, and the
induced opposing voltage Ui which subtracts from the applied volt-

3 In large electric motors, the windings of the coils and their power leads are in
danger of overheating. This is prevented by using a “starter” (Ra in circuit b,
Fig. 9.19). This variable resistor is gradually switched off during the run-up to
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Figure 9.19 The induction process in the rotor of a direct-current motor with
external excitation, known in electrical engineering as a “LEONARD circuit”.
The voltage U2 of the current source can be varied in sign and magnitude in
order to change the rotational frequency and direction of the motor; e.g. for
driving a conveyor belt (the commutator is not shown here).

age U2 is still very small. It grows only as the rotor gains speed; then
the current through the rotor windings is controlled by the reduced
voltage U2 � Ui, and it approaches zero with increasing rotor speed.
The limit Ui D U2, when the rotor current drops to zero, can in prac-
tice never be reached; without current, the rotor can draw no more
energy from the current source. It would have to continue rotating
with only its stored kinetic energy. In reality, even when the rotor is
not moving an external load, there are unavoidable frictional losses
(and in addition JOULE heating in the windings). Therefore, even
without a load, the rotor requires a certain energy input to maintain
its rotational frequency. At least a small current must flow through its
windings. Loading the motor, e.g. having it lift a weight, or braking
the output shaft by manual friction, causes the current I2 in the rotor
windings to increase.

To conclude these experiments, we reduce the applied voltage U2 to
a very small value; it could be supplied for example by a 2-volt stor-
age battery. Then the rotor reaches its constant, limiting rotational
frequency at a very slow rotation rate. If we now increase its fre-
quency manually, the ammeter will show a reversal of the direction
of the current I2. The voltage Ui induced in the rotor windings has
then become greater than the voltage U2 of the current source. The
work performed by our hand is flowing as electrical energy back into
the storage battery; the motor, now serving as a generator, is recharg-
ing its battery!

This experiment is very striking. It shows us that the technically
so enormously important machines for converting electrical energy
into mechanical energy are based physically solely on the LORENTZ

force. In a generator, this force accelerates the electrons, produc-
ing an electric current and thereby converting mechanical work into
electrical energy. In an electric motor, the same force converts the

speed of the motor, thus always keeping the current strength limited to acceptable
values.
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electrical energy into mechanical work. In addition, it brakes the
electrons and thus limits the current in the rotor windings.

9.4 Three-Phase Motors for Alternating
Current

A magnetic field whose direction is rotating, for short a ‘rotating
field’, was already treated in some detail using Fig. 8.8. Such a ro-
tating field can be produced be superposing two phase-shifted alter-
nating currents. We make use of the general scheme shown in Vol. 1,
Sect. 4.5. Here, we recall the essential points in Fig. 9.20.

Figure 9.21 shows a shadow projection of an AC generator on the
left. Its rotor consists of two iron-core coils, J1 and J2. They are mu-
tually displaced by 90ı. The left-hand coil, which is just horizontal
in the figure, appears to be a circular disk due to the foreshortened
perspective. The ends of the two coils are connected to slip rings.
The spring contacts (“brushes”) a and b (and a0 and b0) collect the
two alternating currents. These have a phase shift of 90ı relative to
one another. They are carried to the right in the figure, to two magnet
coils that are mounted on an iron yoke perpendicular to each other
and are split in the center. In their common center space, a rotating
magnetic field is generated. To detect this field, an “induction rotor”

a

b

Figure 9.20 Production of circular mechanical vibrations by superposition
of two perpendicular linear vibrations of the same frequency. Two long leaf
springs a and b carry metal cards with slits parallel to the long axes of the
springs. The overlapping opening of the two slits allows light to pass through.
When projected, the spot of light follows a circular orbit when the springs
are vibrating with the same amplitude and with a phase lag of one-quarter
period ( OD 90ı) after appropriate excitation. The diagonal of this circular
orbit rotates like the spoke of a wheel. In a rotating-field motor, the direction
of the magnetic field is represented by the diagonal. (Video 9.1)

Video 9.1:
“Circular Vibrations”
http://tiny.cc/qcggoy

http://tiny.cc/qcggoy
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Figure 9.21 A demonstration model of a two-phase rotating-field generator and a rotating-field motor with an
iron disk as rotor (compare Fig. 8.8)

as shown in Fig. 8.8, e.g. in the form of a metal disk, is mounted on
an axle. Its axis of rotation is perpendicular to the plane of the page.
In the figure, T is the mount for the bearings of this axle. The crossed
magnet coils and the induction rotor together form a rotating-field
motor.

Rotating-field motors are extremely important for practical applica-
tions. They can be constructed with a nearly ideal simplicity for
power outputs of up to several kilowatt. They start up with a strong
torque, without a starter resistor or capacitor (initially, they have
a large slip (Sect. 8.3, Point 5)). Their rotational frequency is to
a great extent independent of their loading. Apart from the slip,
this rotational frequency is equal to the frequency of the alternating
current or, with suitable modifications, to an integral fraction of its
frequency.

We can distinguish between single-, two- and three-phase rotating-
field motors. Figure 9.21 shows a two-phase motor. It requires four
lead wires and is seldom used today.

A three-phase motor with so-called “three-phase current”: Imagine
that in Fig. 9.21, there were three rotor winding coils J, spaced at
120ı intervals around the rotor axle. Correspondingly, in the right-
hand part of Fig. 9.21, there would be three stator coils oriented at
120ı intervals around the yoke. Then with three alternating currents,
shifted by 120ı on the time axis relative to each other, we would like-
wise obtain a rotating field or a circularly-polarized magnetic field.
This would require six lead wires, but with a clever arrangement, two
each can be connected in pairs so that only three wires are necessary.
One can see these three wires in long-distance transmission lines.C9.4 C9.4. For a discussion of

three-phase electrical power,
see for example https://en.
wikipedia.org/wiki/Three-
phase_electric_power.

The single-phase motor requires only two lead wires; it is fed with
normal alternating current. The second, phase-shifted AC current
which is required to generate a rotating field is produced within the
motor itself by making use of some technical tricks. It must be phase
shifted by 90ı relative to the first AC current. The principle of this
design will be explained later in Fig. 10.13.

https://en.wikipedia.org/wiki/Three-phase_electric_power
https://en.wikipedia.org/wiki/Three-phase_electric_power
https://en.wikipedia.org/wiki/Three-phase_electric_power
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10.1 Self-Inductance and
the Inductance L

Self-inductance1 refers to a special form of induction processes.
Knowledge of this phenomenon is of great importance for a modern
understanding of electromagnetism.

In demonstrating induction phenomena, we used among others the
experimental setup sketched in Fig. 10.1. The current-carrying coil
FC produces a magnetic field. A change in this field, caused for ex-
ample by interrupting the current through the coil, induces a voltage
impulse in the induction coil J, measured e.g. in volt second.

Now, the magnetic field penetrates not only the induction coil J, but
also the field coil FC itself. Therefore, any change in the field will
also induce voltages in the field coil. This is called self-inductance.
In self-inductance, the time-varying magnetic field induces a voltage
in the very coils which produce it.

Another derivation: Suppose that the field and induction coils in Fig. 10.1
are wound parallel on the same coil form, i.e. with the same dimensions.
Then the two parallel wires could be fused together after winding in
a ‘thought experiment’. The two coils would become one! (Compare
Fig. 9.18 and its explanation).

Figure 10.1 Schematic of an induction ex-
periment

J

FC

S
G

1 Discovered by JOSEPHHENRY,1832 (a watchmaker who later became professor
of physics at Princeton University).
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V

2 
V

Figure 10.2 Demonstration of the voltage impulse resulting from self-inductance; at left, using a voltmeter;
at the right, with a small light bulb (the inductance L of the coil is a few tenths of a henry (V s/A)). The time
dependence of the voltage impulse can be displayed with an oscilloscope (Fig. 10.3).

To demonstrate self-inductance, we use the setup shown in Fig. 10.2:
a wire coil with around 300 turns in its windings. To increase the
magnitude of the voltage impulses, the coil is wound around a closed,
rectangular iron core (‘yoke’).C10.1C10.1. See also Fig. 8.12.

The effects of ferromagnetic
materials on magnetic fields
will be treated in more detail
in Chap. 14.

The ends of the coil are connected
to a storage battery and, in parallel, a rotating-coil voltmeter. The
voltmeter initially indicates the output voltage of 2V from the storage
battery. When we interrupt the current by opening the switch, the
magnetic field decays rapidly. At the same time, the voltmeter shows
a strong impulse deflection of up to ca. 20V. The voltage thus attains
briefly a much higher value than the original voltage that was applied
to the coil, as a result of its self-inductance (compare Fig. 10.3). We
could also replace the voltmeter by a 6-volt light bulb (Fig. 10.2,
right). Its filament just glows weakly with a dull red light as long
as only the battery voltage is present; but on opening the switch, we
see it flash brightly to white heat: Self-inductance releases energy,
visible throughout the lecture hall, and it can only have been stored
in the magnetic field of the coil.

According to the law of induction (e.g. Eq. (5.6)), the voltage impulseR
U dt induced in a coil depends on two factors: First, the change in

the magnetic field, that is �H (or �B), and second, the dimensions
and form of the coil. �H depends on �I, the change in the current

Figure 10.3 A voltage impulse due to
self-inductance

0 2
10–4 s

3

250 V
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in our first discussion of in-
duction, we here initially ig-
nore the question of the sign
in treating self-inductance.
Thus, the equations in this
section are all to be under-
stood as giving magnitudes
only. The signs will be dealt
with in the following section.

Z
U dt D L�I : (10.1)

The proportionality constant L is called the inductance. We thus de-
fine the

Inductance L D Induced voltage impulse

Current change�I
: (10.2)

The unit of this quantity is found to be 1V s/A, termed 1 henry (H)
or, equivalently, 1Wb/A (weber per ampere).

The inductance is easy to calculate for a long, empty coil (solenoid)
with a homogeneous magnetic field: We first consider the solenoid to
be a field coil; it produces the field strength

H D NI

l
: (4.1)

The change�H in this field then causes the induced voltage impulse:

Z
U dt D �0NJA

N�I

l
: (5.1)

NJ is the number of turns in the windings of the inductance coil; here,
it is the same as N, the number of turns in the field coil. Then we find

Z
U dt D �0N2A

l
�I : (10.3)

Comparison to Eq. (10.1) yields the inductance L of the solenoid,
which we were seeking:

L D �0N2A

l
: (10.4)

10.2 The Inertia of the Magnetic Field
as a Result of Self-Inductance

In demonstrating self-inductance, we have thus far ignored the sign
of the induced voltage impulse. We now take it into account, which
will lead us to a deeper understanding of the phenomenon of self-
inductance.

We repeat the experiment as shown in Fig. 10.4. In the left-hand
image, the voltmeter first indicates the output voltage of the battery
(2V) as a deflection to the left. The small fraction of the electrons
which flows through the voltmeter is moving in the direction of the
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Figure 10.4 The inertia
of the electric current in
a coil (the arrows indicate
the direction of flow of the
electrons) a

V V

curved arrow. In the right-hand image, the battery has just been
switched off. The large impulse deflection of the voltmeter goes to
the right on its scale. The current through the voltmeter it thus now
flowing in the opposite direction. Therefore, the current through the
coil must also continue to flow for a time in the original direction even
without an external current source, and this causes negative charges
to collect at point a. The current and its resulting magnetic field ex-
hibit inertia. They behave in an analogous manner to a massive body
in motion, or a rotating flywheel.

We briefly recall an example of mechanical inertia: In Fig. 10.5, at left,
we see a current of water moving around a closed circuit of piping, driven
by the pump P. The Hg manometer between the points a and b indicates
a pressure drop to the left, corresponding to the direction of flow and the re-
sistance (friction) in the pipes. In the right-hand image, the pump has been
switched out of the circuit by closing the valve H. Due to its inertia, the
water continues to flow for a time in the direction of the arrow, so that the
manometer now shows a strong deflection to the right. This principle was
used to construct a technical application, the water lifting device known
historically as the “hydraulic ram” (or “hydram”) (J.M. MONTGOLFIER,
1796).

A moving body or a flywheel show their inertia not only when their
motion is slowed by braking, but also when they are initially set in
motion. This process also requires a finite time. The same is true

a b

H
H

P

Figure 10.5 The inertia of a current of water in a pipe circuit
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portant and striking experiment (Fig. 10.6). The voltage U is again
supplied by a storage battery (2V). The ammeter A is a rotating-coil
instrument with a fast response time (less than 1 s). The large coil,
wound with thick wires, surrounds a closed iron yoke (cf. the scale
drawing). When the switch 1 is closed, the pointer of the amme-
ter immediately starts to move; but it advances only slowly. After
a minute, it is still creeping visibly upwards. Only after 1–1/2 min-
utes have the current and its magnetic field reached their full values;
this demonstrates their considerable inertia.

After the maximum values of the current and the field have been at-
tained, we short-circuit the battery with switch 2 and immediately
take it out of the circuit by opening switch 1. We again can observe
the inertia of the current and its magnetic field. Even after a minute,
the ammeter is still showing a clear deflection from zero. These

“These experiments are al-
ways rather surprising. We
normally associate electri-
cal processes in everyday
life with instantaneous,
momentary or timeless phe-
nomena.”

experiments are always rather surprising. We normally associate
electrical processes in everyday life with instantaneous, momentary
or timeless phenomena.

We have described this fundamental fact, the inertia of currents and
their magnetic fields, intentionally here from a purely empirical point
of view. Retrospectively, we can see that it is a simple result of
LENZ’s law: Let us take the second case as an example. There,
we short-circuited the current source and then removed it from the
circuit. In an ideal conductor, without electrical resistance, the cur-
rent would simply continue to flow indefinitely. In fact, however, the
best commercially-available wires have a finite resistance R, so that
the current is consumed by quasi-frictional forces (JOULE heating,
Sect. 1.12).C10.3

C10.3. An exception to this
rule is exhibited by supercon-
ductors. In superconducting
wires, induced currents
can be maintained and ob-
served for many years. The
phenomenon of superconduc-
tivity is found (at sufficiently
low temperatures) in most
metals and a large number
of compounds. It is charac-
terized by the fact that below
a certain temperature TC,
the electrical resistance of
the material becomes zero.
POHL described this in earlier
editions. For a basic intro-
duction to the subject, see
W. Buckel and R. Kleiner,
“Superconductivity, Funda-
mentals and Applications”,
2nd edition, Wiley-VHC,
Weinheim (2004).

This gradual reduction of the current is the cause of the induction
process. The induced voltage must therefore oppose the decrease of
the current, according to LENZ’s law. A portion of the kinetic energy
lost by the electrons through “friction” is replaced at the cost of the
magnetic field energy, thus delaying the reduction of the current.

Figure 10.6 Switching on and
off of a magnetic field in a coil
requires some time (Video 10.1)

Video 10.1:
“The Inertia of a Magnetic
Field”
http://tiny.cc/wcggoy
See Comment C10.5.

40 cm

60 cm
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http://tiny.cc/wcggoy
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Figure 10.7 The derivation of
Eq. (10.7)

L
R

SU0

For a quantitative description of the process, taking the sign found
experimentally correctly into account, we rewrite Eq. (10.3):

Z
U dt D �L .I2 � I1/ ; (10.5)

or, in differential form,

U D �L
dI

dt
: (10.6)

The signs correspond to LENZ’s law (Sect. 8.3); i.e. when the current
is increasing (I2 > I1 or dI=dt positive), the induced voltage opposes
the current, while a decreasing current (I2 < I1 or dI=dt negative) is
accompanied by a voltage in the same direction as the current. See
also Sect. 5.6.

For further considerations, we make use of the series circuit sketched
in Fig. 10.7, with the usual trick that we draw the inductance L and
the resistance R as if they were spatially separated (although in fact
they are both properties of the same coil).

After the switch S is closed, the applied voltage U0 drops across L
and R; we thus haveC10.4C10.4. The voltage UL com-

pensates the voltage U in-
duced in the coil:

UL D �U D L
dI

dt
(see Sect. 10.4).

U0 D UL C UR D L
dI

dt
C RI : (10.7)

The solution of this differential equation is given by

I D U0

R

�
1 � e�R

L t
�
; (10.8)

as one can readily convince oneself by substituting the solution (10.8)
into Eq. (10.7). The time �r D L=R is called the relaxation time. The
currentU0=R D Imax is the saturation value reached only after several
relaxation times.

If we now short-circuit the battery and remove it from the circuit, so
that U0 D 0, the solution of Eq. (10.7) becomes

I D Imaxe
� R
L t : (10.9)
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Figure 10.8 The time dependence of the current accompanying the increase
and decrease of a magnetic field (Example: L D 10�1 V s/A, R D 102�,
�r D 10�3 s (see also Fig. 2.51)).

Equations (10.8) and (10.9) are shown graphically in Fig. 10.8.C10.5 C10.5. For the derivation of
Eqns. (10.8) and (10.9), we
have assumed that the coil
was empty (no iron core!).
In the experiment described
in Fig. 10.6 (Video 10.1),
this is however not the case.
In that experiment, the coil
was mounted on a closed
iron yoke. As a result, the
rise and subsequent fall of
the current were delayed
considerably. The strong
effect of the iron core in the
coil is especially clear at the
end of the video, when after
reversing the current, its rise
is much slower than at the
beginning of the experiment.
The reason for this is the
reversal of the magnetization
of the iron (see Chap. 14,
especially Fig. 14.7).

The energyW stored in the magnetic field can be calculated from the
JOULE heating within the resistor R after switching off the battery (at
the time t0). We find (from Sect. 1.12):

dW

dt
D I2R D

�
U0

R

�2

R e� 2R
L t
: (10.10)

Integration gives

W D U2
0

R

1Z
t0

e� 2R
L tdt D 1

2
LI2max I (10.11)

that is, in a coil of inductance L carrying a current I, the stored mag-
netic energy is

W D 1

2
LI2 (10.12)

.e.g.W in W s; L in V s/A; I in A/:

Making use of Eqns. (10.4) and (4.1), we obtain from this the expres-
sion for the energy stored in a magnetic field of volume V that we
had previously found in Chap. 8:

Wmagn D �0

2
H2V D 1

2�0
B2V : (8.28)

The inertia of the magnetic field plays a decisive role in all applica-
tions of electric currents where their strengths and directions vary.

Qualitatively, we can demonstrate two significant effects by making
use of a periodically interrupted direct current (DC). In Fig. 10.9, the
current from a 2-volt storage battery divides along two branches of
the circuit, each with a light bulb. The left-hand branch contains in
addition a coil with an iron core, while the right-hand branch has only
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Figure 10.9 A demonstration of induc-
tive resistance or inductive reactance
using a periodically interrupted direct
current L R

S

a short piece of wire with the same resistance as the coil (ca. 0.3�).
With a constant current strength, both branches are equivalent and
both light bulbs glow with the same brightness. When the switch S
is periodically opened and closed, the situation is quite different (the
switch is briefly opened at time intervals of T , 1=T D frequency 
):

1. With a low frequency, both lamps still show the same brightness,
but the left-hand lamp is delayed by about one second relative to the
right-hand one. Its current lags behind the voltage. It requires nearly
a second to build up its magnetic field.

2. As the frequency is increased, the time is no longer sufficient for
the magnetic field to reach its full value. The left-hand lamp becomes
dimmer and dimmer. At frequencies above 1Hz, it stays quite dark.
Thus, the coil has an inductive resistance, and it increases with in-
creasing frequency.C10.6C10.6. This is a model of

a so-called low-pass filter,
which allows only low fre-
quencies to pass through.

In these experiments with periodically-interrupted direct current, all
of the energy provided by the current source to build up the magnetic
field is lost. In Fig. 10.9, when the switch is opened, the “sluggish”
current in the coil flows through both lamps and converts the mag-
netic field energy there into heat. (Without the wire of resistance R
and the right-hand lamp, this would occur instead in the form of an
electric arc between the switch contacts (switch arcing)!). We now
turn to sinusoidal (“alternating”) currents.

10.3 Alternating Current:
A Quantitative Discussion

For a quantitative treatment of alternating current (AC), we choose
the simplest form, i.e. a sinusoidal waveform. Alternating currents of
more complex forms can always be constructed by superposing sinu-
soidal waveforms. The formalism of FOURIER analysis, discussed in
Vol. 1, Sect. 11.3, can be applied quite generally to the description of
alternating currents.

For sinusoidal alternating currents and voltages, we have

I D I0 sin!t and U D U0 sin!t : (10.13)
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current of a sinusoidal alternating current I
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I2
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I2
eff eff

Ieff

Area A= I2dt
0

T

I2  T

0.7 I0

Here, I and U are the momentary values (at time t) of the current and
the voltage, I0 and U0 are their amplitudes, that is their maximum
values, and ! D 2�
 is their circular frequency (cf. Vol. 1, Sect. 4.3).

The momentary values of the current and the voltage can be observed
and measured using instruments with a sufficiently short response
time, for example oscilloscopes. In general, one does not measure
or quote these momentary values, but rather the effective values, as
their time-averaged values are called. The time-averaged value over
a sine function would of course simply be equal to zero. Therefore,
one calculates the average values of the squares of the time functions
and defines their effective values by means of the equations

Ieff D
2
4 1

T

TZ
0

I2 dt

3
5

1=2

and Ueff D
2
4 1

T

TZ
0

U2 dt

3
5

1=2

(10.14)

.T D period D 1=
/:

They are illustrated in Fig. 10.10. These effective values are also
called “root-mean-square” (rms) values after their calculation proce-
dure (Eq. (10.14)). For sinusoidal currents and voltages, one finds

Ieff D I0p
2

and Ueff D U0p
2
: (10.15)

The effective values of the current and the voltage are thus propor-
tional to their amplitudes. This definition corresponds to the values
of the direct current and voltage which would give the same average
JOULE heating in an OHMic resistor.
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10.4 Coils in Alternating-Current
Circuits

The effects of self-inductance in a single cable can often be neglected.
In such an “inductance-free cable”, current and voltage would have
the same phase. At every moment, the voltage as given by OHM’s law
(for short the “OHMic voltage”UR D IR) is sufficient to maintain the
current I along the conductors.

However, it is frequently not possible to neglect the self-inductance
of the conductor in alternating-current circuits, especially when they
contain coils. Then, to maintain the current, in addition to the OHMic
voltage UR, an additional inductive voltage UL is required to com-
pensate the induced voltage Uind. From Eq. (10.6), we find

UL D �Uind D L
dI

dt
: (10.16)

In this case, one draws the coil in a circuit diagram in two parts,
for example as in Fig. 10.11: In the upper part of the circuit, only the
OHMic resistance determines the voltage (middle curve), while in the
lower part (bottom curve), only the self-inductance acts.

For a sinusoidal alternating current, Eq. (10.16) takes the form

UL D L!I0 cos!t D L!I0 sin.!t C 90ı/ : (10.17)

Then the amplitude of the inductive voltage is given by

UL;0 D I0!L D I02�
L (10.18)

with the significant new result that the voltage amplitude UL;0 leads
the current amplitude I0 by 90ı on the time axis. The two voltage

U

V

V

VU

φ=+71°

φ=+90°

φ=+0°UR

UL

Figure 10.11 A series circuit consisting of a conductor with only OHMic
resistance (above and middle curve) and a coil with only inductive resistance
(below and bottom curve). The amplitude ratios and phase angles are similar
to Fig. 10.12. The voltage UR has the same phase as the current. (Numerical
example: 
 D 50Hz, L=R D 9:2 � 10�3 s). The top curve shows the overall
voltage U.t/.
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Iamplitudes required to maintain the current amplitude I0, i.e. UR;0

andUL;0, must thus be combined to give a resultant voltage amplitude
U0.C10.7 C10.7. For this “com-

bination” of the voltage
amplitudes, the func-
tions UR D UR;0 sin!t
and UL D UL;0 cos!t
(Eq. (10.17)) must be added.
The result is again a har-
monic function of the same
period, but shifted by a phase
angle ', i.e. it leads the func-
tion UR (Eq. (10.20)). The
resulting amplitude can be
found in Eq. (10.19). These
results can be most clearly
shown in a so-called phasor
diagram (or vector diagram)
as in Fig. 10.12. This has
the advantage that other
formulas for AC resistances
can be most simply derived
mathematically.

This can be represented graphically in a so-called phasor diagram or
vector diagram as in Fig. 10.12. For the amplitude of the resultant
voltage, we find

U0 D I0
p
R2 C .!L/2 : (10.19)

It leads the current amplitude I0 in time by the phase angle '. The
phase angle is given by

tan ' D !L

R
: (10.20)

The quotient

U0

I0
D Z D

p
R2 C .!L/2 (10.21)

is called the overall AC resistance or impedance Z of the circuit. It is
not a constant for alternating currents, but rather it increases with the
AC frequency 
.

When the product !L is large, the impedance Z can be orders of
magnitude greater than the constant OHMic DC resistance R, as may
be seen from Eq. (10.21). In such cases, R can be neglected in
Eq. (10.21) relative to !L. Then, only the inductive or AC resistance
(also referred to as the inductive reactance) remains:

UL;0

I0
D !L : (10.22)

To summarize: The voltage

U D U0 sin!t (10.23)

Figure 10.12 The calculation of the AC resistance or
impedance from a “phasor diagram”C10.8

C10.8. In a phasor diagram,
the amplitudes of the sinu-
soidal voltages (or currents)
are represented by the lengths
of the lines (vectors). ' is
the phase angle relative to
a quantity which is the same
in all parts of the AC cir-
cuit. In Fig. 10.12, this is
the current, and ' is the an-
gle defined by Eq. (10.24);
here, it thus indicates by how
much the voltage is leading
the current. For calculations,
the lines or ‘phasors’ in the
diagrams can be treated like
vectors. See also Comment
C10.10.

U
L

,0
=

I 0ω
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2
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√

√
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R1

R2

Figure 10.13 Demonstration of a phase shift by producing a rotating field
(current � 10�1 A. R1 and R2 are incandescent lamps used as ballast resistors
instead of rheostats and ammeters, � is an AC current source, 
 D 50Hz)
(Video 10.2)

Video 10.2:
“Rotating Magnetic Field”
http://tiny.cc/8cggoy
First, a “null experiment” is
shown: An OHMic resistor
in place of the coil pro-
duces no motion of the
iron disk. When the resis-
tor is then exchanged for
a coil or choke (inductance
L � 1H), the disk begins
to rotate to the right: The B
field rotates in a clockwise
sense. If a condenser (ca-
pacitance C D 10�F, see
Sect. 10.5) is inserted instead
of the coil, the disk rotates,
like the magnetic field, in
a counter-clockwise sense.
The incandescent lamps used
as ballast resistors are of lim-
ited usefulness as ammeters.
The different impedances ex-
plain the different rotational
frequencies that are observed
in the two experiments.

produces a current

I D I0 sin.!t � '/ (10.24)

with I0 D U0=Z. In the circuit shown in Fig. 10.11, the phase angle
' (Eq. (10.20) and Fig. 10.12) is positive.

The phase shift ' between the momentary values of alternating cur-
rent and voltage is a favorite subject for fascinating demonstration
experiments. A convenient setup for demonstrating the phase shift
is shown in Fig. 10.13. The current from an AC current source (�)
is divided equally between two branches which each contain a pair
of coils; these are mounted perpendicular to each other. One of these
current branches also contains a coil with a large inductance. As a re-
sult of the phase shift, a rotating magnetic field is produced (Sect. 9.4,
Fig. 9.21). A metal disk rotates in this field as rotor. (A practi-
cal application of this principle is found in the widely-used so-called
“split-pole motors”C10.9)C10.9. The split poles of

an AC magnet each carry
a copper ring on one side
(“shaded poles”). This delays
changes in the magnetic flux.
A rotating magnetic field
results.

.

10.5 Condensers in Alternating-Current
Circuits

In the experiment shown in Fig. 10.13, we exchange the coil for
a condenser (C � 10�5 F). We again observe a rotating magnetic
field, but its sense of rotation is opposite to that observed with the
coil (Video 10.2). We can draw two conclusions from this. First: Al-
ternating current is not blocked by a condenser; it passes through as
a displacement current (Sect. 6.4). Second: Between the current and
the voltage, we again find a phase shift of 90ı, but now, the current
leads the voltage.

For a quantitative treatment, we assume a sinusoidal alternating volt-
age

U D U0 sin!t (10.25)

.! D 2�
 D circular frequency; 
 D mechanical frequency/:

http://tiny.cc/8cggoy
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a voltage U is applied to it, it carries a charge of Q D CU). Then at
every time t, we find for the charging or discharging current

I D dQ

dt
D C

dU

dt
: (10.26)

In this equation, dU=dt D !U0 cos!t D !U0 sin.!t C 90ı/, and
thus

I D C!U0 sin.!t C 90ı/ ; .' D �90ı; see Eq. (10.24)/ :
(10.27)

Therefore, for the amplitude of the current which is passing through
the condenser (the displacement current), we have

I0 D !CU0 D 2�
CU0 ; (10.28)

but with an important additional fact: The current leads the voltage
by 90ı (compare later to the schematic in Fig. 10.15). The quotient

U0

I0
D 1

!C
(10.29)

is the capacitive or AC resistance of the condenser, also called the
capacitive reactance.

Numerical example: 
 D 50Hz, C D 10�5 F, U0=I0 D 3:2 � 104 �.

10.6 Coils and Condensers in Series
in Alternating-Current Circuits

For a conductor (resistor) which has only OHMic resistance, we have:

UR;0 D I0R ; (1.2)

and for a conductor with only inductive resistance,

UL;0 D I0!L ; (10.18)

while for a condenser through which a displacement current I0 is
flowing, we find

UC;0 D I0
!C

(10.29)

.the index 0 again denotes the amplitudes/:
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U

V

V

V

V
U

a

b

φ=+53°

φ=+90°

φ=–90°

φ=+0°UR

UL

UC

Figure 10.14 A series circuit with a condenser, a coil and an OHMic resistor.
(Numerical example: 
 D 50Hz, L=R D 1:44 �10�2 s, 1=RC D 103 Hz. Note
that the voltage UR has the same phase as the current in this series circuit. In
the example shown, the current lags by 53° behind the applied voltage U.t/.)

When these three components are connected in series (Fig. 10.14),
the three voltages just mentioned add with their respective phases to
give the total voltage U0:

U0 D I0

s
R2 C

�
!L � 1

!C

�2

(10.30)

(Fig. 10.15). Relative to the current I0, it is phase shifted by the
phase angle '; and relative to the voltage UC across the condenser, it
is phase shifted by .'C 90ı/. We can find ' according to Fig. 10.15,
right side:

tan ' D !L � 1
!C

R
(10.31)

(see Eq. (10.24) for the definition of the phase angle '. A graph of .' C
90ı/ is given later in Fig. 11.18c).

For each pair of values of L and C, there is a special frequency 
0
at which the inductive resistance !L and the capacitive resistance
1=.!C/ become equal. When we set these two quantities equal, we
obtain the resonance frequency


0 D 1

2�
p
LC

: (10.32)

Experimentally, this “resonance of a series circuit” is demonstrated
in Fig. 10.16. The OHMic resistor R and the inductive resistance !L
are combined in a single coil (with an iron core). The partial volt-
ages .UR C UL/ and UC have larger amplitudes and effective values
than the total (applied) voltage U0. For this reason, one often speaks
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IFigure 10.15 The calculation of the

AC resistance of the series circuit in
Fig. 10.14
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Figure 10.16 An exam-
ple of voltage resonance
in a series circuit (
0 D
500Hz; the current source
is an AC power supply
with variable frequency
(signal generator); the coil
has a closed iron yoke, and
L � 37H, R D 1:1 � 104�.
A rotary variable con-
denser is used to adjust the
resonance frequency, with
Cmax � 3 � 10�9 F. Static
voltmeters (electrometers
E) are used (Sect. 1.6)).

(UL + UR)eff
= 300 V

Ueff = 300 V

v = 500 Hz

UC, eff
= 300 V

E E

E

Figure 10.17 The AC resistance
of the series circuit as a function
of the AC frequency (Eq. (10.30)).
(The experimental data are those in
Fig. 10.16, and  is the logarithmic
decrement (Vol. 1, Sect. 11.10); see
also Sect. 11.7).
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of a voltage resonance. At resonance in a series circuit, the overall
resistance U0=I0 has its minimum value (Fig. 10.17).

In every electrical circuit, due to its OHMic resistances R, electrical energy
is converted into heat. The power consumed in this way is PW D I2R.
Other losses can also occur, especially in iron-containing coils due to eddy
currents and magnetization reversals (Sect. 14.4). All the losses, i.e. the
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total power lost, is attributed to an effective resistance R0, which is larger
than the DC resistance. We thus define R0 D .

P PW/=I2. In the ideal
limiting case R0 D 0, the two voltages .UL C UR/ and UC would be phase
shifted relative to each other by exactly 180ı , and at resonance, both would
increase without limit (resonance catastrophe!).

10.7 Coils and Condensers in Parallel
in Alternating-Current Circuits

The resistor, the coil and the condenser can also be connected to-
gether in a parallel circuit (Fig. 10.18). Then we obtain quite dif-
ferent results for the amplitude U0 from that of the series circuit
(Eqns. (10.30) through (10.32)), by adding together the partial cur-
rents. We findC10.10C10.10. The mathematical

derivation of Eqns. (10.33)
and (10.34) can again be
carried out with the aid
of a phasor diagram, this
time however for the ampli-
tudes of the currents. An
equivalent method is the
complex-number formal-
ism. A compact introduc-
tion is given for example at
http://www.physics.byu.edu/
faculty/peatross/homework/
complex145.pdf .

U0 D I0

p
R2 C .!L/2

!C
q
R2 C .!L � 1

!C /
2
; (10.33)

and for the phase angle ' between U and I (its sign is as defined in
Eq. (10.24)),

tan ' D !L

R
.1 � !2LC/ � !RC : (10.34)

In the limit of very high frequencies (! ! 1), we have ' D � 90ı.
At resonance, that is for ' D 0, we have

! D !0

r
1 � R2C

L
; !0 D 1p

LC
: (10.35)

This equation is the same as Eq. (10.32) only in the special case that
R2C=L � 1 (which is however often fulfilled). Resonance can be
demonstrated experimentally with the circuit shown in Fig. 10.19.
Here, as in the series circuit, the OHMic resistance R and the induc-
tive resistance !L are again located in a single coil. The two partial
currents, i.e. the current IL flowing through the coil and the displace-
ment current IC passing through the condenser can have much greater
amplitudes and effective values than the overall current I0. Therefore,
one often speaks here of a current resonance.

Figure 10.18 A coil and an OHMic
resistor in series are connected in paral-
lel with a condenser. The voltages are
measured as effective values, or else
as momentary values with an oscillo-
scope.

U
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UL
UC

a

b

V
V

V
V

http://www.physics.byu.edu/faculty/peatross/homework/complex145.pdf
http://www.physics.byu.edu/faculty/peatross/homework/complex145.pdf
http://www.physics.byu.edu/faculty/peatross/homework/complex145.pdf
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IFigure 10.19 An example of a current

resonance in a parallel circuit (
 D
50Hz; a technical paper condenser was
used, with C D 3:7 � 10�6 F; R D 38�,
L D 2:7H. (The zig-zag symbol used
here refers to a coil which also has an
OHMic resistance.) (Exercises 10.10,
10.12).

U

I

a

b

IL IC

V

A

A A

Figure 10.20 The AC resistance
of a parallel circuit as a function
of the AC frequency (Eq. (10.33)).
(The experimental data are from
Fig. 10.19;  is the logarithmic
decrement (Vol. 1, Sect. 11.10); see
also Sect. 11.7) (Exercise 10.11).
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As a result of the losses mentioned in the fine print in Sect. 10.6, the current
amplitude I0 may become very small, but never zero. The phase difference
between IL and IC can approach the value 180ı arbitrarily closely, but never
reaches it.

At resonance, the overall resistance U0=I0 D Ueff=Ieff of the paral-
lel circuit has its maximum value (Fig. 10.20) (leading to the name
‘rejection circuit’).

10.8 Power in Alternating-Current
Circuits

For the power PW of any electric current, we have found PW D IU. In
the case of alternating current, both I and U are periodic functions
of the time. Furthermore, in general there is a phase difference '
between them. In the simplest case, i.e. with sinusoidal alternating
currents and voltages, Eqns. (10.23) and (10.24) apply, that is, the
power is given by

PW D IU D I0U0 sin!t sin.!t � '/ ; (10.36)

or, after an elementary rearrangement,

PW D 1

2
I0U0Œcos' � cos.2!t � '/� : (10.37)

In words: The power PW of an AC circuit consists of two parts: the
first, 1

2 I0U0 cos' D IeffUeff cos', is constant over time. The second
varies periodically with time, at the circular frequency 2!.
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Here is an example which should already be familiar: An AC cir-
cuit contains a coil of inductance L. During the first quarter of an
oscillation period, a magnetic field is produced in the coil. During
the second quarter-period, the magnetic field again decays, and its
energy 1

2LI
2
0 is given back to the AC current source. During the third

and fourth quarter-periods, the same cycle repeats itself but with the
opposite signs for the current and the magnetic field. This second
part leads to zero power summed over the full oscillation period.

It is therefore usual to distinguish two components of the current,
known as the active current, with the amplitude I0 cos', and the idle
current (or reactive current), with the amplitude I0 sin '.C10.11C10.11. The reactive (idle)

current has a phase shift of
90ı relative to the voltage;
the active current is in phase
with the voltage. An appli-
cation is described also in
Sect. 13.11.

The
ratio

Active current

Reactive current
D 1

tan '
(10.38)

is called the loss factor of this circuit. An AC generator must be
able to produce a constant active power and simultaneously to “lend”
a reactive power during every second quarter-period. Reactive power
does not produce losses in this view, but it requires a large amount of
“operating capital”.

10.9 Transformers and Inductances
(Chokes)

Knowledge of the self-inductance as a form of inertia opens up for
us an understanding of the important topic of transformers or current
and voltage converters for alternating current.

A transformer consists of two coils which encompass the same mag-
netic field (Fig. 10.21). One of them, the field or primary coil, has
Np turns in its windings. Its ends are connected to the AC current
source. Its DC or OHMic resistance is negligible. Then the inductive
voltage UL;0 D I0!L acts between its terminals (Eq. (10.18)). The
magnetic field which is associated with the current I passes not only
through the primary coil, but also through the other coil, the induc-
tion or secondary coil, and in the Ns turns of that coil’s windings, the
secondary voltage Us is induced. With the same magnetic field in
both coils and no-load operation, according to the law of induction

Figure 10.21 A current transformer for
producing large currents
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the two voltages have the same ratio as the numbers of turns of the
coils, i.e. the transformer equation holds (Exercise 10.13):

Us;0=Up;0 D Ns=Np : (10.39)

Therefore, by the proper choice of Ns=Np, i.e. by choosing the trans-
fer ratio, one can obtain almost any arbitrary increase or decrease
of the voltage amplitudes. Transformers providing many hundred
kV are operated today for a variety of research and technical pur-
poses. Their main application, however, is in today’s long-distance
power transmission, which would be unthinkable without multiple
voltage conversions. The consumer should receive voltages of at
most a few hundred volts; apart from gross negligence, such volt-
ages are not dangerous to life. The long-distance transmission lines,
in contrast, must transport the electrical energy at high voltages and
relatively low currents (e.g. 104 kW at 105 V and 102 A). Otherwise,
the cross-sections of the wires would have to be much too large and
the transmission lines would therefore be too heavy and too expen-
sive.

Voltage reduction in the secondary circuit is accompanied by an in-
crease in current strength. Low-voltage transformers are constructed
with only a few turns in their secondary windings (e.g. 2 as shown in
Fig. 10.21). They can be used to routinely provide currents of several
thousand ampere for demonstration experiments. Technologically,
this principle is used to construct induction furnaces for melting steel
etc. The secondary circuit in this case consists of only a single loop.
It can take the form of a circular trough lined with high-temperature
resistant stone. The metal to be melted is placed in the trough. The
induced currents may reach several tens of kA.

A special type of transformers are called “induction coils”. Their
primary coils (terminals A and C in Fig. 10.22) and secondary coils
(terminals S) are coaxial and contain an iron core (not as a closed
magnetic circuit); an example is shown in Fig. 10.22. Figure 10.23
shows a spark discharge from such a coil.

In the usual AC transformers, the necessary periodic variation of the mag-
netic field is produced by the AC current in the primary circuit. Induction
coils instead operate with a periodically interrupted direct current. The
periodic interruption can be provided by one of the numerous automatic
switches developed for the purpose. The simplest types make use of toggle
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Figure 10.23 The spark discharge from an induction coil, about 40 cm long
between the terminals (S in Fig. 10.22). The coil is equipped with a mechan-
ical interrupter, and the exposure time for this photo was 1 second.

Pb
Co

Pt

R 100 V

Figure 10.24 The production of toggle switching using an electrolytic inter-
rupter, after A. WEHNELT. A positive electrode made of a 1mm thick and
10mm long platinum wire is mounted at the end of a glass nozzle in a dilute
sulfuric acid solution. When a current flows, the wire is heated until it glows
and surrounds itself with an insulating layer of gas, interrupting the current
flow. This induces a voltage impulse in the coil Co, which destroys the gas
layer, etc. The frequency of the toggle switching (with a fixed coil induc-
tance) can be adjusted over a wide frequency range by varying the resistance
R.

action. As an example, we mention the arrangement described in Vol. 1,
Fig. 11.5 (WAGNER’s hammer or vibrator, using the principle of a door-
bell). A notable development is the production of toggle switching without
moving parts (Fig. 10.24):

Exercises

10.1 Calculate the inductance L of one of the coils used in
Video 6.1 as a “magnetic voltage meter”. Their characteristics
are: Number of turns in the windings N D 4300, length l D 40 cm
and diameter 2r D 11 cm. (Sect. 10.1)

10.2 A wire is bent into a circular ring. Its inductance is L1. Deter-
mine the inductance LN ifN similar rings were collected into a bundle
and all of them were carrying the same current I. (Sect. 10.1)

10.3 The coil in Fig. 10.7 has an inductance of L D 50H. How
large must one make the resistance R so that the current reaches one-
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(Sect. 10.2)

10.4 An AC voltage with a frequency of 
 D 100Hz and an ef-
fective value of Ueff D 150V is connected to a coil with the induc-
tance L D 0:3H. Find the effective value of the resulting current Ieff.
(Sect. 10.4)

10.5 An AC generator is connected to a series circuit with a resis-
tor of R D 13:7� and a coil of inductance L D 50mH. The effective
value of the current is found to be Ieff D 12A. Determine the fre-
quency 
 of the alternating current. (Sect. 10.4)

10.6 An AC generator operating at a frequency of 
 D 50Hz and
producing a voltage of effective value Ueff D 80V is connected to
a circuit with a resistance of R D 10�. In order to limit the current
to an effective value of Ieff D 2A, a coil of inductance L is connected
in series with the resistor. Find the required value of L. (Sect. 10.4)

10.7 In an AC circuit, a resistor with the value R D 10� and a coil
of inductance L D 100mH are connected in series. What value must
the frequency 
 have, in order that an increase in L by 1%would lead
to an increase in the impedance by the same amount as a decrease in
R by 50% would decrease it? (Sect. 10.4)

10.8 An AC current of frequency 
 D 50Hz is flowing through
a copper wire with an OHMic resistance of R D 5� and a negligible
inductance. By winding it into a coil, the impedance of the wire is
to be increased tenfold. What inductance L must the resulting coil
have? (Sect. 10.4)

10.9 A coil of inductance L and an OHMic resistance R is con-
nected in series with a condenser of capacitance C (see Fig. 10.14).
What is the relation between L and C that must hold in order for the
impedance Z of the circuit to be equal to R, i.e. the current and voltage
in the circuit are in phase? The frequency is 
 D 1 kHz. (Sect. 10.6)

10.10 In this and the following two exercises, we investigate the ex-
periment described in Figs. 10.19 and 10.20. The AC current source
which is connected to the parallel circuit has an output voltage of
U D U0 sin!t with U0 D 73V. The frequency 
 and the values of C,
L and R are given in Fig. 10.19.

a) Find the voltages UL;0 and UR;0 in the left-hand branch of the cir-
cuit, and use a phasor diagram (Fig. 10.12) to find the impedance ZRL
and the phase angle '1 between the current IRL and the voltage U.
The definition of ' is given in Eqns. (10.23) and (10.24).

b) Determine the current amplitudes IRL;0 and IC;0 in both branches
of the parallel circuit. Draw these amplitudes and their phase angles
relative to the applied voltage amplitude U0 in a phasor diagram (the
vector representing U0 can be drawn in pointing to the right and par-
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allel to the x-axis). From this diagram, find the amplitude I0 and its
phase angle '2 relative to U0.

c) Compare the impedance found above and the phase angle '2 to the
values found using Eqns. (10.33) and (10.34). (Sect. 10.7)

10.11

Find the logarithmic decrement  (sect. 11.7) of the parallel circuit
in Fig. 10.19, and compare the result to the value given in Fig. 10.20.
(Sect. 10.7)

10.12

a) From the value of I0 found in Exercise 10.10, find the active cur-
rent I0 cos 15°, that is the component of the current which is in phase
with the voltage U, and the reactive current I0 sin 15°, the compo-
nent which is out of phase with the voltage by 90°. b) Determine the
power PW delivered by the current source and compare it to the loss
power PWRLC in the parallel circuit. (Sect. 10.8)

10.13

For a pair of coils as shown on the left in Fig. 5.5, derive the trans-
former equation (10.39). An AC current source with output voltage
Up D Up;0 cos!t is connected to the primary coil, and an AC volt-
meter is attached to the secondary coil. The primary coil has Np turns
in its windings, its cross-sectional area is Ap, and its length is lp. The
secondary coil, which surrounds the primary coil on its outside, has
windings with Ns turns. The OHMic resistance in the primary circuit
can be neglected, and that of the voltmeter is infinite. Derive the ratio
of the secondary voltage Us;0 to the primary voltage Up;0 by making
use of the law of induction and knowledge of the inductance of the
primary coil (since the two voltages have opposite signs, we mean
here the ratio of their magnitudes). (Sect. 10.9)

10.14

a) Find the time-averaged value of the power PW D .1=T/
R PW dt

which is delivered by the current source in Exercise 10.13.

b) How does this power change if the voltmeter in the secondary
circuit is replaced by a resistor with a finite OHMic resistance R?
A qualitative answer will suffice here. (Sect. 10.9)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_10) contains supplementary material, which
is available to authorized users.
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11.1 Preliminary Remark

In the previous chapter, we dealt with alternating currents, includ-
ing circuits containing a condenser and a coil (“tank circuits”). In
the present chapter, we will identify these circuits as oscillators and
investigate their properties.

11.2 Free Electrical Oscillations

In Fig. 10.14, we saw a series circuit, and in Fig. 10.18 a parallel cir-
cuit. In both of these figures, the AC generator was simply indicated
by the symbol �.

An AC generator can be fabricated from a DC current source and
a variable resistor. This is accomplished using the scheme shown in
Fig. 11.1: Periodic variations of a resistance E or D around a mean
value U=I produce an alternating current, superposed on a direct cur-
rent. This yields an AC voltage between the terminals a and b.

With these setups, containing so-called “tank circuits” (at the right in
each figure), we can repeat the experiments shown in Figs. 10.14
and 10.18 at very low frequencies (
 of order 1Hz). We require

a a

bbR R

E D

A A

Figure 11.1 A series LC circuit and a parallel LC circuit (“tank circuits”)
as oscillators, each connected to an AC generator. E and D are periodically
variable resistors, while R is a fixed resistor. The switches are used to produce
damped oscillations (for 
 D 1Hz, the resistance E in the left-hand image
must have a value of the order of 100�, and D, in the right-hand image, must
be around 104�. The current source at the left is a storage battery (2V),
while on the right, around 100V is required).

195© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_11
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a coil with a very large inductance (L � 103 H) and a condenser with
a large capacitance (C up to 50�F). With the switch closed, a sliding
contact on the resistors is moved periodically back and forth, either
by hand or using an eccentric and connecting rod driven by a motor.

In Fig. 11.1, at left, the resistor E has a low resistance, while at the right, D
has a large value. This matches the internal resistance of the “generator”
to the resistance U=I of the circuit between the terminals a and b (where
it is attached to the generator). The resistance of the series circuit may be
rather low (Fig. 10.17), while it is high for the parallel circuit (Fig. 10.20).

The AC current flowing through the coil and the condenser (heavy
lines), which has a constant amplitude, can be observed with an am-
meter of short response time (0.12 s), or with an oscilloscope. For
both the series circuit and the parallel circuit, we find the largest am-
plitudes around 
 � 1Hz.

Then we see something new: We leave the resistances E and D con-
stant and simply open or close the switch. Then we can observe an
alternating current in both the series circuit and the parallel circuit,
with a decaying amplitude; or, put differently, we observe damped
oscillations. Therefore, both series circuits and parallel circuits are
oscillators. They each contain a storage device for electrical en-
ergy (the condenser) and for magnetic energy (the coil). Closing
or opening the switch is sufficient to produce damped oscillations
(i.e. alternating currents with decaying amplitudes) by impulse exci-
tation in these oscillator circuits.

The oscillations start with deflections in opposite directions, depending
on whether the switch is closed or opened. In the ideal limiting case, an
electrical oscillator circuit would oscillate without losses at a constant am-
plitude following an impulse excitation. In this limit, series and parallel
circuits are equivalent. For“For electrical oscillations,

there is a clear-cut mechan-
ical analog (Fig. 11.2).
Today, it can be found
in most school books on
physics and needs no fur-
ther explanation”.

this limiting case, there is a clear-cut mechan-
ical analog (Fig. 11.2). Today, it can be found in most school books on
physics and needs no further explanation.

The frequency of these electrical oscillations is the resonance fre-
quency which we have already encountered in Sect. 10.6:


0 D 1

2�
p
LC

(10.32)

.in the parallel circuit, this holds only when R2C=L � 1I see Eq. (10.35)/;

i.e. the frequency at which the inductive resistance of the coil, !L, is
just as large as the capacitive resistance of the condenser, 1=.!C/ in
the series circuit at resonance.

In order to obtain electrical oscillations of higher frequency by im-
pulse excitation of a series circuit (Fig. 11.1), we would have to make
L and C much smaller, as can seen from Eq. (10.32). Then the en-
ergy initially stored in the condenser, We D 1

2CU
2 (Eq. (3.20)), is
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riodic exchange of
potential and kinetic
energy in mechani-
cal oscillations (left),
and of electrical and
magnetic energy in
electrical oscillations
(electrical oscilla-
tor circuit, right).
The arrows on the
right mark the direc-
tion of motion of the
electrons within the
circuit.
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also rather small. As a result, we would then have to use higher volt-
ages; that however causes an annoying problem: At high voltages, an
arc jumps across the gap between the switch contacts even before the
switch is closed. One has to live with these disturbing sparks.C11.1 C11.1. Using a modern pulse

generator and a sensitive os-
cilloscope, such sparks can
easily be avoided. Neverthe-
less, the example that follows
here is very useful, since it il-
lustrates the early precursors
of “wireless telegraphy”, of
enormous importance today
in its modern forms.

But they can be utilized in a useful way, namely:

1. as a periodically-operating automatic switching device, and

2. as an ammeter with a very short response time.

The spark acts as an automatic switch for example in Fig. 11.3. In-
stead of a moving and a fixed contact, we see there a spark gap
consisting of two metal balls. Two thin wires serve to charge the con-
denser from some sort of current source, e.g. an influence machine.
When a certain maximum voltage U is reached, the spark jumps over
the gap and starts the oscillator circuit. This operating voltage U can
be adjusted by changing the distance between the balls of the spark
gap.

The spark can also be employed as an ammeter with very short re-
sponse time, owing to the dependence of the light density that it emits

Figure 11.3 A spark gap as the
switch for an electrical series circuit
as in Fig. 11.1. The resistors R and
E have been removed, and only the
switch remains.
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Figure 11.4 The detection of electrical oscillations from a spark (its duration
is of the order of 10�3 s; a “FEDDERSEN spark”, 1859.C11.2C11.2. Martin Henke:

“Flinke Funken im schnellen
Spiegel – Berend Wilhelm
Feddersen und der Nachweis
der elektrischen Schwingun-
gen”, Dissertation, University
of Hamburg, 2000. This doc-
ument contains a detailed
account of FEDDERSEN’s
discovery.

The image is the
negative of a photograph taken by B. WALTER).C11.3

C11.3. Similar photographs
of lightning discharges can be
found in: B.Walter, Annalen
der Physik, 4th series, 21,
223 (1906).

on the current. The light density exhibits two maxima during each
oscillation cycle. To make these variations in light density visible,
images of the spark which follow each other closely in time must
be separated spatially. A rapidly rotating polygonal mirror provides
a simple method of doing this. In Fig. 11.4, photographs of sparks
taken with this method are shown. The frequency of the oscillations
was 50 kHz. Initially, the periodic variations in the light density can
be readily distinguished; in later images, they are obscured by clouds
of glowing metal vapor. In the early images, one can also recog-
nize the direction of the current during the individual maxima. The
brighter end of the spark always indicates the negative pole.

The high voltages which accompany this excitation of high-frequency
electrical oscillations can be used for impressive demonstration ex-
periments. These are discussed in the following section.

11.3 High-Frequency Alternating
Currents for Demonstration
Experiments

1. The TESLA coil.

In Fig. 11.5, the coil Co of a high-frequency electrical oscillator
circuit serves at the same time as the primary winding of a trans-
former. It consists of only a few turns, e.g. Np � 3. At high fre-
quencies, it still has a large inductive resistance U0=I0 D !L. As
a result, we can produce voltage differences of several 104 V between
its ends without increasing the current to more than a few ampere.
The number of turns Ns of the secondary-coil windings is consider-
ably greater, e.g. Ns � several hundred turns. Therefore, voltages of
several 105 V can be readily produced at the ends of the secondary
coil. There, long, reddish-blue forked sparks jump between the ter-
minals (Fig. 11.5). Often, one end of the secondary or induction coil
is grounded (to a water pipe or something similar). The free termi-
nal is then the source of lively bundles of reddish, branched sparks
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Figure 11.5 A TESLA transformer. The primary coil Co is the coil of
a damped electrical oscillator and carries a high-frequency AC current (
 �
400 kHz; the arrows indicate leads to the current source, e.g. a resonant trans-
former). The secondary coil of the resonant transformer also makes up an
oscillator circuit together with the condenser C; its frequency is the same as
that of the line voltage, usually 50–60 Hz (current resonance, see Sect. 10.7).
(Video 11.1) Video 11.1:

“TESLA Coil”
http://tiny.cc/adggoy
The video shows experiments
with an historic apparatus
from the early 20th century,
which is still used for demon-
strations today at Cornell
University.

(Exercise 11.3)

Figure 11.6 Snap-
shot image (0.01 s) of
the brush discharge
from the terminal
of a TESLA coil
(Fig. 11.5)

1 m

(“brush discharges”), which weave around and can be over a meter
long (Fig. 11.6). Their physiological harmlessness is surprising.C11.4

C11.4. This is explained
in Video 11.1 at 9:40min.
See also e.g. Christo-
pher Gerekos, www.tesla-
coildesign.com/docs/
TheTeslaCoil-Gerekos.pdf
or also https://en.wikipedia.
org/wiki/Tesla_coil. Compare
the last section of the latter
reference. While there are
no electric shocks and no
electrolysis effects of the
high-frequency current, there
are still health hazards, as
explained there.

2. Demonstration of self-inductance in non-coiled conductors. For
alternating current, the inductive resistance U0=I0 D !L of a con-
ductor is in general large compared to its OHMic resistance R. With
high-frequency AC, this effect can be demonstrated using a “coil”
consisting of a single turn: a wire loop.

In Fig. 11.7, a thick copper-wire loop is carrying high-frequency al-
ternating current in the primary circuit of a TESLA coil. It is bridged
at its center by an incandescent light bulb, which would be practi-
cally short-circuited for direct current. Nevertheless, the bulb glows
brightly. The ratio U=I, defined as the resistance, must therefore be
much greater for the high-frequency AC than for DC. This simple
experiment shows the inertia of the magnetic field in an obvious way.
It contains nothing essentially new; but it is important, since the be-
ginner “. . . the beginner tends to

forget about self-inductance
in conductors which are not
wound into a coil”.

tends to forget about self-inductance in conductors which are
not wound into a coil (Exercise 11.2).

3. The skin effect. We can imagine a wire to be composed of a thin
central axis and concentric, tube-shaped layers surrounding it. Its
inductance L is smaller within the outer layers than within the inner
layers.

http://tiny.cc/adggoy
www.tesla-coildesign.com/docs/TheTeslaCoil-Gerekos.pdf
www.tesla-coildesign.com/docs/TheTeslaCoil-Gerekos.pdf
www.tesla-coildesign.com/docs/TheTeslaCoil-Gerekos.pdf
https://en.wikipedia.org/wiki/Tesla_coil
https://en.wikipedia.org/wiki/Tesla_coil
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Figure 11.7 A demon-
stration of the inductive
resistance of a wire loop

Figure 11.8 Magnetic field lines
around and within a wire (the wire is
indicated by shading), and their induc-
tive effects (the feathered arrow shows
the conventional direction of the electric
current; in part b, it points out of the
plane of the page towards the reader)

a

b

c

a a

HH

Diameter
of the wire

Justification: In Fig. 11.8, we see in part b a straight current-carrying con-
ductor in cross-section (shaded). The conductor is surrounded in the usual
manner by the ring-shaped, closed-loop field lines of a magnetic field H.
These field lines however not only surround the conductor on its exterior,
but also penetrate into its interior. Each of the tube-shaped layers which is
carrying a current must indeed be surrounded by magnetic field lines.C11.5C11.5. See Eq. (6.13), which

follows from MAXWELL’s
equation (6.23). These equa-
tions were in fact derived
for empty space, but as long
as the current conductor in
Fig. 11.8 is not ferromag-
netic, the difference between
the conducting material and
vacuum can be neglected (see
Chap. 14).

Several of them are sketched in Fig. 11.8.
In addition, one section of the conductor is shown twice as a longitudinal
section (Fig. 11.8, parts a and c). In both images, the direction of the
current is indicated by a long feathered arrow. Furthermore, the magnetic
field lines are shown where they penetrate the plane of the image (as �
or C). Thus, in part a, above, we see the points of penetration of several
exteriormagnetic field lines, while below, in part c, we see those of several
interior magnetic field lines. Variations of this magnetic field with time
induce an electric field with closed-loop field lines. Pairs of these field
lines are drawn in parts a and c as rectangles, for the case that the current
is increasing. At the surface of the wire, these newly-formed electric fields
due to self-inductance have opposite directions. The arrows at a point
downwards, while the arrows at b point upwards; therefore, the induced
electric fields cancel each other to a great extent. Along the central axis
of the wire, in contrast, this compensation is lacking. There, the induced
field is opposite to the external applied field (feathered arrow); as a result,
the induced field hampers the increase of the current. When the current
is decreasing, the opposite occurs within the wire: along the inner axis of
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as in Fig. 11.5)
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Figure 11.10 Demonstrating the skin effect

the wire, the induced field and the applied field have the same direction,
so that the induced field hinders the decrease of the current. Result: Along
the central axis of the wire, in contrast to its surface, its self-inductance is
stronger.

This uneven distribution of induction within the cross-section of the
wire becomes especially noticeable with alternating currents at high
frequencies. To detect this current displacement (“skin effect”), we
use the setup sketched in Fig. 11.9. The coil Co carries a high-
frequency alternating current. It induces currents in the induction
coil J, a thick copper-wire ring. An incandescent lamp included in
the circuit is used to estimate the current strength. We then surround
the copper ring with a concentric copper tube (Fig. 11.10). The walls
of the tube have the same cross-sectional area as the wire. A similar
lamp is connected between the ends of the tube and of the copper
wire loop. These two induction coils, one inside the other, are now
brought near the field coil Co in Fig. 11.9. The lamp connected to the
ends of the tube shines brightly, while the lamp between the ends of
the wire glows only a dull red or not at all (see Video 11.1).

4. The detection of closed-loop electric field lines. According to the
detailed explanation of induction processes (Sect. 6.1), there should
be closed-loop electric field lines resulting from induction. They
could unfortunately not be made visible using insulating powder (e.g.
fine gypsum crystals). With the high-frequency AC currents in elec-
tric oscillator circuits, we can return to this topic and fill in this
missing link in our earlier discussion by making the closed-loop field
lines visible in a clear-cut way.

The apparatus is shown in Fig. 11.11. The field coil Co, with just one
turn, produces a high-frequency AC magnetic field. Its field lines
are perpendicular to the plane of the page in the figure. This rapidly
varying magnetic field should surround itself, according to Fig. 6.2,
with closed-loop electric field lines.
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Figure 11.11 The detection
of closed-loop electric field
lines, the “electrodeless ring
currents”. Noble gases at
low pressure, for example
neon, already begin to glow
at electric field strengths of
ca. 20 V/cm.

C

S

Co

Now we bring up a glass bulb filled with neon at low pressure into the
region of these closed-loop electric field lines; a ring-shaped region
within the bulb glows brightly, widely visible to a large audience. We
see an image, albeit rough, of the AC electric field with its closed-
loop field lines, with no beginning or end. Knowledge of these field
lines is essential for the elucidation of electromagnetic waves in later
chapters. This demonstration is therefore quite important for our un-
derstanding (Video 11.1).C11.6

C11.6. . . . Even though it
does not prove the existence
of closed-loop electric field
lines, as is emphasized in
Video 11.1 at 5:10min.

11.4 The Production of Undamped
Electrical Oscillations Using
Feedback with Triodes

The electrical oscillations discussed so far, which were produced by
impulse excitation, were all damped. Energy losses caused their am-
plitudes to decrease with time. A damped oscillation has more than
one frequency (Vol. 1, Sect. 11.4); not only its eigenfrequency 
0,
but also a broad frequency range, a continuous frequency spectrum,
occurs within the damped oscillations. This is rather disturbing for
many physical and technical purposes. One often requires alternating
currents with constant amplitudes over longer times, and with a well-
defined frequency. Therefore, it is very useful to be able to produce
undamped electrical oscillations.

In mechanics, the corresponding task was accomplished long ago
(Vol. 1, Sect. 11.2) by making use of the technique of autocontrol or
positive feedback. Pendulum clocks and all kinds of watches are well-
known examples. The control of an electrical oscillator by feedback
will be treated by first considering oscillations at very low frequen-
cies (
 � 1Hz). We use the circuit already described in Fig. 11.1
(right-hand image); however, with a small modification as shown in
Fig. 11.12 at the left: The “AC generator” again consists of a DC
source and a variable resistor Rs, but it is connected only to a part of
the coil between the points a and b.

Repeated, uniform variations of Rs at the rhythm of the resonance
frequency 
0 of the oscillator circuit produce an alternating current of
constant amplitude. In order to achieve autocontrol, the circuit itself
must produce this periodic variation in Rs. This can be accomplished
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Figure 11.12 The production of undamped electrical oscillations in a parallel tank circuit at very low frequen-
cies (
 � 1Hz); at the left using external control, at the right with autocontrol (feedback) (Rs � 10 k�,
C D 50�F, L D 103 H).

for example by using a triode (electron tube with three electrodes) as
a “switch” or “valve” (Fig. 11.12, right side).

In a triode, within the evacuated bulb between the thermal-emission
cathode and the anode plate, there is a control grid. The resistance of
a vacuum tube of this type is of order of 10 k�. It can be varied pe-
riodically over a wide range by applying an oscillating electric field
between the cathode and the grid1. The required voltage can be ob-
tained for example by induction from the section b� c of the coil. In
this way, the oscillator circuit at the right in Fig. 11.12 produces an
undamped AC output at a frequency 
 � 1Hz. The time dependence
of the current and the voltage as well as the phase difference between
them can be registered by rotating-coil galvanometers with a short
response time or with an oscilloscope.

This method of autocontrol (often called feedback) can be applied
with common electron tubes up to frequencies of around 100MHz.
Figure 11.13 shows an example for frequencies of a few hundred
kHz. A small lamp is used as an indicator for the AC current.

Figure 11.13 The production of undamped electrical oscillations with fre-
quencies of the order of 500 kHz. This figure and some of the following
figures show shadow projections of operable setups. The triode can be seen
at the far left. The circuit diagram is drawn on a glass plate (cf. Fig 11.12,
right-hand image).

1 In Figs. 11.12, 11.13 and 11.17, imagine that a 1.5 volt battery is inserted into
the wire leading to the grid of the triode. POHL gave details in his “Elektrizitäts-
lehre”, 21st edition, Section 17.5. English: See e.g. https://zipcon.net/~swhite/
docs/physics/electronics/Valves.html.

https://zipcon.net/~swhite/docs/physics/electronics/Valves.html
https://zipcon.net/~swhite/docs/physics/electronics/Valves.html
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Today, vacuum-tube triodes have been almost completely replaced by
solid-state triodes (transistors).C11.7C11.7. In Chap. 27, Sect. 3

in the 21st edition of POHL’s
“Elektrizitätslehre”, the oper-
ation of a vacuum-tube triode
was explained in terms of the
first experimental solid-state
triode, which had not yet
been developed sufficiently
for technical applications
(R. Hilsch and R.W. Pohl,
Zeitschrift für Physik 111,
399 (1938); see also Video 1,
23:30min, http://tiny.cc/
z8fgoy).

11.5 Feedback with Diodes

Autocontrol with diodes also begins with the discussion in Sect. 11.2.
Here again, an AC generator is used in order to maintain electrical
oscillations with a constant amplitude. As generator, again the com-
bination of a DC current source with a periodically-variable resistor
is employed. The variation of the resistance in this case is the result
of a particular property of the resistor employed. Its I-V characteris-
tic (i.e. the dependence of the voltage drop across the resistor on the
current it is carrying) exhibits the form shown for two examples in
Fig. 11.14: In some range, the differential resistance dU=dI becomes
negative! Conductors with this characteristic are referred to in the
following as diodes.

How diodes can effect the autocontrol of electrical oscillations
is explained using two demonstration experiments as examples
(Fig. 11.15). Both make use of diodes whose properties change
audibly during the periodic control process. In a series circuit, the
electric arc E represents a diode of type S; in a parallel circuit, a small
WEHNELT interrupter D (Fig. 10.24) acts as an N-type diode. In the
electric arc, the alternating current from the series circuit adds to the
direct current from the current source. This changes the current in
the arc periodically, and along with it (due to heating), the volume of
the arc: The arc “sings”. In the WEHNELT interrupter, the alternating
voltage between the terminals a and b of the parallel circuit adds to
the direct voltage from the current source. This causes a periodic
variation of the voltage between the electrodes of the diode D, and
with it, the gas bubble surrounding the glowing platinum wire ex-
pands or contracts: The gas bubble “sings”. In both tank circuits, the
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Figure 11.14 I–V characteristic curves, referred to as S and N types.
They are found for conductors with a negative differential resistance dU=dI
(schematic drawing). Initially, in the S type, the current increases up to a volt-
age maximum ˛; in the N type, the voltage increases up to a current maximum
ˇ.

http://tiny.cc/z8fgoy
http://tiny.cc/z8fgoy
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Figure 11.15 Autocontrol (feedback) of electrical oscillator circuits using
diodes whose properties change audibly (
 � 1 kHz). At the left is a series
circuit similar to the schematic in Fig. 11.1 (left-hand image); here, E is an
electric arc. At the right is a parallel tank circuit similar to the schematic in
Fig. 11.1 (right-hand image); here, D is a small WEHNELT interrupter (the
coil is similar to Fig. 10.2, right, but without an iron core: L D 3:3mH; the
condenser has C � 1�F. The electric arc is struck between two pure carbon
electrodes of 1 cm diameter).

frequency of the tone can be adjusted by varying the capacitance C
of the condenser.

In the feedback circuit using a parallel tank circuit, one can leave off the
condenser altogether. Then only a toggle oscillation at an audible fre-
quency remains (Vol. 1, Sect. 11.17); it can be varied by changing the
value of the resistor R (cf. Fig. 10.24). This once again demonstrates the
transition from harmonic oscillations to toggle oscillations.

A different conductor with an N-type characteristic (Fig. 11.14,
right side) is the Dynatron (cf. 21st German edition of this book,
Sect. 17.5; see also https://en.wikipedia.org/wiki/Dynatron_oscillator),
as well as semiconductor diodes (e.g. tunnel diodes). With these, os-
cillator circuits for frequencies up to 100GHz can be assembled.

11.6 Forced Electrical Oscillations

Let us consider some sort of mechanical pendulum, which swings
following an “impulse excitation” or undamped with “feedback” at
its resonance frequency, 
0. But every pendulum can also be forced
to oscillate at a different frequency by a suitable external excitation
source, so that the pendulum oscillates as a resonator. To accomplish
this, we let a periodic force or torque act with the desired frequency
on the pendulum. This process of forced oscillations was treated in
some detail in Vol. 1 (Sect. 11.10) because of its general importance.

Similar conclusions hold for forced electrical oscillations. Instead of
a torsional pendulumwith a flywheel and a spiral spring, we consider
an electrical oscillator circuit with a coil and a condenser; instead
of a periodically recurring torque, we require a periodically varying
voltage. The latter can be produced without a conducting connection

https://en.wikipedia.org/wiki/Dynatron_oscillator
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Figure 11.16 Two oscillator circuits (“tank circuits”) with which high-
frequency AC currents can be demonstrated by means of resonant excitation.
A suitable excitation source is the circuit shown in Fig. 11.13. The resonance
frequency of the left-hand circuit can be adjusted using the micrometer screw
on the parallel-plate condenser; that of the right-hand resonator is fixed.

between the excitation source and the resonator. We start with two
qualitative examples:

1. We use the two tank circuits shown in Fig. 11.16 as resonators;
the excitation source could be the circuit in Fig. 11.13, which oscil-
lates continuously, without damping. The resonators are set up near
the excitation source, so that the magnetic field of its coil can in-
duce a voltage in the windings of the resonator coil. By adjusting
the condenser in the tank circuit, we can readily obtain the resonant
frequency. Then the lamp in the resonator circuit shines brightly.
Both resonator circuits have a small damping, so that their resonance
curves are rather sharp.

2. High-frequency circuits with undamped oscillations often lack physical
clarity. Coils and condensers can no longer be considered separately as
discrete devices; often, the electrodes of vacuum tubes already provide the
necessary capacitance C. One case of this kind can be seen in Fig. 11.17,
at the left; it is an oscillator circuit with a resonance frequency of 1MHz.
We see only a coil which is tapped on one side, and a vacuum tube. At the
right in the figure, in contrast, we see a regular oscillator circuit, containing
a coil with two turns and a rotary variable condenser. The left-hand circuit
serves as the excitation source, while the right-hand circuit is the resonator.
As an indicator for the forced oscillations, we again use a small light bulb.
In this way, we can produce high-frequency AC currents in an oscillator
without unnecessary technical accessories.

Figure 11.17 At the left: An oscillator circuit with autocontrol (feedback)
for 
 � 1MHz. At the right: A tank circuit in which oscillations can be
produced by resonance at the same frequency
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of Forced Oscillations
in a “Tank Circuit”

In the preceding chapter, in Figures 10.14 and 10.18, we varied the
voltage between the terminals a and b of the oscillator circuits by us-
ing a generator which produces a sinusoidal alternating current. That
is, we input an alternating current into the circuits. But now we say:
The circuits are devices which can oscillate; we excite them to os-
cillations as resonators, and we employ an alternating current source
for the excitation. We wish to compare these forced electrical oscil-
lations with forced mechanical vibrations or oscillations like those
that were discussed in Vol. 1, Sect. 11.10.

The alternating current in Fig. 10.14, that is in a series tank circuit
containing a coil and a condenser, was described by Eq. (10.30). With
this equation, we could first calculate the amplitude I0 of the current
for various frequencies 
 (Fig. 11.18b), and then, by referring also
to Eq. (10.29), we could obtain the amplitude UC;0 of the voltage on
the condenser (Fig. 11.18a). Furthermore, with Eq. (10.31), we could
calculate the phase angle ', and with it, the phase difference between
the excitation voltage U and the condenser voltage UC (Fig. 11.18c);
and finally, we computed the average power PW D 1

2 I
2
0R dissipated by

the resonator (Fig. 11.19); this curve holds at the same time for the
average magnetic energy Wm D 1

2 .
1
2LI

2
0/ stored in the resonator. Its

value can be read off the right-hand ordinate scale.

The values of L, C and R were chosen to be about the same as those for the
demonstration experiment in Fig. 10.16.

The formal similarities between the forced oscillations of an electri-
cal series-circuit oscillator and the forced oscillations of a mechanical
harmonic oscillator are evident. The content of equations (10.30) and
(10.31) is illustrated in a very clear-cut way by Fig. 11.18.

In the energy resonance curve (Fig. 11.19), the ratio of the resonance
frequency of the resonator to its linewidth H is called the quality
factor or Q-value:

Q D 
0

H
: (11.1)

This quantity serves to determine experimentally several important
values which characterize the oscillator circuit, namely its logarith-
mic decrement  (Vol. 1, Sect. 11.10) and its damping constant
0.
When the logarithmic decrement  is 	 1, then the following rela-
tion holds:

H


0
D 

�
D 1

Q
(11.2)

.1=Q is also called the loss factor/:
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1=
0 D 1=�H D �r is the relaxation time within which the ampli-
tude of the forced oscillations approaches the fraction .1 � 1=e/ �
63% of its steady-state value.

We calculate these quantities, in the case of weakly-damped series
and parallel tank circuits:C11.8C11.8. A good introduction

to the physics of vibrations
and oscillations can be found
for example in: H.J. Pain,
“The Physics of Vibrations
and Waves”, John Wiley,
5th ed., 1999 (Chaps. 2
and 3).



�
D R

r
C

L
: (11.3)

These quantities can also be obtained experimentally using the fol-
lowing relations:
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Figure 11.18 The characterization of forced electrical oscillations in a se-
ries tank circuit, calculated as in Sect. 10.6. The angle plotted in Part c is
(' C 90ı), where ' is defined as in Eq. (10.24). The linewidth (full width
at half maximum, FWHM) H is the frequency range at whose limits the cur-
rent (effective value or amplitude) has decreased to 1=

p
2 of its maximum

value. The maximum value of the current (Part b) lies as usual at 
0.C11.9

C11.9. Note the analogy to
the mechanical harmonic
oscillator: The momentary
deflection ˛ and the am-
plitude ˛0 of the torsional
pendulum (Figs. 11.42a and
b in Vol. 1) correspond in
Fig. 11.18a to the condenser
voltages UC and UC;0. The
amplitude of the angular ve-
locity .d˛=dt/0 (Fig. 11.43
in Vol. 1) corresponds in
Fig. 11.18b to the current
amplitude, I0.

With extremely strong damping, i.e. a logarithmic decrement of  > 1, the
maximum deflection in Part a occurs neither at the resonance frequency 
0
of the undamped oscillator, nor at the slightly lower resonance frequency of
the freely oscillating damped oscillator circuit, but rather at the frequency

 D 
0

p
1 � 0:5.=�/2.
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nance curve of forced electrical
oscillations (series tank circuit).
Even with extremely strong
damping, i.e.  > 1, its max-
imum falls at 
0, that is at the
eigenfrequency of the undamped
resonator. The FWHM H here
is the frequency range at whose
limits both the power dissipated
by all damping mechanisms, as
well as the average stored mag-
netic energy, have decreased to
half their maximum values.
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For the series circuit,



�
D H


0
D UC;0 for 
 D 0

UC;0 for 
 D 
0
D reciprocal of the resonant voltage

increase (11.4)

and for the parallel circuit,



�
D H


0
D I0 for 
 D 
0

IL;0 for 
 D 
0
D reciprocal of the resonant current

increase : (11.5)

Derivation: For the series circuit, at the frequency 
 D 0, UC;0 is equal
to the amplitude U0 of the power supply. At the resonance frequency,

0 D 1=.2�

p
LC/, we find from Eqns. (10.29) and (10.30) for the voltage

amplitude UC;0 of the condenser

UC;0 D U0

r
L

C
� 1
R
;

and, making use of Eq. (11.3),

UC;0 for 
 D 0

UC;0 for 
 D 
0
D R

r
C

L
D 

�
: (11.4)

Parallel circuit: The amplitude I0 of the current in the leads to the parallel
circuit at the circular frequency !0 D 1=

p
LC follows from Eq. (10.33),

I0 D U0!0CRp
R2 C L=C

:

At the same circular frequency, the current amplitude IL;0 in the coil is
given by Eq. (10.21),

IL;0 D U0p
R2 C .!0L/2

:
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Thus, for 
 D 
0
C11.10C11.10. See e.g.: B. Kur-

relmeyer and W.H. Mais,
“Electricity and Magnetism”,
Van Nostrand, Princeton
1967, Chap. 14.

, we have

I0
IL;0

D R

r
C

L
D 

�
: (11.5)

In spite of the qualitatively different form of the current I.!/ in the parallel
circuit (Eq. (10.33)), where the AC resistance has its maximum at the reso-
nant frequency (see Fig. 10.20) and the current I is thus at itsminimum, the
relationship between; Q, and the width H (which is however differently
defined in this case) as given in Eq. (11.2) still holds here. H is defined
here as the frequency range at whose limits the power consumed is twice
as large as at the minimum (!); that is, the AC resistance has decreased by
a factor of 1=

p
2.

Exercises

11.1 In a loss-free LC circuit, at the time t D 0 the condenser has
a charge ofQ0 (Fig. 11.2, right), and its voltage is thus UC;0 D Q0=C.
An electrical oscillation begins. Find the time-dependent voltage
UC.t/ on the condenser and the time-dependent current I.t/ in the
circuit. (Sect. 11.2)

11.2 In an electrical oscillator circuit (Fig. 11.2), two coils with
inductances of L1 and L2 are connected in series. Their “mutual
inductance”, i.e. the mutual influence of their magnetic fields, is pre-
sumed to be negligible (for example because they are sufficiently far
apart; this is not essential to the principle of this exercise). The am-
plitude of the voltage on the condenser is UC;0. Find the amplitude of
the voltage UL1;0 on the coil of inductance L1. (Sects. 11.2, 11.3)

11.3 For the TESLA coil in Video 11.1 and Fig. 11.5, which we
consider to be an oscillator circuit, the frequency 
0 is to be esti-
mated. In the experiments shown in Figs. 11.9–11.11, only the large
primary coil is connected to the condenser. The condenser, a Leyden
jar (Fig. 2.54), has a diameter of d D 12 cm and has metal-foil elec-
trodes up to a height of h D 18 cm inside and outside. The thickness
of its glass wall is t D 1:52mm, and we may assume a value of " D 7
for its dielectric constant (Table 13.1). The coil consists of N D 8
circular windings with a radius of a D 12:5 cm. The diameter of the
wire is 2b D 3mm. Under the assumption that b � a, the inductance
of a single circular ring is given by L D �0a .ln 8a=b � 1:75/ (see
e.g. Becker/Sauter, “Theorie der Elektrizität”, Vol. 1, 21st ed., 1973,
B.G. Teubner, Stuttgart); English: “Electromagnetic Fields and In-
teractions”, Vol. I: Electromagnetic Theory and Relativity (Blaisdell,
1964). (Sect. 11.3)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_11) contains supplementary material, which
is available to authorized users.

https://doi.org/10.1007/978-3-319-50269-4_11
https://doi.org/10.1007/978-3-319-50269-4_11
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12.1 Preliminary Remarks

In previous chapters, we organized the discussion of the electric field
roughly as follows:

1. The static electric field. See the schematic in Fig. 12.1a. The field
lines have electric charges at their ends.

2. A slowly-varying electric field. The two plates of a condenser are
connected by a conducting bridge. In Fig. 12.1b, this is a long coil
of wire. The electric field decays, but the self-inductance of the coil
causes the decay to occur “slowly”. The field decay occurs at ˛ and
ˇ practically simultaneously. This is indicated in Fig. 12.1b by equal
spacings of the field lines at ˛ and ˇ.

Now, in this chapter, we consider a third and final case:

3. A rapidly-varying electric field. In Fig. 12.1c, the bridge between
the condenser plates is a short wire, so that its self-inductance is
small. The field decays very rapidly: i.e. the time for the change
in the field to propagate between ˛ and ˇ can no longer be neglected.
The field decay caused by the bridge has already progressed much
further at ˛ than at ˇ. That is indicated by the different spacings of
the field lines in the figure. We thus observe a very high but still fi-
nite propagation velocity for electric fields. This finite propagation
velocity makes it possible for electromagnetic waves to form. Such
waves propagate either in all directions freely, like sound waves in
open space, or else they are conducted along transmission lines, like
the sound waves in a speaking tube.

Both forms of electromagnetic waves have yielded fundamentally
important results for physics. First, their formation demonstrates ex-
perimentally that a time-varying electric field (the displacement cur-
rent) also produces a magnetic field; this was made plausible by the
MAXWELL equations, but was initially only a hypothesis (Sect. 6.4).

a b c

β α αβ β α

Figure 12.1 a: A static electric field; b and c: decaying fields within a con-
denser

211© Springer International Publishing AG 2018
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Second, the discovery of electromagnetic waves has allowed us to ex-
tend the spectrum which was originally known only for visible light
and infrared radiation seamlessly out to waves with wavelengths of
up to many kilometers, and in the other direction to extremely short
wavelengths in the regions of X-rays and gamma radiation.

In the realm of technology, both types of electromagnetic waves, free
and conducted, have achieved an extraordinary importance. Mod-
ern communications technology, including television, satellite relays,
mobile telephones, navigation methods for limited visibility condi-
tions, etc. were all developed thanks to knowledge of electromagnetic
waves. The methods devised for these purposes are increasingly per-
meating other areas of technology as well as our daily lives. The end
of this evolution is not in sight. Only one thing is certain: All of
these developments have grown out of physics and have become in-
dependent technological disciplines in their own right. Physics limits
itself to the fundamentals. We should keep this in mind in reading
the following sections.

12.2 A Simple Electrical Harmonic
Oscillator Circuit

To demonstrate and investigate electromagnetic waves in the lecture
room, we first need AC current sources with frequencies of around
100MHz. These can best be generated using damped electrical os-
cillations. A suitable arrangement is shown in Fig. 12.2. Its disad-
vantage is obvious: The essential parts of the oscillator circuit, the
condenser and the coil, are only vestigial, and they are practically
invisible next to the trivial accessories which provide the feedback.
We correct this in the well-known manner shown in Fig. 11.17: Us-
ing an unspecified circuit (“black box”) to provide the excitation, we
produce resonant oscillations in a clear-cut setup. The latter is in-

Figure 12.2 An oscillator
circuit with feedback (fre-
quency � 100MHz)



12.3 A Rod-Shaped Electric Dipole 213

Pa
rt
IFigure 12.3 A simple closed-loop

electrical oscillator circuit for demon-
strating forced electrical oscillations.
The light bulb serves as an indicator of
the alternating current in the wire loop.

Small light
bulb

dicated in Fig. 12.3. We see just one simple circular copper wire
loop of ca. 30 cm diameter. At its center, below the wooden handle,
it contains a small light bulb as a current indicator. At each of its
ends, a condenser plate about the size of a credit card is attached.
The two plates are spaced around 5 cm from each other. This circuit
serves as a resonator, and we bring it close to the excitation-source
circuit shown in Fig. 12.2. By bending the copper-wire loop (and
thus changing the spacing of the condenser plates), we can adjust the
resonator frequency to be sufficiently close to the frequency of the
excitation source. The light bulb glows brightly. In the resonator cir-
cuit, an AC current of about 0.5A is flowing at a frequency of around
100MHz.

Compare the experiments shown in Figs. 2.36 and 12.3. In Fig. 2.36, the
field decays once, and the resulting current impulse is around 10�8 A s. In
Fig. 12.3, the field decay occurs about 108 times per second, so that we can
observe currents of the order of 1 A.

12.3 A Rod-Shaped Electric Dipole

With the high-frequency AC now at our disposal, we can proceed to
something new and important, namely to a rod-shaped electric dipole
or antenna.

In mechanics, a simple ball-and-spring pendulum consists of a body
with inertial mass and an elastic component (helical springs, etc.). In
electromagnetism, an electrical oscillator circuit with a coil and con-
denser is a correspondingly simple setup. We described the analogy
of these two systems in Sect. 11.2, and refer here to Fig. 12.4.

In the simple ball-and-spring pendulum of mechanics, we can distin-
guish clearly between the inertial component and the component with
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Figure 12.4 A simple mechanical ball-and-spring pendulum and the corre-
sponding electrical oscillator circuit

elastic (restoring) force. As long as the mass of the ball is sufficiently
large, we can completely neglect the small mass of the springs.

However, in mechanics we could also list numerous arrangements
which can support oscillations or vibrations without a clear-cut sep-
aration and localization of the inertial component and the elastic
component.C12.1C12.1. This kind of sys-

tem, in which the compo-
nents and their functions
are spread over the whole
system rather than being lo-
calized in specific devices,
is called a “distributed sys-
tem”. In contrast, a system
with separate, localized com-
ponents and functions, like
a ball-and-spring pendulum
or a tank circuit with separate
coil and condenser, is called
a “lumped system”.

An example is a column of air in a tube (an organ
pipe). Every length element in the air column is both an inertial
component and a section of ‘tensed spring’ (Vol. 1, Sect. 11.7).

A corresponding description applies to the case of electrical oscilla-
tions. In the typical tank circuit, e.g. as shown at the right in Fig. 12.4,
we can clearly identify the coil as the location of the “inertia” of
the magnetic field, and the condenser as the location of the “elastic”
electric field. But in other electrical circuits which are capable of os-
cillating, localizing these functions separately is just as impossible as
in the acoustically-vibrating air column in an organ pipe. An extreme
case of this latter kind is a rod-shaped electric dipole. We will discuss
this simple system in more detail.

Figure 12.5 The tran-
sition from a closed
(“lumped”) oscilla-
tor circuit to an open,
rod-shaped electric
dipole (“distributed”
circuit). The light bulb
could be replaced by
a suitable ammeter. It
would indicate a cur-
rent of around 0.5A.

a

b

c

d

e
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Figure 12.6 A rod-shaped electric dipole, around 1.5m long

We again turn to the simplest of our oscillator circuits, the one shown
in Fig. 12.3. When a current is passing through the wire loop and
the light bulb, the electric field in the condenser is changing. We
enlarge the region around the condenser, at the same time reducing
the size of the condenser plates. We want to carry out the transition
sketched in Fig. 12.5. The gradual atrophying of the condenser can
be compensated by lengthening the two halves of the wire loop. The
light bulb continues to glow, thus an AC current is still flowing.

In the limit, we arrive at Fig. 12.5e, a straight rod with a brightly
glowing light bulb at its center. Fig. 12.6 shows how the experiment
is carried out. The hand can serve as a length scale. The excitation
source (Fig. 12.2) can be thought of as being about 0.5m away.

The length of the rod is not very important. 10 cmmore or less at each
of its ends will play no significant role. The rod is a resonator with
strong damping (Sect. 11.7). During its oscillation, the two halves
of the rod are alternately positively and negatively charged. The
corresponding charges can be thought of as each localized around
a “center of gravity”; then we have two electric charge regions of op-
posite signs, separated by a distance l. An object of this kind was
called an electric dipole in Sect. 3.9, and we adopt that name here for
our electrically-oscillating rod. The electric charges oscillate back
and forth along the rod. They represent conduction currents which
alternate in direction, i.e. an alternating current. This is the electrical
analog of an air current which alternates in direction within an organ
pipe that is closed at both ends, a “stopped pipe”: In the dipole, elec-
tric charges are periodically accelerated, while in the organ pipe, air
molecules are periodically accelerated.

The fundamental oscillation of the pipe is shown in Fig. 12.7 by three
“snapshot images”. A grey shading refers to the normal number den-
sity of the air molecules, a darker shading is an increased density and
a light shading a reduced density. These distributions are sketched
graphically in the lower part of the figure. The wave (density or pres-
sure) crests lie at the ends of the pipe and the node is in its center.
These variations in the particle density occur because the individual
volume elements of the air column in the pipe are flowing back and
forth along it.

The air currents are also distributed sinusoidally, but their maximum
(wave crest) is at the center of the pipe. There, the amplitudes of the
velocities of the air molecules, which are directed alternately to the
right and to the left, have their greatest magnitudes (Fig. 12.8).
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Crest CrestNode

Change in the particle
density of the air and 
the air pressure

Figure 12.7 The distribution of the particle density of the air molecules and
the air pressure in a pipe closed at both ends. Above, three “snapshots”;
below, a graphical representation. Its ordinate, like the grey shading in the
upper part of the figure, corresponds to the particle (number) density of the
air molecules and at the same time to the air pressure.

Node NodeCrest

Longitudinal air current 
(and the velocities of 
the air molecules)

Figure 12.8 The sinusoidal distribution of the longitudinal air currents in
a pipe which is closed at both ends

The electrical oscillations of a rod-shaped dipole behave in a cor-
responding manner. The air currents in the pipe are analogous to
the electrical conduction currents1, they are sinusoidally distributed
along the length of the rod-shaped dipole. This is shown in Fig. 12.9
using three light bulbs: The middle bulb is glowing brightly, while
the two on each side exhibit only a dull reddish-yellow glow. In
Fig. 12.10, this sinusoidal distribution of the conduction current is
shown as a graphical representation.

The periodically alternating current produces a periodically reversing
electric-charge distribution. The grey shading in Fig. 12.7 corre-
sponds to an electrically neutral state; the light shading is a positive,
and the dark shading a negative charge excess. A positive charge
excess makes the potential (the voltage between a point on the rod
and for example the ground, or the center of the rod) positive, while
a negative charge excess makes the potential negative. Figure 12.11
corresponds to the lower part of Fig. 12.7 for the organ pipe.

The analogy can be carried still further. The frequency of longitu-
dinal mechanical vibrations is proportional to the square root of the
modulus of elasticity E (Vol. 1, Sect. 11.8). For electrical oscilla-

1 The electrons in these currents, due to their enormous numbers, move only
through very short distances, on the order of a tenth of an atomic diameter.
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Figure 12.9 Demonstration of the sinusoidal distribution of the conduction currents along a rod-shaped dipole

Node NodeCrest

Electrical
conduction
current

Figure 12.10 A graphical representation of the sinusoidal distribution of the
conduction current along a rod-shaped dipole

Node NodeCrest

Change  in
the electric
potential

Figure 12.11 The distribution of the potential along the axis of a rod-shaped
dipole. The abscissa line corresponds to a zero potential when the dipole as
a whole is neutral.

tions, instead of the modulus of elasticity, we have the reciprocal of
the capacitance C. The frequency of an electrical oscillation is pro-
portional to 1=

p
C. The capacitance C is itself proportional to the

dielectric constant " (Sect. 2.17). In a medium with a dielectric con-
stant of ", a dipole of length lm D l=

p
" has the same frequency as

a dipole of length l in air or vacuum. This is shown in Fig. 12.12 for
a dipole in water (" D 81,

p
" D 9, Table 13.3).

The correspondence between organ-pipe vibrations and dipole oscil-
lations is still not exhausted. The pipe in Fig. 12.7 is vibrating at
its fundamental frequency, while Fig. 12.13 corresponds to a pipe

Figure 12.12 In distilled water, this short
dipole has the same resonance frequency as
the dipole in air shown in Fig. 12.9, which is
nine times longer (B is a piece of insulating
twine) (Exercise 12.4)

B
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bright brightdark

Figure 12.13 A dipole undergoing its first-harmonic oscillation, and its cur-
rents

which is vibrating at its first overtone (first harmonic, upper curve).
In Fig. 12.13 below, a dipole about 3m long is sketched; it was put to-
gether from two of the dipole segments used before. The light bulbs
which have been inserted along its length allow us to visualize the
distribution of the electric current: The light bulb at the central node
remains dark, while the two on each side at the current maxima are
bright. This dipole is also oscillating at its first overtone. In a corre-
spondingmanner, we could add sections to make dipoles with lengths
of 4.5m, 6m, etc.

Just like an organ pipe in mechanics (acoustics), a dipole can of course
also be excited to undamped oscillations by using autocontrol (feedback).
This can be accomplished by using e.g. the circuit sketched in Fig. 12.14.
It is derived directly from Fig. 11.13: The coil and condenser shown there
have degenerated here into straight segments. The dipole with feedback
has a refreshingly simple circuit diagram, but understanding it in detail
unfortunately requires a knowledge of dipole oscillations.

So much for the rod-shaped dipole. It brought us an important bit
of knowledge: The distribution of an electrical conduction current

Figure 12.14 A dipole with positive feedback (triode for auto-
control)
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fundamental as well as its harmonic oscillations.

This distribution of currents implies a particular distribution of the
electric field. The investigation of this electric field and its time de-
pendence is our next task. It will lead us to travelling electromagnetic
waves, both those which are guided along a transmission line and
those which propagate through free space.

12.4 Standing Waves Between Two
Parallel Wires: The LECHER Line2

The electric field lines of an open, straight dipole must in some way
be stretched in long arcs between various points along the length of
the dipole. Along their paths, they meet up with the walls of the
room, with the experimenter, etc. We will initially not attempt to
describe this rather complex situation surrounding a straight, open
dipole; instead, we begin by investigating the shape of the field lines
in a simpler case.

In making the transition from a closed (“lumped”) tank circuit to an
open dipole, we passed through several intermediate stages, one of
which is shown in Fig. 12.15 (top). We can call it a “folded” dipole
for short. We bring it near to the excitation source at a frequency of
100MHz (Fig. 12.2), and use the light bulbs to observe the distribu-
tion of currents in the dipole. The center lamp burns most brightly,
and this is the location of the maximum current, the crest of the stand-
ing current wave.

With this dipole form, there can be no doubt about the shape of the
electric field lines between the two “legs”. The distribution of the
electric field strength E is shown graphically in Fig. 12.15b. The
two curves indicate the maximum values or amplitudes, similar to
Fig. 12.11. In the upper curve, the upper half of the dipole has its
maximum negative charge, while the lower curve shows the lower
half with its maximum positive charge. The two curves follow each
other at a time interval of one-half of a complete oscillation (cycle).

Figure 12.15 A “folded”
dipole and the distribution of
the electric field strength along
its two legs
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2 E. Lecher, Annalen der Physik 41, 850 (1890).
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Figure 12.16 Demonstrating the standing electromagnetic waves between two parallel conductors
(a LECHER line). When the field strengths are sufficiently high, small incandescent light bulbs can
be used to sample the field distribution. The nodes of the magnetic field (which is perpendicular
to the plane of the page) in the standing waves are at the positions of the crests in the electric field
strength. Therefore, detectors for the magnetic fields must be well shielded against electric fields
using a sheet-metal box (a FARADAY cage).C12.2

C12.2. The standing wave
of the magnetic field is thus
shifted by 1/4 wavelength rel-
ative to the standing wave of
the electric field! (Compare
these field distributions with
those of a travelling wave,
Fig. 12.31.)

One can read the ordinates either as field strengths or as changes in
the field strengths (displacement currents), since the regions of high-
est field strength are also regions where the field strength is changing
most rapidly.

We could extend the dipole by adding one or more segments at its
ends (Fig. 12.13). We see this in Fig. 12.16. The light bulb at
the far left continues to burn brightly, i.e. the oscillations persist as
before. The ends of the individual dipole segments are marked in
Fig. 12.16a by short ticks. Below, in part b, the field distribution is
again indicated; the field has its maximum strength at the crests and
troughs, and drops to zero at the nodes (Fig. 12.16b).

This field distribution in such a system (called a LECHER system
or LECHER line) can now be measured in an extremely simple and
precise way. We mention two different procedures:

1. We can measure the strength of the electric field locally. A receiver
(antenna in the form of a short dipole) can be located between the two
legs; it is the short piece of wire labelled E in the figure. It “short cir-
cuits” the electric field, and an alternating current is produced within
the wire by influence. We could also use an induction loop as a re-
ceiver (E0). It is permeated by the magnetic field which is directed
perpendicular to the plane of the page and produced by the currents
flowing in the line. The AC currents produced by influence (E), or by
induction (E0), are converted to DC by a rectifier diode (detector) and
can be measured with galvanometers (G). We move the receiver back
and forth in the directions of the double arrow, and can thus locate
the nodes, that is the zero points of the electric field, with consider-



12.5 Travelling Electromagnetic Waves Between Two Parallel Wires: Their Velocity 221

Pa
rt
I

Figure 12.17 Visualization of the field distribution of standing electromag-
netic waves between two parallel conductors (a LECHER line) (Video 12.1) Video 12.1:

“LECHER line”
http://tiny.cc/gdggoy
In the video, the field distri-
bution between the parallel
lines is made visible in
a simple way by using a flu-
orescent tube which is held
adjacent to the LECHER line.
The nodes of the electric field
are always to the right of the
insulating supports for the
lines; the magnetic field has
its oscillation maxima there.

able precision. Such methods are always applicable. We could then
connect the two lines at the positions of the nodes with a finger or
with a wire “bridge” B (compare Fig. 12.16c). This would not in the
least perturb the standing waves: The light bulb at the left continues
to glow with undiminished brightness.

We could “cut out” each of the rectangles bordered by neighboring
bridges B and let them oscillate alone. To detect their oscillations, the
bridges can be outfitted with small light bulbs. During the oscillation, pe-
riodic maxima of positive and negative charges are localized at the centers
of the long, horizontal sides of the rectangles. Their charge transport back
and forth through the two short sides (bridges) causes the light bulbs to
glow.

2. Second method: We could pass the two parallel conductors
through a long glass tube filled with neon at low pressure (Fig. 12.17).
Then in the regions of high electric field strength (the crests and
troughs of the standing waves), a gas discharge occurs in the neon;
we can see the light from the positive column of the glow currents.
The spatial alternation of dark and bright regions of gas in the tube
gives a clear-cut image of the field distribution between the parallel
conductors.

This method requires relatively high values of the electric field strength.
They can be achieved most simply by using a damped excitation source,
e.g. the circuit sketched in Fig. 12.17, with a spark gap (cf. Fig. 11.5).

The experiments described in this section lead to a simple but im-
portant result: The electric field between parallel conductors can
reproduce the form of a standing wave.

12.5 Travelling Electromagnetic Waves
Between Two Parallel Wires:
Their Velocity

Standing waves are formed by superposition or interference of
oppositely-directed travelling waves (Vol. 1, Sect. 12.5). There-
fore, detection of standing electromagnetic waves proves that there
are also travelling waves between the parallel conductors. A mo-
mentary image (snapshot) of such a wave is sketched in the upper
part of Fig. 12.18.

http://tiny.cc/gdggoy
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Figure 12.18 Top: A snapshot of a travelling electromagnetic “wire wave”
between two parallel conductors (the arrows indicate the direction of the
electric field, and their spacing shows the magnitude of the field strength).
Bottom: A different representation of the snapshot of a travelling electro-
magnetic wave.

S

10 m

Figure 12.19 The conduction of a travelling electromagnetic wave (� D 3m)
along a double line which is mounted on the edges of a plastic band 10mm
wide. The electromagnetic waves which are conducted along two parallel
wires are called simply alternating currents when the length of the line is
short compared to their wavelengths.

One can imagine that this entire image is moving in a horizontal di-
rection with the velocity u. To an observer at rest, the travelling wave
appears as a periodically-varying electric field.

At the bottom of Fig. 12.18 we see a different, but equivalent representa-
tion. Wave crests correspond to electric fields directed upwards, and wave
troughs to electric fields directed downwards. The amplitude refers to the
field strength in either case, quoted for example in V/m. But this graphical
representation shows nothing of the shapes nor the extent of the field lines.

In Fig. 12.19, S is a segment of the oscillator circuit from Fig. 12.2.
At two points, it is connected to a long double line (LECHER line)
which has a light bulb at its far end. This lamp receives the energy
from travelling electromagnetic waves that propagate along the line.

For all types of travelling waves, their frequencies 
, their wave-
lengths � and their velocities of propagation u are related by the
equation

u D 
� : (12.1)

With a LECHER line, the frequency of the excitation system can be
freely chosen. In principle, it can be calculated from Eq. (10.32). The
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tween two neighboring nodes. Inserting these values into Eq. (12.1)
yields the velocity u D 3 � 108 m/s D vacuum velocity of light, c.

This result is rather surprising: Along a LECHER line, every segment
�l, just as in any pair of conducting wires, has an OHMic resistance,
an inductive resistance, and a capacitive resistance. Because of these
resistances, the propagation velocity of sinusoidal waves along the
line depends on their frequency. Non-periodic signals are thus col-
lected together into wave groups (Vol. 1, Sect. 12.23). Their group
velocity at frequencies of the order of several 100Hz is found to be
only around 2 � 108 m/s. Furthermore, the wave groups are damped
along their paths. All of these technically important properties are
described quantitatively by the so-called telegraph equation.C12.3 C12.3. The telegraph equa-

tion is a second-order partial
differential equation, whose
solution describes the prop-
agation of electromagnetic
waves along a conducting
transmission line. In addition
to the inductance and capac-
itance of the line, it takes
the OHMic resistance of the
conductors into account. If
the latter is negligible, the
equation simplifies to the
well-known wave equation,
which can be derived directly
from MAXWELL’s equations.
See for example B.E. Reb-
han, “Theoretische Physik”,
Spektrum Akademischer Ver-
lag, Heidelberg, Berlin 1999,
Chap. 16; or R.P. Feynman
et al., “Lectures on Physics”,
Addison-Wesley, Reading,
Massachusetts, 1964, Vol. II,
Chap. 24 (available online;
see Comment C6.1.)

Why do all these properties of the transmission line play no role at
the high frequencies of the LECHER system? Why do we find the full
vacuum velocity of light, c D 3 � 108 m/s, as the propagation velocity
of the travelling waves in the limiting case of high frequencies? An-
swer: At high frequencies, the influence of the conduction currents
in the conductors becomes completely unimportant. The magnetic
field due to displacement currents – the large rate of change PE of
the electric field – is much stronger than the magnetic field from the
conduction currents. It induces an electric field between the next seg-
ments of the line, and so forth.

The essential processes for the propagation of the waves thus do not
take place within the conductors, but rather in the space between
them; that is, in the air, or more strictly, in vacuum. Therefore,
at high frequencies, the propagation velocity of the waves becomes
independent of the properties of the conductors which make up the
transmission line.

12.6 The Electric Field of a Dipole.
The Emission of Free
Electromagnetic Waves

Considering the results in the the preceding section, we can see that
the parallel-conductor transmission line at high frequencies repre-
sents only an incidental accessory. It simply guides the waves so that
they propagate along the line, rather than freely through space. It
conducts the electromagnetic waves along a fixed direction just like
a tube conducts sound waves in acoustics. Since this role is relatively
unimportant, we can in the following forget about the transmission
line. This will not hinder in any way the essential process, which is
the mutual generation of alternating magnetic and electric fields due
to their rapid time variations. We thus arrive at travelling electro-
magnetic waves which propagate freely in three-dimensional space.
This brings us to our last and especially interesting question: How
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Figure 12.20 A snapshot of
the electric field of a dipole
S (“source”). A small dipole
receiver (E) probes the field
strength

S E

A

are free electromagnetic waves emitted, how is their emission related
to the accelerated motion of charges which are swinging back and
forth (e.g. in an oscillating dipole)?

Our experimental starting point is once again the rod-shaped dipole.
We briefly recall the distribution of conduction currents along the
dipole. It exhibits a maximum at the center (Fig. 12.10). This cur-
rent distribution corresponds to a particular distribution of the electric
field. The field lines must somehow describe large arcs between
corresponding points on the two halves of the dipole. Figure 12.20
shows a rough sketch for the case that there is maximum charge on
the two ends of the dipole.

We now want to investigate the electric field of the dipole S in terms
of its spatial distribution. We do this using the methods with which
we are already familiar. We bring a short length of wire E to the
position that we want to probe; a current will flow in the wire due to
influence. We again call this probe the “receiver”. The current in the
receiver is alternating current with the frequency of oscillation of the
dipole. A small rectifier diode (detector) converts the AC into a direct
current, which we can readily measure using the ammeter A.

In order to avoid disturbances, we have to keep the distances to the
walls of the room, the floor etc. large compared to the dimensions
of the dipole. Thus we choose a dipole about 10 cm long. We em-
ploy damped oscillations for excitation, using a spark gap as switch
(Fig. 11.3). The left part of Fig. 12.21 shows a convenient arrange-
ment. The dipole consists of two identical thick brass rods. Their flat
end surfaces are coated with magnesium foil.C12.4C12.4. The magnesium am-

plifies the sparks through
which the alternating currents
flow (Fig. 11.4).

They are mounted
with a gap of ca. 0.1mm which forms the spark gap. A long, thin,
flexible cable with two conductors (a household doorbell cable) pro-
vides the connection to an AC current source (around 5 kV, a small
transformer operating at 50Hz). At the terminals a and b, two small
coils (“chokes”) are included in the circuit; they isolate the supply
cable from the high-frequency currents in the dipole. The spark gap
makes no noticeable noise; we hear only a low humming. The dipole
is mounted on a wooden column about one-half meter high. From
now on, we will refer to it as the “transmitter” or source S. It can be
tipped, rotated, or carried to another location at will during its opera-
tion.

The setup for the detection of the electric field remains the same as
in Fig. 12.16. The receiver E has about the same length as the source
S. This receiver is thus somewhat too large for measurements in the
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A small dipole
as source S (at
left) and as re-
ceiver E (right) (a
and b are “choke’
coils, and D is
a rectifier diode)
(Exercise 12.1)

S E

a

b

Figure 12.22 Measuring the radial component of
the electric field (dipole field) in the neighborhood
of the source dipole S

S

E
r

φ

immediate neighborhood of the source; it would smear out the finer
details of the field distribution there. This disadvantage of the rela-
tively long receiver is compensated by its great sensitivity.

The receiver is also a dipole. It reacts to the oscillating field from the
source by undergoing forced oscillations. The similarity of the lengths of
the two dipoles guarantees that they can oscillate in resonance.

The receiver (Fig. 12.21, right) is connected to an ammeter by a thin,
flexible pair of wires so that it is just as readily movable as the source.
We can thus use it to sample the whole field distribution around the
source.

We start by searching for radial components of the electric field in
the neighborhood of the source; that is, we orient the source and the
receiver as indicated in Fig. 12.22. These observations are carried out
under various angles '. In the neighborhood of the source, we find
radially-directed electric field components at all values of the angle ',
but their magnitudes decrease rapidly with increasing distance r be-
tween the source and the receiver. At distances corresponding to two
or three times the length of the dipoles, they are already negligible.

We continue our investigation, searching for transverse components
of the electric field close to the source. We use the orientation illus-
trated in Fig. 12.23. These transverse components increase strongly
with increasing values of the angle '. But even for ' D 0, that is
along the dipole axis of S, they still have noticeable magnitudes.
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Figure 12.23 Measuring the transverse component
of the dipole field S

E

r
φ

We then look for transverse components of the electric field at larger
distances r from the source, five or six times the length of the dipoles.
Here, we find no measurable transverse component along the direc-
tion of the dipole axis, i.e. at ' D 0. Such components can be found
only at larger angles '. For ' D 90ı, the field strength is at a max-
imum; the field is transverse to the line r connecting the receiver to
the center of the source dipole.

Thus far, we have kept the source and the receiver in the same plane,
the plane of the page of Figs. 12.21 to 12.23. We now rotate either
the source or the receiver slowly out of this plane: then the measured
field strength decreases. It vanishes when the long axes of the source
and the receiver are mutually perpendicular. The electric field E is
a vector. According to our investigations, it lies in a plane together
with the long axis of the source dipole.

At greater distances, the electric field exhibits a rather simple pattern,
as seen from our observations; it can be represented graphically as
illustrated in Fig. 12.24. The directions of the arrows indicate the
direction of the electric field E at various sampling points which are
at the same distance r from the dipole. The number of parallel arrows
in the figure corresponds to the magnitude of the field, i.e. the field
strength. The whole figure is just a small section of a snapshot of the
electric field of the source dipole.

How would the whole snapshot image look? We can easily carry out
the necessary extension of the image. We start by mentioning two
facts:

1. The field pattern drawn in Fig. 12.24 comes exclusively from the
source S (transmitter). It has propagated over the distance r through
free space.

Figure 12.24 The distribution of transverse
components of the electric dipole field in vari-
ous directions

S

r

r
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temporal alternation of the elec-
tric field of an oscillating dipole

S r

2. The field changes periodically at the frequency of the source. The
snapshot in Fig. 12.24, if taken a short time later, would be replaced
by a similar pattern but with the arrows reversed, that is with the
opposite direction of the field. Such patterns alternate continually.

With these two facts, we can extrapolate the snapshot image in
Fig. 12.24 as shown in Fig. 12.25.

Now we take note of a third fundamental fact: Electric field lines
cannot begin or end just anywhere in empty space. In empty space
(without electric charges!), there can be only closed-loop electric
field lines3. We have to extend the field lines as measured to give
closed loops. This is shown in Fig. 12.26. We thus finally arrive at
the complete snapshot image as in Fig. 12.27. It shows the electric
field of the source dipole at some distance (i.e. excluding the near-
field region). This is the radiation field of the dipole, discovered by
HEINRICH HERTZ4. As a time-stopped image, it shows the emission
of an electric field in the form of a transverse wave which is prop-
agating outwards in free space. Its field strength is indicated by the
density of the field lines as drawn. Imagine that the equatorial plane is
drawn in and divided up into concentric rings of width �=2. Then the
surface density of the field lines decreases outwards in these rings as
1=r (r is the radius of the ring), not as 1=r2, like the radially-directed
electric field of a charge at rest. This is a fundamental difference be-
tween the electric field of an accelerated charge and that of a charge
at rest.

Figure 12.27, as we mentioned, represents a snapshot, a time-stopped
image. Each radial segment of this image can be thought of as mov-

3 The presence of the (relatively sparse) air molecules is quite unimportant for
electric processes in space. We emphasize this point once again.
4 Annalen der Physik 34, 551, 610 (1888); ibid. 36, 1 (1889).
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Figure 12.26 The extension of
the arrows in Fig. 12.25 to give
complete, closed-loop electric
field lines

S r

Figure 12.27 A snapshot (time-stopped) image of the electric field around an
oscillating dipole: the HERTZian radiation field of a dipole. If we imagine this
image to be rotated symmetrically around its vertical axis, the resulting three-
dimensional distribution illustrates the 1=r dependence of the field strength
(decreasing outwards).

ing outwards from the source at the velocity of light. This leads us to
the vision of a wave which is propagating outwards from the dipole.

For the experimental detection of travelling waves, it is always use-
ful to convert them into standing waves. We recall for example
Fig. 12.44 in Vol. 1. Correspondingly, we allow the waves from the
HERTZian dipole source to reflect at perpendicular incidence from
a sheet-metal wall (“mirror”) and move the receiver back and forth
between the mirror and the source. We record the relative values
of the current in the receiver using an ammeter, and thus the spatial
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ment of the wavelength
of the waves propagat-
ing outwards from
the dipole shown
in Fig. 12.21 (only
relative values are
given on the ordinate)
(Exercise 12.2)
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dependence of the field. The result of such a measurement is shown
in Fig. 12.28. The nodes of the standing electromagnetic waves can
be clearly seen as minima in the recorded field strength. The spacing
of the nodes is found to be about 0.18m. Therefore, the wavelength
of the standing waves, and thus of the original travelling electromag-
netic waves, is about 0.36m in this example. From Eq. (12.1), the
frequency 
 of the dipole oscillations is given by:

3 � 108 m=s
0:36m

� 800MHz :

This experiment has a minor defect: The standing waves are clearly formed
only in the neighborhood of the mirror. Further away, the minima become
flatter and flatter. The reason for this is the strong damping of the oscil-
lations of the source dipole. The individual wave trains initiated by the
spark switch are too short; they resemble the curve shown for example in
Fig. 11.18a at the upper right. At larger distances from the mirror, the
strong displacements from the beginning of the wave train are superposed
onto the weak displacements at the trailing end of the same wave train
which are just moving out from the source. This yields only weakly dis-
cernable minima (cf. Optics, Sect. 20.11).

The pattern of wave emission from a dipole as sketched in Fig. 12.27
can thus be completely confirmed by experiment. An oscillating
electric dipole emits travelling waves with their electric field perpen-
dicular to their direction of propagation (transverse waves) into free
space.

The field-line pattern of the dipole still requires two complementary
additions:

In Fig. 12.27, the part of the field nearest to the dipole (the “near-
field region”) is not drawn in. In that region, it changes with the
momentary charge state of the dipole. We give a brief description in
the caption of Fig. 12.29.

Furthermore, the magnetic field of the dipole must be discussed. The
magnetic field lines are concentric circles (Fig. 12.30). They lie in
planes perpendicular to the dipole axis. The density and direction
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Figure 12.29 Five snapshots of the electric
field near an oscillating dipole: a. Before
the start of the oscillations, both halves of
the dipole are uncharged. There are thus
no electric field lines connecting them. b.
The conduction current has begun to flow
upwards. After one-fourth of an oscillation
cycle, it has charged the upper half of the
dipole positive, and the lower half negative.
Between the halves of the dipole there are
now field lines which loop some distance
outwards. c. During the second quarter-
cycle, the magnitudes of the charges on
both halves of the dipole again decrease:
Here, they have already decreased by about
half. The outer part of the field has moved
further outwards, and at the same time, an
odd constriction of the field lines near the
dipole has appeared. d. At the end of the
second quarter-cycle, the two halves of the
dipole are again uncharged. The constriction
of the field lines is complete. e. In the third
quarter-cycle, the conduction current is now
flowing downwards in the dipole, leading
to a negative charge on its upper half and
a positive charge on its lower half. At the
end of the third quarter-cycle, the pattern
resembles Part b, except that the arrows
(field directions) are now reversed.

a

b

c

d

e

S

λ/2 λ/2 λ/2 λ/2

Figure 12.30 The magnetic field lines of an oscillating dipole

of the magnetic field lines alternate periodically. The magnetic field
moves outwards together with the electric field; at a sufficient dis-
tance from the source (“far-field region”), it is in phase with the
electric field.

Every variation in the electric field (displacement current) creates
a magnetic field. And every variation of the magnetic field creates
an electric field with closed-loop field lines, by induction. The prop-
agation of the entire electromagnetic wave is based upon this close
interlinking of the electric and the magnetic fields.

At a sufficiently great distance from the oscillating dipole, the wave
can be described as a plane wave propagating in the direction of the
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Figure 12.31 An electromagnetic plane wave propagating in the z direction
consists of an electric and a magnetic component, which are polarized in the x
and the y directions, respectively, and oscillate in phaseC12.5 C12.5. For completeness, we

mention that the energy trans-
ported by an electromagnetic
wave, i.e. the energy current
density, is described by the
POYNTING vector:

S D 1

�0
.E � B/

(unit: 1W/m2). With
Eqns. (12.2) and (12.3), we
find

S D 1

�0c
E2
x;0 sin

2 !
�
t � z

c

�

which has the time-averaged
value

S D 1

2

1

�0c
E2
x;0 .

This quantity plays a role in
optics.

(Exercise 12.2)

positive z axis at the velocity of light c (Fig. 12.31). Within this wave,
the electric fields Ex oscillate in the x direction and the magnetic
fields (or the magnetic flux density By) oscillate in the y direction.
Expressed as equations, this corresponds to

Ex D Ex;0 sin!
�
t � z

c

�
and By D By;0 sin!

�
t � z

c

�
: (12.2)

The two waves thus oscillate in phase. The relation between their
amplitudes is given by

By;0 D Ex;0

c
: (12.3)

Today, we can send free electromagnetic waves all around the globe.
They propagate along great circles, experiencing multiple reflections
on the upper layers of the atmosphere. These layers are ionized due
to radiation from space, and thus have a high electrical conductivity
(cf. Optics, Sect. 27.19). The earth’s circumference of 4 � 104 km is
traversed within 0.13 s, i.e. the waves could circle the globe seven
times in 1 s. This makes possible a direct measurement of the prop-
agation velocity of electromagnetic waves using their path travelled
and their transit time.

12.7 Wave Resistance

For sound waves (Vol. 1, Sect. 12.24), we defined the quotient

Pressure amplitude

Velocity amplitude
D p

% K D Z (12.4)

.K D module of compression/

as the acoustic wave resistance for parallel beams of sound waves at
normal incidence onto a boundary between two media. It determines
the reflection coefficient at the boundary interface between the media.
We found (Vol. 1, Eq. (12.50))

R D Reflected radiation power

Incident radiation power
D
�
Z1 � Z2
Z1 C Z2

�2

(12.5)
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Figure 12.32 The calculation of
the resistance U=I D 1=�d of
a square piece of foil parallel to E

E

l

l

d

Cross sectional area
A = ld

for the reflectivity or the reflection coefficient for the sound waves.

In a completely analogous fashion, for electromagnetic waves we de-
fine the quotient

Zel D E

H
(12.6)

as the wave resistance of vacuum (Z1 in Eq. (12.5)) for parallel beams
of plane waves. For these waves, E and H are proportional to each
other. From Eq. (12.3),

B D E

c
D p

"0�0 E or H D
r
"0

�0
E ; (12.7)

it follows that

Zel D
r
�0

"0
D 377� : (12.8)

In Fig. 12.32, we show an electromagnetic wave which is approach-
ing a poorly-conducting wall. We can imagine the wall to consist of
a thin foil of thickness dmade of somematerial with the specific elec-
trical conductivity � .C12.6

C12.6. The specific con-
ductivity � is discussed in
Comment C1.10.

A square piece of such a foil is sketched
in Fig. 12.32. Its OHMic resistance in the direction of the vector E is
given by

U

I
D 1

�

l

A
D 1

�d
: (12.9)

Foils are commercially available which as squares of arbitrary size
have a resistance of U=I D 1=�d D 377� (Z2 in Eq. (12.5)).
Such foils prevent the reflection of normally-incident electromag-
netic plane waves.C12.7

C12.7. We mention a further
application of Eq. (12.5):
We calculate the reflectivity
for an electromagnetic wave
which is normally incident on
the boundary surface between
two dielectric media 1 and 2
(with the dielectric constants
"1 and "2) (cf. Chap. 13). We
have Z1 D p

�0="1"0 and
Z2 D p

�0="2"0. Together
with Eq. (12.11) from the
following section, we find for
the reflectivity�
Z1 � Z2
Z1 C Z2

�2
D
�

n1�n2
n1Cn2

�2
.

This result is derived later in
Sect. (25.8) from FRESNEL’s
formulas.

In the case of guided or conducted electromagnetic waves, the value of the
wave resistance depends on the shape of the electric field. In a LECHER

system, for example, this shape depends on the diameter 2r and the spac-
ing a of the two parallel conductors. Their wave resistance is

U

I
D 120 ln

a

r
� : (12.10)

A numerical example: For a=r D 16, we find U=I D 333�.
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of Electromagnetic Waves
and Light Waves

The HERTZian transmitter (Fig. 12.21, left) has a nearly ideal sim-
plicity and clarity. With such a transmitter, we can readily demon-
strate the analogous behavior of electromagnetic and optical waves.
We have already observed reflection, interference and linear polariza-
tion. The vector of the electric field always oscillates within a plane
which contains the axis of the transmitter dipole. A linear receiver
perpendicular to this plane (Fig. 12.21 right) shows no signal.

HERTZ described a very impressive demonstration of this polarization of
the dipole radiation, the so-called grid experiment5. We place the trans-
mitter and the receiver parallel to each other. Then we insert a grid made
of metal wires with a spacing of ca. 1 cm between the two. First, the wires
are oriented perpendicular to the dipole axis and the direction of the elec-
tric field; this causes no noticeable weakening of the waves detected by the
receiver. Then the grid is rotated by 90ı, so that the wires are parallel to
the dipole axis. It now proves to be completely opaque to the waves. The
wires parallel to the direction of the electric field produce a “short circuit”
and act just like a solid metal wall.
A similar experiment can be carried out in optics; however, for this we use
invisible infrared waves (� D 100�m). At the shorter wavelengths of vis-
ible light, it is not possible to fabricate a sufficiently fine wire grid; instead,
one uses “polaroid foils” (Sect. 24.3). These contain oriented long-chain
polymeric molecules with alternating double and single bonds, which are
electrically conducting along their long axes and thus act as nanoscopic
“wires”.

For the demonstration of refraction, a “cylindrical lens” suffices. This
is a large bottle which is filled with a dielectric liquid, e.g. xylol. Its
long axis is oriented parallel to the receiver dipole. Using prisms of
adequate size, HERTZ was able to determine the refractive index n of
several substances in his classical experiments with electromagnetic
waves. He found that n is equal to the square root of the dielectric
constant " of the substance of which the prism is made. This relation,
n D p

", had already been predicted by MAXWELL on the basis of
his electromagnetic equations. It plays an important role in the theory
of dispersion (Optics, Sect. 27.8).

MAXWELL’s relation n D p
" follows from Eq. (8.7). In a material with

the dielectric constant " and the permeability � (this will be treated in
Sect. 14.1), the products ""0 and ��0 replace "0 and �0 in MAXWELL’s
equations. We thus obtain

Index of refraction n D cvacuum
cmaterial

D
p
""0��0p
"0�0

D p
"� : (12.11)

The permeability of most materials, apart from ferromagnets, is practically
always � � 1 (Sect. 14.3); we thus obtain n D p

" (Exercise 12.4).

5 Annalen der Physik 36, 769 (1888).
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12.9 The Technical Importance
of Electromagnetic Waves

The technology of electronic communications, from its earliest be-
ginnings in the first half of the 19th century, for many decades used
direct currents as carriers. They were modulated by employing
switching devices, e.g. a telegraph key, or by utilizing microphones.
The transmission lines then carried a chopped direct current or an
alternating current in the frequency range of human speech (audio
frequencies, audio currents).

Beginning in 1896 (G. MARCONI), modulated electromagnetic
waves have been increasingly used as communications carriers.
Initially this was achieved with freely propagating waves travelling
in all directions (Fig. 2.12 shows schematically an antenna designed
to receive such waves). Later, the waves were focussed into beams
using concave mirrors (as in a searchlight) or were guided along
double-conductor lines (a further development of the LECHER line).
In the course of these developments, shorter and shorter wavelengths
were employed. For their great and often admirable achievements –
think of the transmission of images of the surfaces of Mars, Jupiter
etc.! – communications engineers had to develop new technologies
for sources of undamped electromagnetic waves with wavelengths
down to centimeters (today, down to millimeters) and for their prop-
agation and their precise control. These technologies have also
enriched physics laboratories for research and teaching. The next
sections will offer some examples of these developments as applied
to fundamental physics.

12.10 The Production of Undamped
Microwaves. Demonstration
Experiments for Wave Optics

For generating undamped electrical oscillations using normal elec-
tron tubes or triodes, an electron current flows in the tube between
its cathode and the anode (plate). The charge (number) density of
the space charge is periodically varied (modulated) using a control
voltage applied between the grid and the cathode. In this way, even
with special designs, it is not possible to generate oscillation frequen-
cies above 3GHzD 3 � 109 Hz, owing to the finite travel time of the
electrons which make up the space charge. This means that the lower
limit for the wavelengths of the electromagnetic waves generated in
such tubes is around 10 cm. However, this travel time itself can be
employed to achieve frequencies up to 100GHz, i.e. wavelengths in
the mm range. We describe here one of the several methods which
have proved to be practical, based on the klystron.
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Figure 12.33 The autocontrol (feedback) of electrical oscillations using a re-
flection klystron. At the left, a schematic; at the right, a photograph of
a technical device, with rotational symmetry, for frequencies of around
10GHz, which can be regulated by varying the distance ˇ � ˛ (screw at b)
(ca. 2/3 actual size; the operating voltages are U1 � 300V,U2 � 150V; a in-
dicates a coaxial cable connector for outputting the electromagnetic waves).

Figure 12.33 (upper left) shows an oscillator circuit schematically.
The plates of its very flat condenser (at ˛ and ˇ) are perforated like
sieves. Electrons which are emitted by a hot cathode (below) can
pass through the openings. Their flight times t within the gap of the
condenser are short compared to the period T of the oscillator circuit.
Furthermore, suppose that some quite weak oscillations are already
present due to random fluctuations (from thermal motions). Then
bunches of electrons leave the condenser at its top with a modulated
velocity. Within each period T , when the upper condenser plate is
positive, the emerging electrons have higher velocities, up to (u C
du) at the time T=4. The electrons which emerge later, at the time
T=2, when the upper plate of the condenser is not charged, have the
same velocities u with which they entered through the lower plate.
Still later, when the upper condenser plate is negative, the emerging
electrons have reduced velocities, down to (u� du) at the time 3T=4.

During this modulation of their velocities, the number density of the
electrons remains constant. In order to modulate it as well, we let
the electron bunches be reflected by a negatively-charged plate P, so
that they return to the condenser. The fastest electrons (with veloc-
ities up to (u C du)) have to traverse the longest paths upwards and
downwards; electrons with the original velocity u traverse a path of
medium length, and the slowest electrons (with velocities down to
(u � du)) traverse the shortest paths (Fig. 12.33, lower left).
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The fastest electrons of the first group begin their flight upwards at
the moment when the positive charge on the upper condenser plate
is at its maximum, i.e. each time at T=4; the electrons of the second
group, with the velocity u, start each time at T=2, when the condenser
plate is uncharged; and the slowest electrons of the third group start
each time at 3T=4, when the upper condenser plate has its maximum
negative charge.

If the voltagesU1 andU2 (Fig. 12.33, upper left) are properly chosen,
then two conditions are met. First: After each full cycle (beginning
each time at T=4 and ending at 5T=4), all the electrons arrive back at
the upper condenser plate nearly simultaneously. Second: They pass
downwards through the condenser in packets with their modulated
number densities combined. This occurs periodically, always at times
when the lower condenser plate is negative. As a result, the electron
packets are slowed; they give up a portion of their kinetic energy to
the electric field of the condenser. This periodic energy input initially
amplifies the weak oscillations, and then maintains them at a constant
amplitude.

Figure 12.33 (right side) shows a wave generator based on this
method, for wavelengths of ca. 3 cm. a is a coaxial connector where
the high-frequency alternating current (
 D 10GHz) can be coupled
out of the generator, e.g. for feeding a transmitter antenna. With
this transmitter, and a receiver antenna with a detector and ammeter,
we can demonstrate all the basic phenomena of wave propagation,
at a somewhat higher cost but no less conveniently than with short-
wavelength sound waves (Vol. 1, Sects. 12.18 through 12.20). We
add to the examples given in Vol. 1 by demonstrating a lens in
Fig. 12.34. Speaking figuratively, it is made as a regular crystal. Its
“atoms” consist of thumbtacks ordered on a square lattice. More
details are given in the figure caption.

Among the other devices used to generate undamped electrical oscil-
lations at very high frequencies which are based on the finite transit
times of electrons, the most important is the magnetron. There, the

Figure 12.34 Above: A cross section through
a lens for electromagnetic waves. The scattering
elements or “atoms” are thumbtacks which are
pressed into a polystyrene plate (transparent to the
waves). Below: The plate in a plan view (the sec-
tion marked above with an arrow). (See Sect. 27.6)
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stant amplitude is provided by electrons that are moving on circular
orbits at their cyclotron frequencies in a magnetic field (see Comment
C8.1). With such magnetrons, which played an important role in
the early development of radar, electrical oscillations at frequencies
between 1 and 100GHz can be generated, corresponding to wave-
lengths between 30 cm and 3mm. Magnetrons with an output power
in the range of several kilowatt are used today in microwave ovens
(see Sect. 13.11).

12.11 Waveguides
for Short-Wavelength
Electromagnetic Waves
(Microwaves)

In a LECHER line, the distance between the two conductors is small
compared to the wavelength of the electromagnetic waves they con-
duct. The LECHER line thus corresponds to the speaking tubeswhich
were once common in households and in ships. The LECHER sys-
tem can also be redesigned: One of the conductors can be formed
as a tube which surrounds the other concentrically, and the two con-
ductors can be separated by dielectric spacers or a dielectric material
which fills all the space between the outer conductor (tube) and the
inner central wire.C12.8 C12.8. However, when the

space between the conduc-
tors in such a coaxial cable is
filled with a dielectric mate-
rial (plastic) with an index of
refraction n, the waves prop-
agate along the cable only at
the velocity of light in that
medium, that is at c=n.

Starting with such a concentric, coaxial LECHER system, one ar-
rives at a waveguide when the axial (center) conductor is left out
completely (LORD RAYLEIGH, 1897)6. Then only the outer tube
remains. In practice, usually a rectangular cross section is employed.
A waveguide has quite different properties from a speaking tube or
its electrical analog, a LECHER line: A waveguide transmits only
those waves whose half-wavelength is smaller than the largest inner
dimension of the waveguide. Here, we must distinguish between two
different velocities: First, the velocity u at which a signal carried by
the waves, that is a wave train or packet with a beginning and an end,
called a wave group, can move on a zig-zag path along the axis of
the waveguide. Second, the phase velocity v at which a wave which
is modulated transversely to the axis travels through the waveguide.
These two velocities are related to the velocity c of electromagnetic

6 Concentric LECHER lines have the disadvantage that they often function in ad-
dition as waveguides. This can be prevented only by reducing the cross-section
of the outer tube. This reduction, however, leads not only to technical difficulties
(centering of the axial conductor, sufficient electrical insulation), but also to an un-
acceptably large increase in the damping. The latter increases when the quotient
circumference/cross-sectional area increases.
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Modulation length l = λ/sin β

Wavelength of the
modulated wave

λ* = λ/cos β

Direction of the
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Figure 12.35 Please look at this figure with one eye! The interference between two
plane waves of the same frequency which meet at an angle 2ˇ produces travelling
waves in the z direction. Their amplitudes, that is the heights of their crests and
troughs, are directed along the y axis, and are thus transverse to the propagation di-
rection; they are modulated with the modulation length l D �= sinˇ (at the right is
a snapshot of waves on a water surface, taken with an exposure time of .1=250/ s).
As the angle ˇ between the two wave trains increases, so does the phase velocity
v D c= cos ˇ of the resultant waves propagating along the z direction, whose am-
plitudes are transversely modulated. This can be readily seen in the demonstration
experiment. At the limiting angle ˇ D 90ı, we find for the phase velocity v D 1;
the result is a standing wave. Its modulation length is l D �; that is, the spacing
between neighboring interference minima is l=2 D �=2. In standing waves, the
interference minima are called nodes. (In the example: ˇ D 76ı, � D 5:8mm,
l D 6mm, �
 D 25mm)

waves in free space (vacuum)7 by the equation

uv D c2 : (12.12)

These properties of waveguides, which at first may appear somewhat
strange, have a single origin: The electric field strength must be zero
wherever the electric field lines of the wave approach the metal walls.
We must explain this in somewhat more detail:

As an introduction, Fig. 12.35 shows a well-known phenomenon
from mechanics. At the left is a sketch of the momentary configu-
ration, and at the right a photographic image, of surface waves on
water resulting from interference between two linear wave trains.
Their directions of propagation 1 and 2 make an angle of 2ˇ with
each other. The two wave trains superpose to give a resultant wave
train; it has the wavelength �
 D �= cosˇ and travels in the z direc-
tion at the high phase velocity v D c= cosˇ. Its amplitude, that is the
height of its wave crests (e.g. along BB0) and the depth of its troughs
(e.g. TT 0), vary along the y direction, i.e. the wave is thus modu-

7 Free space (vacuum) is non-dispersive, and therefore, its signal or group velocity
and its phase velocity are identical.
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Figure 12.36 Construction of a wave which propagates in the z direction
and is modulated transversely to its direction of propagation. It utilizes the
multiple reflections of a plane wave on two perfectly reflecting walls placed
at the interference minima. ˇ has the same meaning here as in Fig. 12.35.
Along the zig-zag path, energy is transported at the velocity c, while along
the waveguide axis (z direction), it is transported only at the group velocity
u D c cosˇ. The figure also explains the propagation of energy in any inter-
ference field: The interference minima act, figuratively speaking, as perfect
mirrors.

lated transversely8 to the propagation direction: The wave crests are
divided by depressions and the troughs by elevations which follow
each other at a spacing l D �= sinˇ (called the modulation length).
Half of this modulation length is the distance between neighboring
interference minima, i.e. the lines along which the amplitude remains
zero (for example the lines connecting the points aa0, bb0 etc.).
The wave sequence discussed in Fig. 12.35 can be produced experi-
mentally in a simple fashion. This is shown in Fig. 12.36: The region
where the waves can propagate freely is bounded above and below by
two perfectly reflecting walls (shaded). The spacing of these walls
is taken to be an integral multiple N of half the modulation length,
i.e. l=2. At the left, a single wave train enters the region between
the two mirrors, and it passes along them at the phase velocity c (see
footnote 2), following a zig-zag path. As a result, a signal propagates
in the z direction only at the low velocity u D c cosˇ. We thus find,
since the phase velocity of the resultant wave with wavelength �
 is
v D c= cosˇ, that uv D c2.

So much for the results with mechanical (surface) waves. Their ap-
plication to electromagnetic waves in waveguides need only be elu-
cidated with the help of an example. Figure 12.37 shows a first
approximation: Instead of a rectangular waveguide, we see a region
in the field of a linearly-polarized electromagnetic plane wave which
is bounded by two conducting sheets. The wave propagates in the z
direction with its electric field in the x direction. The amplitudes of
the wave are independent of the y direction, apart from some unim-
portant edge effects; therefore, we can represent the amplitude all
along the y axis with arrows of the same length. This is shown in the
figure at two amplitudes.

Figure 12.38 shows a different case: Here, the two vertical conduct-
ing sheets are joined above and below by horizontal sheets to make
a closed profile with a rectangular cross section. Now, a homoge-
neous distribution of the electric field in the y direction is impossible:
The electric field has to be zero above and below where its field lines

8 In communications technology, an amplitude modulation of waves along their
propagation direction also plays a significant role.
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Figure 12.37 A drawing
in perspective of a region
bounded by two conducting
sheets in which an elec-
tromagnetic plane wave is
propagating with its electric
field oscillating in the x direc-
tion. Its field lines meet the
two sheets at normal incidence
and end there. The electric
field amplitude is independent
of y.
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Figure 12.38 The corresponding picture after the two vertical conducting
sheets have been joined above and below by horizontal sheets to give a rect-
angular profile, a RAYLEIGH waveguide. The waves must be modulated in
the y direction, that is perpendicular to their direction of propagation, so that
their electric field strength becomes zero at the points where the field lines
intersect the conducting walls.

graze the conducting walls (corresponding to a perfect reflection).
This is achieved by a modulation of the wave amplitude in the y di-
rection. In Fig. 12.38, the modulation length has been chosen to be
l D 2B=3 (corresponding in the example to ˇ D 54ı). In the case of
the water surface waves, Fig. 12.38 would correspond to Fig. 12.39.
Waves can propagate through this waveguide only when a modulation
length of l D 2B=N can be achieved for them within the waveguide
(N is an integer). Therefore, � D 2B is the largest wavelength which
can be transmitted through the waveguide. Longer waves cannot ful-
fill this requirement, namely that the electric field be exactly zero
at the points where its field lines graze the conducting walls of the
waveguide.

Instead of a tube with a circular or rectangular cross section, a number
of other forms can be used as waveguides. For example, a helical
wire, a single wire with a dielectric covering, or in the laboratory and
for demonstration experiments, a rubber hose9 might be used.

9 F.E. Borgnis and C.H. Papas, “Electromagnetic Waveguides”, Handbuch der
Physik, Flügge, Vol. 16 (1958).
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Figure 12.39 The same field distribution as in Fig. 12.38, here as a section
from a photograph of water surface waves. The saddle points along the wave
crests correspond to regions with field strengths E pointing in the positive x
direction, while in the troughs, E points in the negative x direction. At rest,
the water surface would correspond to the area bounded by dashed lines in
Fig. 12.38, where the vector arrows representing the electric field all begin.

For measurements and experiments which use electromagnetic waves in
the centimeter and decimeter wavelength range, waveguides are just as
important as wires and coaxial cables for the usual electrical measurement
instrumentation. There is a voluminous specialized literature with its own
terminology. For example: Reflections on the tube walls are decisive for
the formation of tube waves. As is known from optics, reflections are de-
pendent on how the electric field E and the magnetic field H are oriented
with respect to the plane of incidence (Optics, Sect. 25.6). If E lies per-
pendicular to the plane of incidence10, i.e. it is “transverse”, then H has
a component parallel to the long axis of the tube. IfH lies perpendicular to
the plane of incidence (“transverse”), then E has a component parallel to
the tube axis. In the former case, waveguide engineering classes the waves
as TE or M waves; in the latter case, as TM or E waves. Often, indices are
also added to denote the number of modulation lengths parallel to the long
or short sides of the rectangular waveguide.

For measurement purposes, a narrow longitudinal slit is cut into the
wall of the waveguide. Then a small receiver (cf. Fig. 12.16) can be
slipped in, parallel to the waveguide axis. It can be used to determine
the wavelength when a reflecting wall at the end of the waveguide is
used to produce standing waves. Thus, for example, we can measure
e.g. the wavelength �
 in Fig. 12.38 which belongs to the high phase
velocity v D c= cosˇ.

Exercises

12.1 In Fig. 12.21, the ammeter indicates a current, although of
course it responds only to currents of very low frequency. Explain
this. (Sect. 12.6)

12.2 In order to understand the observed standing electrical wave
in Fig. 12.28 as the superposition of two travelling waves, consider an
electromagnetic wave which is incident along the z axis from z > 0
onto a metal mirror at z D 0. The motion of its electric-field compo-
nent is described by Ex D Ex;0 sin!.tCz=c/. At the mirror, this wave

10 The plane of the page in Fig. 12.36, the yz plane in Fig. 12.38.
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is reflected and it propagates in the positive z direction, opposite to
the incident wave. The two wave trains superpose to give a resultant
wave Etot. a) Write the equation which describes the reflected wave,
so that, as in Fig. 12.28, a node is present at the mirror (z D 0). b) In
addition to the electric-field component Ex, electromagnetic waves
have also a magnetic component By. It oscillates in phase with the
electric component (Eq. (12.2)), where E, B and the propagation di-
rection are oriented to form a right-handed coordinate system (see
Fig. 12.31). The reflection leads to a standing wave Btot for the mag-
netic component, also. Find expressions for the two magnetic-field
waves which are superposed, and for Btot. What is the amplitude
of Btot at the surface of the mirror? (The trigonometric formula for
the sum of two sine functions is helpful for solving this exercise.)
(Sect. 12.6)

12.3 The heating element of a hotplate is 1m long and has a diam-
eter of 2r D 1 cm. a) At a voltage of 220V and a current of 4.5A
(effective values), calculate the electric field E in the element, the
flux density B of the magnetic field at its surface, and the resulting
POYNTING vector S (see Comment C12.5.)
b) Compare the values obtained with that of the sun’s radiation (solar
constant b, Sect. 19.3). (Sect. 12.6)

12.4 In Fig. 12.12, a dipole in water is excited to electrical oscilla-
tions by electromagnetic waves which are radiated into the glass ves-
sel through its surface at normal incidence from the outside. Find the
reflectivity R of the water in this experiment (see Comment C12.7).
(Sect. 12.8)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_12) contains supplementary material, which
is available to authorized users.
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13.1 Introduction. The Dielectric
Constant "

Thus far, we have dealt only with electric fields in empty space.
The presence of air molecules could be neglected in our consider-
ations; their influence is felt only in the fourth decimal place by
6 digits. However, when we consider fields in insulating materials
– dielectrics – with a dense packing of atoms or molecules, that is
liquids and solids, the situation becomes different. Such a dielectric
between the plates of a condenser increases its capacitance. Thus, in
Sect. 2.17, we proposed a definition of the dielectric constant:C13.1 C13.1. In general, " is not

constant, as is demonstrated
in the following with a num-
ber of examples. In the
literature, " is often denoted
as "r (r means “relative to the
vacuum”) and is called the
“relative permittivity”. The
product "0"r is frequently
denoted simply by " and is
called the “permittivity” (and
therefore, "0 is the “permit-
tivity of vacuum”).

" D Capacitance Cm of a condenser which is filled with matter

Capacitance C0 of the empty condenser
:

(2.25)

Cm is larger than C0, so that " is always a number greater than one.

13.2 Measuring the Dielectric
Constant "

At a fixed voltage U, the charge Q on a condenser is proportional to
its capacitance C (C D Q=U). For a parallel-plate condenser, the
quotient of the charge Q and the plate area A gives the surface charge
density or displacement density D D Q=A (Sect. 2.13). Then we
obtain for the dielectric constant:

" D Qm

Q0
D Dm

D0
: (13.1)

The charge, and its surface density, increase when a dielectric is in-
serted. Figure 13.1 shows how we can measure " based on this fact.

Various experimental arrangements have been developed for the
measurement of the dielectric constant. Usually, instead of only one
current impulse or charging cycle of the condenser, a periodic series
of current impulses is employed; this is achieved by utilizing alter-
nating current. Furthermore, the sensitivity of the measurement is

243© Springer International Publishing AG 2018
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Figure 13.1 Measuring the dielectric constant ". The in-
crease in the charge on the condenser plates is determined as
a current impulse by a ballistic galvanometer. The deflection
of the galvanometer is proportional to ".

G

Figure 13.2 A bridge circuit for comparing two
capacitances. The measuring instrument (e.g. a gal-
vanometer or an oscilloscope) is used as a zero
detector. The OHMic resistors R1 and R2 are vari-
able and known; the capacitance C1 is also known
(Exercise 13.3)

1

2

C1

R1 R2

Cx

G

improved by using some sort of compensation or difference method,
for example some type of “bridge circuit” (Fig. 13.2).

Equation (13.1) holds for a fixed voltage. When the voltage source
is disconnected, the charge Q remains constant (Fig. 2.3). Then C
is proportional to 1=U. For a parallel-plate condenser, the quotient
of voltage U divided by the plate spacing l gives the electric field
strength, E D U=l (Sect. 2.12). Then we have for the dielectric con-
stant:

" D U0

Um
D E0

Em
: (13.2)

The voltage or the electric field strength thus decreases when a di-
electric is inserted; for the measurement, we determine the voltage
drop when the condenser is completely filled with the material. It is
proportional to " (Video 2.1)

Video 2.1:
“Matter in an electric field”
http://tiny.cc/s9fgoy.
It is shown how inserting
various materials into the
electric field of a parallel-
plate condenser which has
been disconnected from
the current source produces
a decrease in the condenser
voltage. Its capacitance is
thus increased. In this exper-
iment, the space between the
condenser plates is only par-
tially filled by the material.

Materials which are poor insulators require a special setup; for exam-
ple, using the method of P. DRUDE: A LECHER line (Sect. 12.4) is

Table 13.1 The dielectric
constant " of various mate-
rials

Liquid air 1.5
Petroleum 2
Amber 2.8
Bakelite board 4
Polyvinyl chloride (PVC) (50Hz) 3.4
Porcelain 4–6
Glasses 6–8

http://tiny.cc/s9fgoy
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length of radiation along it relative to its wavelength in air (vacuum)
is determined at that frequency (see also Sect. 13.11 and Fig. 12.12).

Some results of measurements for various dielectric materials can be
found in Table 13.1.

13.3 Two Quantities Which Can Be
Derived from The Dielectric
Constant "

The dielectric constant, which is in general readily measured, yields
two other quantities which are important for physics and chemistry.
They are:

1. The dielectric polarization:C13.2 C13.2. It is not necessary to
use vector notation at this
point, while we are con-
sidering a parallel-plate
condenser; it will be intro-
duced later in Sect. 13.5.

P D Dm � D0 : (13.3)

The dielectric polarization is thus the additional contribution to the
field Dm which results from production or orientation of electric
dipoles in matter (Fig. 2.56). Its unit is e.g. A s/m2. Another defini-
tion is equivalent: The dielectric polarization of a material is:

P D Electric dipole momentp

VolumeV
: (13.4)

Derivation: We imagine a block of material (base area A, height l) to be
homogeneously polarized. Then on its end surfaces, there is a bound elec-
tric chargeC13.3 C13.3. In contrast to the

“free” charges on the plates
of the condenser.

Q D PA. Furthermore, from Sect. 3.9, its electric dipole
moment p D Q l D PA l D PV , and therefore, P D p=V .

2. The dielectric susceptibility

�e D "� 1 D Dm � D0

D0
D P

"0E0
: (13.5)

The susceptibility can also be referred to the density % of the material,
�e=%. This quantity is called the relative susceptibility of the material.

13.4 Distinguishing Dielectric,
Paraelectric and Ferroelectric
Materials

After explaining the measurement methods, we now wish to give
a brief overview of the behavior of insulating materials (“dielectrics”)
in an electric field. All these materials can be grouped into three large
classes, which can be considered to be ideal limiting cases:
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1. Dielectric materials with non-polar molecules

Their dielectric constants " and susceptibilities �e D " � 1 are ma-
terial constants, i.e. they are independent of the electric field which
produced the polarization. At constant density, they are also indepen-
dent of the temperature.

In an atomic picture, this means that the molecules of these dielectric
materials themselves have no electric dipole moments. Their dipole
moments are induced by the applied electric field due to influence
(Fig. 2.56). The non-polar molecules are electrically deformed by the
field and thus become polarized. Table 13.2 sets out some numerical
values for dielectric materials.

2. Paraelectric materials with polar molecules

For this group of materials, also, the dielectric constants " and
the susceptibilities �e are quantities which are independent of the
strength of the electric field; they are material constants. Numerical
examples of " are set out in the second column of Table 13.3. " and �e
are however temperature dependent; they increase with decreasing
temperature.

Interpretation: The molecules of paraelectric materials are not only
electrically deformable, like the non-polar molecules of dielectric
materials, but also have permanent electric dipole moments pp, inde-
pendently of the applied field (polar molecules; examples are given
in Table 13.3). The applied electric field tends to align these initially
randomly-oriented microscopic dipoles along its axis; however, the

Table 13.2 The dielec-
tric constants " of some
dielectric materials ("
always > 1 !) (1 atm
D 1:013 � 105 Pa)

Substance "

Helium, 1 atm, 20 ıC 1.00006
Air, 1 atm, 18 ıC 1.00055
Air, 100 atm, 0 ıC 1.05404
Carbon dioxide, 1 atm, 0 ıC 1.00095
Bromine vapor, 0.16 atm,
20 ıC

1.00035

O2 liquid, �183 ıC 1.464

Table 13.3 Dielectric constants " and molecular electric dipole moments
pp of some paraelectric materials (cgs unit: 1Debye b� 3:4 � 10�30 A sm)
(Exercises 13.6, 13.7)

Substance " pp in A sm
Ammonia (NH3) (gas) 1 atm, 0 ıC 1.0072 6:13 � 10�30

KCl (in a molecular beam) — — 34 � 10�30

Ice �20 ıC 16 —
Methyl alcohol 18 ıC 31.2 5:60 � 10�30

Glycerine 18 ıC 56.2 —
Water 18 ıC 81.1 6:1 � 10�30

HCl 1 atm, 0 ıC — 3:4 � 10�30
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U on the dielectric constant " of a fer-
roelectric crystal. Above: Schematic of
the principle; Below: Observation using
an oscilloscope (at the left is a block of
SEIGNETTE salt crystal with a thickness
of d D 1 cm, and two end surfaces of
ca. 3 � 3 cm2. The right-hand condenser
has a capacitance of around 2 � 10�6 F, the
left-hand condenser about 5 � 10�8 F; there-
fore, nearly all of the voltage drop U occurs
across the crystal).

I

I

C

C

U

a

UC E

Ueff ≈ 300 V

molecular thermal motions oppose the alignment and tend to main-
tain the random orientations of the molecules (see Sect. 13.10).

3. Ferroelectric materials

As representatives of this group, we mention potassium sodium tar-
trate (C4H4O6KNa C 4H2O), discovered by the pharmacist P. SEIG-
NETTE (1660–1719); and barium titanate (BaTiO3), as well as potas-
sium dihydrogen phosphate (KH2PO4, abbreviated KDP).

Ferroelectric materials are characterized by the extraordinarily large
magnitudes attained by their dielectric constants. Values of several
104 have been observed. These values are however not even approx-
imately constant. They depend not only on the applied field strength
(� U), but also on the previous history of the sample.

For a demonstration, the setup sketched in Fig. 13.3 (top) is in prin-
ciple suitable. It consists of two condensers in series, connected to
an alternating current source. The capacitance of the right-hand con-
denser is very large compared to that of the left-hand condenser. As
a result, for a given voltage U, the current I is practically determined
by the capacitance of the left-hand condenser alone; it is proportional
to the voltage U of the current source and to the dielectric constant
" of the material in the left-hand condenser, i.e. I � "U. This cur-
rent produces the voltage UC between the plates of the right-hand
condenser; it is likewise proportional to I, so that "U � UC.

We now want to show experimentally how "U depends on U. This
can be most simply accomplished by using an oscilloscope (Fig. 13.3,
bottom). Figure 13.4 shows an example: It is a complicated curve,

Figure 13.4 A hysteresis loop, registered with the
setup shown in Fig. 13.3 (the coordinate axes were
drawn in after the measurement). The ordinate is
proportional to "U or D; the abscissa is proportional
to U or E. D is the displacement density and E D
U=d is the electric field strength in the crystal.

εU
~D

U~E
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called a hysteresis loop (Vol. 1, Fig. 8.14). Corresponding pairs of
values on the ordinate and the abscissa show that the quantity " is by
no means constant.

Above a certain temperature (the CURIE temperature, for the SEIG-
NETTE salt about 25ıC), the hysteresis loop degenerates into a straight
line which has only a small slope relative to the abscissa: Thus, "
is small and constant above the CURIE temperature; there, one finds
only the normal behavior as seen in the materials of the 1st and 2nd
groups.C13.4C13.4. See for example

F. Jona and G. Shirane,
“Ferroelectric Crystals”,
Pergamon Press, 1962. At
this point, we should also
again mention the elec-
trets which were already
described in Sect. 3.10.
These are materials with
a “frozen in” polarization
P. They correspond to per-
manent magnets made of
ferromagnetic substances,
in the case of magnetic
dipoles. For technical ap-
plications (e.g. microphones
and loudspeakers), electrets
are usually applied in the
form of thin films (�10�m
thick).

13.5 Definitions of the Electric Field
Quantities E and D Within Matter

The definitions given in Sects. 13.1 and 13.3 for the material con-
stants of dielectrics are straightforward and correct, but they refer
only to the average values as determined by the condenser setups used
there. We now want to give general definitions of the field quantities
E and D in the interior of a dielectric, based on experimental results:

Let us consider a parallel-plate condenser (e.g. as in Fig. 13.1), which
is initially completely filled with a homogeneous dielectric material.
A section of it is sketched in Fig. 13.5; it can be seen to contain two
small cavities. One of them is a flat transverse slit, perpendicular to
the direction of the applied field1; the other is an axial channelwhich
is parallel to the field direction. Both cavities serve to accommodate
a measuring instrument (real or virtual), indicated by a dot in the
figure. In both cavities, the fields E and D are measured. We find
that they are different in the two cavities. In detail, the results are as
follows:

1. The fieldDmeasured in the transverse slit has the same magnitude
as that measured in Fig. 13.1 as condenser charge/condenser plate
area, i.e. D D Dm. This is easily understood. Imagine that the cavity
were located directly adjacent to one of the condenser plates. In the
limit of vanishing thickness, we define this field as the displacement
density within matter, and denote it by the vector D.C13.5C13.5. The field D is thus de-

termined here by the charges
on the condenser plates, the
so-called free charges. In
contrast, the field E is deter-
mined by all the charges (free
and bound). The MAXWELL

equation (Eq. (6.21)) which
holds in vacuum can be cor-
respondingly rewritten in the
presence of matter as:

divE D 1

"0
.%free C %bound/ .

2. The electric field E found in the axial channel has the same magni-
tude as that measured in the empty condenser, i.e. E D E0. This can
be shown for a channel of suitable dimensions (Fig. 13.6): The part
of the condenser plate which lies above the channel is separated from
the rest of the plate by a slit. We measure the displacement density
Q=A within this channel and find that it is the same as in the empty
condenser, independently of the width of the channel. This result can
be extended in a thought experiment to all axial channels, even if they

1 The direction of the field in a parallel-plate condenser is always well defined. In
other cases, we can imagine a sufficiently small spherical cavity within the mate-
rial. The field direction found within the cavity is identified as the field present
within the matter.



13.6 Depolarization 249

Pa
rt
IFigure 13.5 The geometry of the cavities: An axial

channel and a transverse slit
Field direction

Axial channel

Transverse slit

Figure 13.6 The equality of the electric field E in matter
and in an axial channel

V

are too narrow to allow direct measurements. We then obtain E in the
cavity by dividing this displacement density by the field constant "0.
As a result of the equality of E and E0, the relation

R
Eds D U holds

also for E (Eq. (2.3)). For this reason, in the limit of vanishing thick-
ness of the axial channel, we define the quantity E as the electric field
within matter and denote it by the vector E.

By introducing these vector fields E and D within matter, we arrive
with the aid of Eq. (13.3) at the definition of the vector field P, the
electric polarization:C13.6

C13.6. Equation (13.6)
demonstrates in an espe-
cially clear way the dif-
ference between the fields
E and D in matter which
we already pointed out in
Comment C2.13. Think for
example of the fields within
a uniformly polarized disk of
matter (an electret) (see also
Sect. 13.6).

Note that the direction
of the vector P is defined in
such a way that it points from
the negative (bound) charges
to the positive (bound)
charges (just like the dipole
moment p of an electric
dipole, Sect. 3.9).

P D D � "0E : (13.6)

In materials with a constant value of " (and thus no hysteresis), it
follows from Eqns. (13.1) and (13.5) that the relations

D D ""0E (13.7)

and

P D "0."� 1/E D �e"0E (13.8)

hold. These three equations describe the relations between the vector
fields at each point in space.

13.6 Depolarization

The vector fields introduced for the interior of dielectric matter will
now be investigated in the case that a piece of matter is brought into
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+
+

+
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Figure 13.7 Depolarization. The field produced by the influence charges is
superposed on the fixed, homogeneous external field. Thus, the total field
within the matter is reduced. The total field in the space outside the matter is
also modified by this superposition.

a constant, fixed external field E0
2 (Fig. 13.7). This field is presumed

to be homogeneous and produced by charges which are located some
distance away, so that they are not influenced by the polarization of
the piece of matter, i.e. their spatial arrangement remains unchanged
(Exercise 13.5).

We begin with a simple case, an extended disk with its plane oriented
perpendicular to the field E0. According to Sect. 13.5, it follows that
the displacement density D0 D "0E0 directly in front of the disk is
equal to the field D in its interior, D D ""0E. Then we find

E D 1

"
E0 : (13.9)

Making use of Eq. (13.8), we can cast the above equation in the form

E D E0 � 1

"0
P : (13.10)

Thus, due to the polarization, the electric field E within the piece
of matter is smaller than E0 (E0 and P are parallel). This is called
depolarization.

In a second example, instead of the disk, a long dielectric rod is
brought into the external field, parallel to E0. It then follows, again
as in Sect. 13.5, that

E D E0 : (13.11)

This is easy to understand, since the polarization charges at the ends
of the rod are far apart and the surface area of the ends is small. The
depolarization effect is thus negligible.

With a sample in the shape indicated in Fig. 13.7, we could sup-
pose that the depolarization would have a value intermediate between
these two examples. Indeed, within an ellipsoid of rotation whose

2 Not to be confused with the field which we have thus far denoted as E0, which
was the field of an empty condenser, produced by the charges on its plates, and
which would be changed on inserting matter into the condenser due to the addi-
tional charges which would then flow onto the plates.
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Length

Diameter

0
(Disk)

1
(Sphere)

0.1 0.2 10 20 50 1 (infinite
wire)

1 1
3 0.863 0.77 0.0203 0.0068 0.0014 0

axis of rotational symmetry is parallel to E0, the depolarization ef-
fect leads to a homogeneous field E, which is likewise parallel to E0.
Then we findC13.7 C13.7. For a derivation, see

for example A. Sommer-
field, “Electrodynamics”
(Lectures on Theoretical
Physics, Vol. III), Academic
Press, 1952, Sect. 13. See
also Richard M. Bozorth,
“Ferromagnetism”, D. Van
Nostrand Co., Ltd., 1953,
Chap. 9.

E D E0 � N

"0
P ; (13.12)

where P is also homogeneous and parallel to E0. N, called the de-
polarizing factor, is a number which is determined by the ratio of
the length of the axis of rotation to the diameter of the ellipsoid; see
Table 13.4. With Eq. (13.8), we can rewrite Eq. (13.12):

E D 1

1 C N."� 1/
E0 : (13.13)

Equations (13.9) and (13.11) represent special cases of this equation,
with N D 1 (disk) and N D 0 (rod).C13.8 C13.8. Depolarization also

occurs in the experiment of
Fig. 13.1; there, N D 1, al-
though the field there was
held constant using the volt-
age U. This is however the
total field. The “polarizing”
field E0, which is produced
by the condenser charges (the
“free” charges), indeed in-
creases when the dielectric is
inserted owing to the charges
which then flow onto the con-
denser plates. This increase
in the field is just compen-
sated by the polarization.

In the special case of a spherical sample, N D 1
3 and thus in its

interior, the field strength is only

E D 3

."C 2/
E0 : (13.14)

This likewise homogeneous field can be considered to be the sum of
the external field E0 and the field produced by a uniformly polarized
sphere, Ep,

E D E0 C Ep : (13.15)

Comparison with Eq. (13.12) yields

Ep D � 1

3"0
P : (13.16)

The field Ep is thus determined only by the polarization. Further-
more, it is independent of the manner in which the polarization was
produced (if this were not the case, we could construct a sphere with
P D 0 and Ep ¤ 0!). Then, Eq. (13.16) holds e.g. also for a spherical
electret.

13.7 The Electric Field Within a Cavity

If we were to exchange the roles of the dielectric material and the
empty space in Fig. 13.7, as suggested in Fig. 13.8, then we could
expect, due to the polarization charges on the inner surfaces of the
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Figure 13.8 A cavity in a polarized dielectric
C A

empty space, that the field Ei would be greater than the field outside.
In the case of a spherical bodywith a dielectric constant "i within a di-
electric material of dielectric constant "a, this (homogeneous) field
is:C13.9C13.9. For a derivation,

see F. Hund, “Theoretische
Physik”, B.G. Teubner, 3rd
ed., 1957, Vol. 2, Sect. 18.

Ei D 3"a
"i C 2"a

Ea ; (13.17)

where Ea is the field of the material in the outer region at some
distance from the cavity, i.e. the homogeneous field that would be
present in the material without the cavity. For "a D 1, we find
Eq. (13.14). For "i D 1 (for example the interior of an empty spheri-
cal bubble), it follows that

Ei D 3"a
2"a C 1

Ea : (13.18)

13.8 Paraelectric and Dielectric
Materials in an Inhomogeneous
Electric Field

All paraelectric and dielectric materials are pulled toward regions of
greater field strength within an inhomogeneous electric field. This
recalls the oldest electrical observation, the attraction of scraps of
cloth or paper to charged bodies, e.g. a rubbed amber rod (Fig. 3.19).
Depolarization makes a quantitative treatment of this phenomenon
rather complicated. It succeeds only for bodies of simple, symmet-
ric shape, for example for the attraction between a small insulating
sphere (volume V) and a large charged sphere (radius r). When the
distance between their centers is R, we find for the magnitude of the
force

F D 6r2V"0."� 1/

"C 2
� U

2

R5
: (13.19)

The force thus decreases as the fifth power of the distance! Fig-
ure 13.9 shows an example.

Derivation of Eq. (13.19): Eqns. (3.28) and (13.4) yield

F D p
@ER

@R
D PV

@ER

@R
: (13.20)
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lating sphere in the inhomogeneous electric field
of a large sphere, measured using a spiral-spring
balance (example: an amber sphere of diameter
D 6mm, V D 1:13 � 10�7 m3, " D 2:8, radius of
the charged sphere r D 2 � 10�2 m, U D 105 V,
R D 5 � 10�2 m, depolarizing factor N D 1=3
(Table 13.4), F D 2:9 � 10�5 N). The reader
should look at Exercise 2.16 in this connection.

R

At the point of observation, according to Eqns. (2.15) and (2.16), we have

ER D Ur

R2
(13.21)

and

@ER

@R
D �2Ur

R3
: (13.22)

The electric polarization of the small sphere is

P D "0." � 1/E ; (13.8)

and the field strength in the interior of the sphere is

E D 3

"C 2
ER : (13.14)

Combining Eqns. (13.14), (13.20) and (13.22) yields Eq. (13.19).

13.9 The Molecular Electric
Polarizability.
The CLAUSIUS-MOSSOTTI Equation

The different behavior of dielectric and paraelectric materials has
already been explained qualitatively in Sect. 13.4. Its quantitative
explanation is rather important for an understanding of molecular
structure and thus for chemistry. To arrive at it, we need the con-
cept of molecular electric polarizability. We derive it using what we
have learned about depolarization in the previous sections.

In the interior of a body of volume V, let the electric field be E, and
assume that it produces an electric polarization in the body:

P D "0."� 1/E : (13.8)
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With this polarization, the body acquires an electric dipole moment
p parallel to the direction of the field. Then Eq. (13.4) applies. In
vector form, it states that

P D 1

V
p : (13.23)

In an atomic picture, the total electric dipole moment p is interpreted
as the vector sum of the average molecular contributions p0 which are
due to the N individual molecules, that is:

P D N

V
p0 D NV p0 (13.24)

.NV D N=V D number .particle) density of the molecules/:

We combine Eqns. (13.8) and (13.24), obtaining:

p0 D 1

NV
P D "0." � 1/

NV
E : (13.25)

Experimentally, we find that " is constant, and thus the average con-
tribution p0 is proportional to the magnitude of the field acting on the
molecules, which we call Ew. For this reason, we set

p0 D ˛Ew (13.26)

and call ˛ the molecular electric polarizability. Note that p0, Ew,
and ˛ are all microscopic quantities, acting at the level of atoms or
molecules.

As the effective field Ew, for gases, vapors and dilute solutions, we
can simply take the field E which occurs in Eq. (13.25). We then
obtain

˛ D "0." � 1/

NV
(13.27)

.e.g. ˛ in A sm2=V; "0 D 8:86 � 10�12 A s=.Vm//:

In liquids and in solid bodies, setting Ew and E equal is no longer per-
missable. In these “condensed phases”, the molecules are too densely
packed, and therefore, their interactions with one another must be
taken into account in polarized liquids and solids. This is done in the
equation for the molecular electric polarizability that was suggested
by CLAUSIUS and MOSSOTTI:

˛ D 3"0
NV

� " � 1

"C 2
(13.28)

.for " � 1; this equation reverts to Eq. (13.27)/:

Derivation of Eq. (13.28): We start from Eqns. (13.24) and (13.26). They
give

P D ˛NVEw : (13.29)
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remaining molecules are divided into two groups of unequal size. In the
first, smaller group, we include all those molecules in the immediate neigh-
borhood of molecule a. The boundary of this nearby region is arbitrarily
chosen to be a spherical surface with a at its center. The second, larger
group includes all the molecules outside this sphere. In amorphous sub-
stances and regular crystals, the neighboring molecules within the virtual
boundary surface around molecule a are arranged with spherical symme-
try. Therefore, their influence cancels mutually, and only the effect of the
second group remains. The molecule a floats, figuratively speaking, within
a spherical “cavity” inside a homogeneously polarized body. To determine
Ew, we cannot use Eq. (13.18), since it was derived under the assump-
tion that " D 1 within the cavity. Then, however, the electric field in
the neighborhood of the cavity would not be constant, in contradiction to
the case we are dealing with here. We therefore assume that at the posi-
tion of molecule a, the field E can be expressed as the sum of the field of
a uniformly-polarized sphere (Sect. 13.6) and the field we are seeking, Ew:

E D Ew C Esphere ; (13.30)

where E is the field in a uniformly-polarized body (without a cavity)
and Esphere is the field in a sphere with the same polarization, P (see
Eq. (13.16)); then

Ew D E C 1

3"0
P : (13.31)

Then, using Eq. (13.8), we find:C13.10 C13.10. Thus, the internal
field E that we defined in
Sect. 13.5 does not act on the
single molecule within the
dielectric material, but in-
stead the field Ew acts there.
It – depending on the value
of the dielectric constant "
(Table 13.1) – may be consid-
erably larger!

Ew D "C 2

3
E ; (13.32)

and from this, using Eqns. (13.25) and (13.26), we finally obtain Eq. (13.28).

The two equations (13.27) and (13.28) permit a relatively simple
determination of the molecular electric polarizability ˛: We need
only measure the dielectric constant " and insert it, together with
the relevant number (particle) density NV. Table 13.5 contains some
numerical values for the polarizability ˛ of non-polar molecules in
liquids (Exercise 13.6).

Table 13.5 Electric polarizabilities of some non-polar molecules in liquids (at � 20 ıC) (NA is the AVOGADRO

constant, 6:022 � 1023 mol�1)

Molar mass

Mn D M

n

Density % Number density of the

molecules NV D %NA

Mn

Dielectric
constant "

Electric
polarizability ˛

Substance

in
kg

kmol
in

kg

m3
in m�3 in

A sm2

V
Carbon disulfide, CS2 76 1250 9:9 � 1027 2.61 0:94 � 10�39

Biphenyl, C6H5–C6H5 154 1120 4:37 � 1027 2.57 2:1 � 10�39

Hexane, C6H14 86 662 4:63 � 1027 1.88 1:3 � 10�39
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13.10 The Permanent Electric Dipole
Moments of Polar Molecules

In paraelectric materials, the measurements show a decrease in the
molecular electric polarizability with increasing temperature. Fig-
ure 13.10 shows a typical example for a gas, HCl. We can recognize
two different contributions, one which is independent of the tempera-
ture (the thin horizontal line below), and the other which depends on
the temperature (above the constant part).

Interpretation: The temperature-independent part is caused by an
electrical deformation of the molecules, as is well known for dielec-
tric materials (see Sect. 2.17), and was explained in Fig. 2.56. The
temperature-dependent part adds to it, and is due to the fact that the
molecules of paraelectric materials have permanent electric dipole
moments pp even in the absence of an external electric field.

Without a field, the orientations of pp are randomly distributed owing
to the thermal motions of the molecules. The sum of the electric
dipole moments pp, averaged spatially and over time, is equal to zero.
An electric field however provides a preferred axis of orientation for
the dipole moments pp. Each molecule then has a net component
along the field axis, averaged over time, and this results in an average
moment p0 as the contribution of a single molecule. The magnitude of
p0 is only a fraction (usually a very small fraction) x of the permanent
dipole moment pp, that is

p0 D x pp : (13.33)

The fraction x is given by

x � 1

3

ppEw

kT
(13.34)

.k D BOLTZMANN constant D 1:38 � 10�23 W s=K/:
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Figure 13.10 The polarizability of a dipolar molecule as defined by
Eq. (13.26), as a function of temperature. The constant part a is due to “in-
fluence” or “molecular deformation”, while the temperature-dependent part
b is due to alignment of the thermally disordered polar molecules with their
permanent dipole moments. Only this second part should be inserted into
Eq. (13.35) (at a pressure of 1 atm (D 1:013 �105 Pa); measurement frequency

 D 1MHz) (C.T. Hahn, Physical Review 24, p. 400 (1924)).
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the work pp � Ew would be required in order to align the dipole per-
pendicular to the field axis; (ii) kT is the thermal energy which is on
the average transferred by molecular collisions (and tends to disorient
the dipoles). A precise calculation would have to take not only the
perpendicular alignment into account, but also all other possible ori-
entations by computing the appropriate average (LANGEVIN-DEBYE

formula). This leads in the first approximation to the numerical factor
of 1=3.

We combine Eqns. (13.33) and (13.34) with Eq. (13.26), denoting the
temperature-dependent part of ˛ in Eq. (13.26) as ˛T, and obtain for
the permanent electric dipole moment of the dipolar molecules:

pp �
p
˛T3kT : (13.35)

For the example of the HCl molecule, the measurements in Fig. 13.10
give the molecular electric polarizability at 273K:

˛T D 1:05 � 10�39 A sm2

V
:

Inserting this value into Eq. (13.35), we obtain for the perma-
nent electric dipole moment of a single HCl molecule, pp �
3:4 � 10�30 A sm (cf. Table 13.3) (Exercise 13.7).

One could therefore imagine the molecule from an electrical point of view
as consisting of two electrical elementary charges, each of 1:602�10�19 A s,
at a spacing of around 0:2 � 10�10 m. (For comparison: The order of mag-
nitude of the molecular diameter is 10�10 m.)

Making use of this value of pp, we can calculate the fraction x in
Eq. (13.34). The field strength may be large, namely E D 106 V/m,
and the temperature T D 300K. Then we find x D 3 � 10�4, that is
x � 1. Thus, the average contribution p0 of the permanent dipole mo-
ment pp to the electric polarization P is still proportional to the field
strength, and the susceptibility, P="0 E D �e D ." � 1/, is constant
(linear region). Only at very low temperatures can x approach a value
of 1 with increasing field strength, causing the electric polarization to
saturate at its maximum possible value.

13.11 The Frequency Dependence
of the Dielectric Constant "

In order to determine the capacitance C D Q=U, we measure the
charge Q which is stored in a condenser at the voltage U. In doing
this, we make a tacit assumption: The magnitude of the charge Q
stored at a given voltage U is supposed to be time-independent. This
can however not be generally true. The processes which occur within
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Figure 13.11 The frequency
dependence of the dielectric
constant and the absorption
coefficient k of water. The
corresponding vacuum wave-
lengths are shown on the
abscissa above (temperature
18 ıC)
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the dielectric after the field is applied are not instantaneous; rather,
they require a certain time on the average. After one “relaxation time”
�r, a fraction 1=e � 37% is still missing from the equilibrium values.
Normally, the time during which the field remains constant is much
longer than the relaxation time �r. However, if it becomes comparable
to �r, then the measured (apparent) dielectric constant " is reduced,
and at each circular frequency !, we would obtain a different value
of the dielectric “constant”, "! .C13.11C13.11. Another cause of

a frequency dependence
of the measured dielectric
constant is discussed in
Chap. 27, under the topic
of optics; see in particular
Sect. 27.7.

Figure 13.11 shows as an example the dielectric constant "! of water
at 18 °C in the range of circular frequencies from ! D 5 � 109 Hz to
2 � 1011 Hz, that is for fields with oscillation periods between 10�8 s
and 10�11 s. For pure water, the relaxation time is �r D 3 � 10�11 s,
determined by the rate of alignment of the dipolar molecules in the
applied field. This is hindered by a resistance similar to friction,
which consumes energy (dissipation). It is greatest around the cir-
cular frequency !R D 1=�r. In this frequency range, electrical waves
are strongly absorbed by water (this is the principle of microwave
ovens; see Exercise 13.8). In Fig. 13.11, the absorption coefficient k,
often used in optics (Optics, Sect. 25.3), is also plotted.

The relationship between the dielectric constant and the power dis-
sipation (absorption accompanied by heating) on the one hand, and
the relaxation time �r on the other, is quite general. It is unimportant
precisely which physical processes are responsible for the relaxation.
We explain this by referring to a simple model.

In Fig. 13.12, at the left, we show the model system: We imagine the
dielectric to consist of layers. The shaded layers are supposed to be per-
fectly insulating, while the dotted layers are poor conductors, with large
electrical resistances. For this layered dielectric, Fig. 13.12 (right) shows
an equivalent circuit, the well-known series circuit from Sect. 10.6 with an
AC current source (relaxation time �r D RC, Sect. 2.16).
The resistor in the equivalent circuit has two effects: First, the amplitude
of an AC current of circular frequency ! is reduced by the factor

IC;R
IC

D Current amplitude with R

Current amplitude without R
D 1p

1 C .!�r/2
D j"! j : (13.36)

(This quantity is called the relative dielectric constant. Equation (13.36)
follows from Eqns. (10.29) and (10.30)). Second, the AC current is no
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ered dielectric. At right: Its
equivalent circuit
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Figure 13.13 The frequency dependence of the relative dielectric constant
(Eq. (13.36)) and the loss factor (Eq. (13.39)) in the equivalent circuit of
Fig. 13.12 for a relaxation time of �r D RC D 10�4 s (� is the wavelength of
electromagnetic radiation at the circular frequency !)

longer phase-shifted by 90ı relative to the voltage, but rather only by
a smaller phase angle '. From Eq. (10.31), we find

tan' D � 1

!�r
(13.37)

.the current leads the voltageI cf. Eq. (10.24)/:

In addition to the reactive current (or “idle” current), there is also an active
current of amplitudeC13.12 C13.12. In deriving

Eq. (13.38), note that:

Iact D IC;R cos ' :

(see Sect. 10.8)

Iact D U!C
!�r

1 C !2� 2r
: (13.38)

The ratio of the active current amplitude to the total current amplitude in
a loss-free condenser is called the loss factor, and it is found to be

"!;act D !�r

1 C !2� 2r
: (13.39)

The results of Eqns. (13.36) and (13.39) are shown graphically in
Fig. 13.13: At a frequency of !R D 1=�r, the loss factor "!;act exhibits
a maximum.
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Exercises

13.1 A dielectric slab of dielectric constant " is slid into a charged
parallel-plate condenser with a charge of Q, so that it fills the entire
volume between the condenser plates. How does the energy stored
in the condenser change, and where does the energy difference go?
(Sect. 13.2)

13.2 A sheet of glass of thickness d < l is slid between the con-
denser plates of a charged parallel-plate condenser (the spacing of
the plates is l). This causes its voltage to drop from U to U0, similar
to what is shown in Video 2.1. Find the dielectric constant " of the
glass, and compute it for the case that d D 0:5 l and U0 D 0:6U.

13.3 How is the bridge circuit in Fig. 13.2 used to determine the
capacitance Cx? (Sect. 13.2)

13.4 A long dielectric rod with a dielectric constant of " is placed
in an electric field E with its long axis parallel to the field direction.
How large is the displacement density D in the rod? (Sect. 13.6)

13.5 Find the polarization P of a dielectric sphere with a dielectric
constant of " in a homogeneous electric field E0. (Sect. 13.6)

13.6 Make use of the CLAUSIUS-MOSSOTTI equation (13.28) to
find the dipole moment pp of liquid water using the data given in
Table 13.3, and compare the result with the correct value, which
is also given in Table 13.3 (it however was determined for the gas
phase). Apparently, the CLAUSIUS-MOSSOTTI equation cannot be
applied to water in the liquid phase. Why not? (Sect. 13.9)

13.7 In the reference work Landolt-Börnstein, 6th ed. (Springer,
Berlin 1959), Vol. II, Part 6, p. 874, we find for the dielectric constant
of ammonia (NH3) at a temperature of 22.5 °C and a pressure of 1 atm
(D 1:013 � 105 Pa) a value of " D 1:00612. Explain the difference
compared to the value in Table 13.3. (Sect. 13.10)

13.8 In a microwave oven (frequency 
 D 2:5GHz), a liter of wa-
ter is heated by 10 °C in one minute.
a) Find the wavelength �W of the microwave radiation in water. b)

Determine the average power PW which is absorbed by the water. c)
The water is contained in a cube-shaped plastic beaker which is 10 cm
on a side, and the radiation impinges on it from all directions. Com-
pare the radiation power per surface area (i.e. the magnitude of the
POYNTING vector S, see Comment C12.5) with the solar constant for
onto the surface of the Earth, Ee D 1:37 kW/m2, Sect. 19.3. Neglect
reflection and heat losses. (Sect. 13.11)
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14.1 Introduction. The Permeability �

Thus far, we have considered magnetic fields only in empty space
(the presence of air molecules had a negligible effect on our results.
The influence of the air changes only the 6th place after the decimal
by 4 units).

Some of the current-carrying conductors that we considered, in particu-
lar coils, were not self-supporting, but rather were wound on coil forms
or spools, e.g. thin-walled cardboard or wooden tubes covered with an in-
sulating layer of shellac. The effects of these spools was also negligible
within the precision needed for our demonstration experiments.

In contrast, the presence of some other materials in the magnetic field,
e.g. of iron, has a rather drastic effect. When a ring coil is wound
around an iron core (Fig. 14.1), its magnetic flux ˚ is increased by
a large factor (and no field lines are found outside the coil in this case;
cf. Fig. 14.2). Based on this fact, we define the permeability of the
filling material to be the ratioC14.1 C14.1. The permeability

� is often also denoted in
the literature by �r (r stands
for “relative to vacuum”); it
is given the name “relative
permeability”. Frequently,
the product �0�r is simply
denoted by �, and called “the
permeability”. �0 is thus the
“permeability of vacuum”.

� D Magnetic flux ˚m of the filled ring coil

Magnetic flux ˚0 of the empty ring coil
:

Dividing the magnetic flux ˚ by the cross-sectional area A of the
homogeneous magnetic field, one obtains its flux density B, i.e. B D
˚=A. Then for the definition of the permeability, we find

� D Bm

B0
: (14.1)

Figure 14.1 Defining magnetic material constants
by measurements of the magnetic flux density.
For demonstration experiments, the ring coil can
also be filled with “Ferrocart”, an iron-containing
paper-based material with a permeability � of
about 10. (See Sect. 5.4) J

G
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Figure 14.2 The outside space
around a ring coil (toroidal coil)
with an iron core is field-free (this
holds also for a ring coil without an
iron core; see Fig. 4.8)

14.2 Two Quantities Derived
from the Permeability

Two other, often-used physical quantities are defined with reference
to the permeability �:

1. The magnetization M is defined by the equationC14.2

C14.2. The magnetization M
is, like the field B, a vec-
tor. Since we assume here
the simple but frequently-
occurring case that M and
B are collinear, the vector
notation is not necessary at
this point. However, compare
Sect. 14.5.

�0M D Bm � B0 D .�� 1/B0 : (14.2)

We thus define the magnetization M as an additional contribution to
the magnetic flux density in matter, which is in turn produced by the
applied field. �0M is also called the magnetic polarization. The unit
of M is for example 1A/m. A different definition is also equivalent:
It refers to the magnetic moment within a material:

M D Magnetic moment m

Volume V
: (14.3)

Derivation: We imagine a block of matter with a base area A, which is
homogeneously magnetized along its length l. Then the magnetic flux
˚ which the magnetization M of the block produces is given by ˚ D
.Bm � B0/A D �0MA; and from Eq. (8.20), its magnetic moment is m D
˚ l=�0 D MA l D MV .

2. The magnetic susceptibility

�m D � � 1 D �0M

B0
D M

H0
: (14.4)

Sometimes the susceptibility is also referred to the density % of the
corresponding substance, �m=%, or to the amount-of-substance density,
�m=.n=V/.C14.3

C14.3. The magnetic moment
m and the magnetization
M – and therefore the sus-
ceptibility �m of a sample
of volume V, which can be
computed from them – are
influenced by the filling fac-
tor, i.e. whether the material
is porous, gaseous etc. For
this reason, the susceptibil-
ity is often referred to the
mass density %; i.e. instead
of simply quoting �m, the
quantity �m=% is given. Re-
ferring the susceptibility to
the amount-of-substance den-
sity, �m=.n=V/ D �m � V

n ,
where n is the amount of
substance (unit: mol) is also
convenient.
(In the cgs unit system, this
quantity is often (and some-
what incorrectly) called
the “molar susceptibility”.
A note on expressing it in cgs
units: �m;SI OD 4� �m;cgs). Some examples can be found in Table 14.1.
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There are many setups suitable for measuring the permeability. If
the sample is available in the form of a ring (torus), then the scheme
illustrated in Fig. 14.1 may be used. In carrying out the measure-
ments, one can if necessary increase the sensitivity by several orders
of magnitude by applying a difference method. The induction coils
of the empty and the filled ring coil are connected in opposition, and
the difference between the two magnetic fluxes is measured directly
as a voltage impulse. An example is illustrated in Fig. 14.6.

For many substances, � � 1. In that case, one does not try to measure
� directly, but determines instead the magnetization M. � can then be
calculated using the defining equations as given in Sect. 14.2. Instead of
large, ring-shaped samples, one can use small samples of volume V with
arbitrary shapes. They are inserted into a magnetic field, and the magnetic
moment which is produced by magnetization is measured:

m D MV :

To this end, the magnetic field is made inhomogeneous and then the force
acting on the sample along the direction of the field gradient is measured
by some method (e.g. Fig. 14.3):

F D m
@B

@x
D MV

@B

@x
(8.18)

(e.g. F in N, m in Am2, @B=@x in V s/m3, V in m3).
The field gradient @B=@x is measured as described in the text following
Eq. (8.18) in Chap. 8.
For the determination of �, one uses the magnetic flux density B0 which
is present without the sample. It is measured using a small induction coil
as the average value at the location of the sample. The application of this
field in Eq. (14.2) is only approximately correct. It is however permissible
if the permeability � is � 1. We will see the reason for this later from
Eq. (14.17) (Exercise 14.1).

14.4 Distinguishing Diamagnetic,
Paramagnetic and Ferromagnetic
Materials

After explaining the measurement procedure, we now want to give
an overview of the magnetic properties of materials. All substances
can be collected in three large groups:

1. Diamagnetic materials.

Their susceptibilities �m D .��1/ are, like�, material constants and
are independent of the strength of the appliedmagnetizing field. They
are also independent of the temperature (for a constant density %).
The permeability � is somewhat smaller than 1. Table 14.1 contains
some examples.
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Table 14.1 Dia- and paramagnetic substancesa (1 atm D 1:013 � 105 Pa)
Diamagnetic substances (� always < 1), T � 293K (20 ıC)

H2

(1 atm)
Cu H2O NaCl Bi

Susceptibility �m D .� � 1/ �0:0022 �9:6 �9:06 �13:9 �165 �10�6

�m=% (% DDensity) �25 �1:08 �9:06 �6:5 �16:8 �10�9 m3=kg
�m=.n=V/ (n D Amount of substance) �0:5 �0:69 �1:63 �3:78 �35:2 �10�10 m3=mol

Paramagnetic substances (� always > 1), T � 293K .20 ıC)
Al Pt O2 (gas) O2 (liquid) Dy2S3

(1 atm) T D 90:2K T D 293K
Susceptibility �m D .� � 1/ 20.7 264 1.88 3470 17 200 �10�6

�m=% (% DDensity) 7.67 12.3 1300 3020 2839 �10�9 m3=kg
�m=.n=V/ (n D Amount of substance) 2.07 24 416 967 11 960 �10�10 m3=mol

a See the CRC Handbook of Chemistry and Physics, 84th Edition, 2003/4 (CRC Press, NY).

2. Paramagnetic materials.

Their susceptibilities are also practically independent of the strength
of the applied magnetizing field. The permeability � is somewhat
larger than 1. Examples are likewise collected in Table 14.1. Some-
times, their susceptibility �m decreases with increasing temperature
(cf. Fig. 14.5, Parts B and C). In simple limiting cases, CURIE’s law
holds:

�m D CT

T
(14.5)

.CT is called the CURIE constantI derivation in Sect. 14.8/:

3. Ferromagnetic materials.

In these materials, the permeability � is not even approximately
a material constant. It depends not only on the strength of the mag-
netizing field, but also on the magnetic history of the sample and
on its structure, e.g. whether it is bulk material or powdered. The
magnitude of � can exceed 1000. With increasing temperature,
the permeability decreases. Above a certain critical temperature
(the CURIE temperature), ferromagnetism vanishes and the material
exhibits only paramagnetic behavior.

So much for the general classification; now some details:

1. Diamagnetic materials. They can be identified in a magnetic field
even without a quantitative measurement. They are always forced
out of the region where the magnetic field strength is strongest; for
example, a piece of bismuth will be pushed upwards in the apparatus
shown in Fig. 14.3. Explanation: Atoms or molecules of diamagnetic
materials have no permanent magnetic moments. They acquire a mo-
ment only in an applied magnetic field, through induction (WILHELM

WEBER, 1852). The induced currents flow in circles, as shown in
Fig. 8.16b, opposing the current in the field coil, without losses as
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homogeneous magnetic field is
hanging from a spiral-spring bal-
ance (Exercise 14.1)

N S

5 mm 80 mm

Figure 14.4 Small diamagnetic objects (V � 1mm3) made of bismuth or
well-tempered arclight carbon are levitated on the fringes of a magnetic field
with a flux density of B � 2V s/m2 (an electromagnet as in Fig. 14.3). The
concave region milled into the top of the magnet pole piece (radius of curva-
ture 6 cm) stabilizes them in the horizontal direction.

long as the field is present. These induced currents must occur in all
atoms, so that all substances are originally diamagnetic. Their dia-
magnetic behavior can however be concealed by other, stronger phe-
nomena; this is the case for para- and ferromagnetic materials.C14.4

Diamagnetic samples can be made to levitate in an inhomogeneous
magnetic field of a suitable shape (Fig. 14.4), and they will oscillate
if given an impulse along the direction of a field gradient.C14.5

C14.4. Note here the differ-
ence between magnetic and
electric moments (Chap. 13):
Both dielectric and para-
electric materials are always
pulled towards regions of
stronger fields; that is, �e is
always positive.

C14.5. Superconducting ma-
terials show strong diamag-
netic behavior due to their
expulsion of magnetic fields
(MEISSNER-OCHSENFELD

effect). They can be used for
impressive demonstrations
of magnetic levitation. See
Comment C10.3.

2. Paramagnetic materials. In contrast to diamagnetic materials, they
are pulled into the region of greatest field strength. Some demonstra-
tions are shown in Figs. 14.5A–C.

Explanation: The molecules of paramagnetic materials not only ac-
quire a magnetic moment by induction in a magnetic field, but also
they have permanent magnetic moments mp, independently of the
field.C14.6 C14.6. Exception: PAULI

paramagnetism, for exam-
ple in the metals Al and Pt.
More details can be found
in C. Kittel, Introduction
to Solid State Physics, 7th
ed., Chap. 14 (John Wiley,
NY 1996), especially Figs. 1
and 11.

The dipole axes of these permanent moments are however distributed
randomly over all directions as a result of thermal motions. There-
fore, the paramagnetic sample exhibits no overall magnetic moment
without an applied field. In an applied magnetic field, however, the
atomic moments acquire a preferred direction. Nevertheless, under
usual conditions, the orientation of all the permanent moments paral-
lel to the field is far from complete. The time-averaged contribution
m0

p of individual atomic or molecular moments to the total momentm,
and thus to the magnetization M, is only a fraction (usually a small
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Figure 14.5 A: Liquid oxygen is strongly paramagnetic and is therefore
pulled into regions of greater field strength (here, from a cardboard tray P).
(The electromagnet used is similar to the one shown in Fig. 14.3). B and C:
The temperature dependence of the paramagnetic susceptibility �m. Cold air
has a larger susceptibility than room air, while warm air has a smaller sus-
ceptibility. (Both �m=% and the density % are proportional to T�1; �m is thus
proportional to T�2). As a result, a cloud of cold air is pulled into the region
of greater magnetic field strength (from the cooled paper tray P), where it dis-
places the room air (Part B) (Video 14.1).Video 14.1:

“Paramagnetic materials”
http://tiny.cc/kdggoy
The video shows the experi-
ments from Parts A and B of
the figure.

In contrast, rising warm air (from
a flame or a heating coil H) is forced away from the magnet into a region of
smaller field strength by the more strongly attracted room air (Part C).

fraction) of the permanent molecular moment mp. Otherwise, the
magnetizationM in strong applied fields would no longer be propor-
tional to the flux density B of the field; or, expressed differently, �m
and � would no longer be constant. An example for a gas (O2) will
be given in Sect. 14.8.

In general, saturation of the magnetization M of paramagnetic materials
can be observed only at extremely high field strengths and/or very low
temperatures. It has been demonstrated for a number of ions, e.g. CrCCC,
FeCCC, and GdCCC in sulfate crystals (alums)1, at T < 4:0K and B up to
5V s/m2.

3. Ferromagnetic materials are easily recognized even by non-
physicists. They will be attracted by any permanent magnet.
Examples: The pure metals Fe, Co, Ni; manganese-containing
copper alloys (F.R. HEUSLER, 1898). Physically, the ferromagnetic
materials are characterized by the extremely large magnitude of
their magnetization M which can be attained. It, in turn, depends in
a complex way on the strength of the magnetizing field and the prior
treatment of the sample.

We want to demonstrate this dependence experimentally using
a creeping galvanometer (Sect. 8.4). We use two ring coils as shown
in Fig. 14.6; they have the same dimensions and number of turns.
The left-hand coil contains an iron core, while the right-hand coil is
wound on a wooden core (cf. Sect. 14.1). Both field coils are carry-
ing the same current, and both are surrounded by identical induction
loops, but these are connected in opposition. Therefore, the creeping
galvanometer indicates the difference of the magnetic flux in the two
coils, with and without an iron core; i.e. ˚m �˚0. Division by A, the
cross-sectional area of the coils, yields the additional magnetization

1 W.E. Henry, Physical Review 88, 559 (1952).

http://tiny.cc/kdggoy
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Figure 14.6 Measuring the hysteresis loop of iron using a creeping gal-
vanometer G. Two ring coils as shown schematically in Fig. 14.1. The
induction loops J1 and J2 are wound oppositely; the galvanometer thus in-
dicates the difference between the two magnetic fluxes ˚ , with and without
iron. If the slider L is pushed past the midpoint of the resistor, the direction
of the current in the two field coils is reversed (why?).

which is due to the iron:

M D 1

�0
.Bm � B0/ : (14.2)

We carry out a series of measurements, increasing and then decreas-
ing the field current for both directions, and thus obtain the curve
shown in Fig. 14.7, the “hysteresis loop” for wrought iron. From this
curve, we read off the following facts:

1. For each value of B0, the flux density of the empty coil (wooden
core), there are two corresponding values of �0M. The right-hand

3 3·10–3 V s /m22 21 1
B0

1

1

2

V s/m2μ0M

2

3

3

Remanence

Coercive field

Figure 14.7 A hysteresis loop for wrought iron, measured as in Fig. 14.6.
B0 is the flux density of the empty (i.e. iron-free) field coil. The satura-
tion value of the magnetization (multiplied by �0 in the figure) is found at
2.1 V s/m2. At this value, each iron atom contributes a moment of m0 D
M=NV D 2:0 � 10�23 Am2 (compare Sect. 14.8, Table 14.2). The dashed line
indicates schematically a new curve or initial curve from a sample which had
been previously tempered and thus had no remanent magnetization.
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branch of the curve in the upper half of the graph (above the B0 axis)
corresponds to increasing magnetization, and the left-hand branch to
decreasing magnetization; in the lower half, their roles are reversed
(and the magnetization is oppositely directed).

2. The magnetizationM approaches a “saturation value” at large val-
ues of B0.

3. A portion of the magnetizationM remains when the field of the coil
is reduced to zero. It is called the magnetic remanence or remanent
magnetization. The iron core has become a permanent magnet.

4. In order to remove the remanence, the field in the coil must be
reversed and its flux density increased to a certain value, called the
coercive field.

Materials with a small coercive field are termed “magnetically soft”. With
very pure iron which has been tempered in a hydrogen atmosphere, one can
reduce the coercive field to as low as ca. 3 � 10�6 V s/m2. In magnetically
hard alloys made of Fe, Ni, Co and Al, e.g. Oerstite (a hard magnetic alloy
belonging to the AlNiCo family), the coercive field can be increased up to
the order of 0.1 V s/m2, with a remanence of � 1V s/m2.C14.7

C14.7. Modern “hard” ma-
terials such as SmCo5 and
Nd2Fe14B attain much higher
values of the coercive field
and similar values of the
magnetic remanence. In
addition, their “energy prod-
uct”, a measure of the energy
stored in the magnetization
(cf. Comment C14.8.), is
up to a factor of 10 larger
than in the AlNiCo alloys
mentioned by POHL. These
modern materials are used
in many applications today,
from small electric motors to
the “undulators” employed in
free-electron lasers. 5. The cyclic magnetization process, i.e. a full circle around the hys-

teresis loop, requires that a certain amount of work W be performed.
It is equal to the area inside the hysteresis loop, that isC14.8C14.8. This equation follows

from the expression for the
energy density in a magnetic
field
W

V
D
Z

H � dB ;
whose derivation is given
in textbooks on theoretical
physics or electrodynamics
(e.g. J.D. Jackson, Classical
Electrodynamics (John Wiley
& Sons, NY, 1962), Section
6.2). In vacuum, it leads to
the expression for the mag-
netic field energy given in
Eq. (8.28).

W D V
Z

M dB0 (14.6)

.V is the volume of the sample/:

6. The old problem of how to levitate a ferromagnetic object freely
in a magnetic field was solved only after the discovery of supercon-
ductivity (see Comment C14.5.).

An important property of ferromagnetism is its strong temperature
dependence. Ferromagnetism vanishes above the “CURIE temper-
ature”. This critical temperature lies for example in the HEUSLER

alloys below 100 ıC. A piece of one of these alloys will stick to

Figure 14.8 A wheel made of nickel and heated on one side will rotate in
the field of a permanent magnet. At 356 ıC, nickel loses its ferromagnetism,
and then the magnet pulls in a cooler, still ferromagnetic region of the wheel.
The midplane of the magnet passes through the axle of the wheel; the flame
is placed in front of or behind this plane, depending on the desired sense of
rotation.
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boiling water, it falls off. Another demonstration experiment for the
critical temperature of ferromagnetism can be seen in Fig. 14.8.

14.5 Definition of the Magnetic Field
Quantities H and B Within Matter.
The MAXWELL Equations

The definitions of the magnetic material constants given in Sects. 14.1
and 14.2 are straightforward and correct, but they refer only to the
average values of B0, Bm and H0 measured in the ring coils used
there. We now want to define the vector field quantities H and B in
the interior of matter, based on experimental results:

Imagine a ring coil which is initially completely filled with a homo-
geneous material of permeability �. We suppose it to contain two
small cavities, similar to those already shown in Fig. 13.5 (cf. also
the footnote in Sect. 13.5, where you should replace “parallel-plate
condenser” by “ring coil” in the present context). One of the cavities
is a flat transverse slit whose plane is perpendicular to the direction
of the field, while the other is a very narrow axial channel, parallel to
the field direction. Both cavities are again used to accept a measure-
ment probe (real or virtual), indicated by dots in the figure. In both
cavities, the fields H and B are measured. In the limit of vanishingly
small cavities, these measured fields are defined as the fields within
the matter. We find that the fields in the two cavities are different! In
detail, the results are as follows:

1. The flux density B measured in the transverse slit as a (voltage
impulse)/(field area) has the same magnitude and the same direction
as the field measured by an induction loop surrounding the coil on
its outside, i.e. B D Bm, independently of where the cavity is located
within the material. In the limit, we can conclude that the flux density
is the same at every point within the material filling the coil. We
define it as the magnetic flux density within matter and denote it by
the vector B.

2. On repeating this experiment in the axial channel, we measure
a different flux density, one which is not the same as measured with
an induction loop outside the coil. However, we also find that the
measurement in the axial channel gives a very simple relation for the
fieldH: It has the same magnitude and direction as the magnetic field
H0 measured in the empty ring coil. This is determined as shown in
Fig. 14.9. The material filling the coil contains a channel along its
long axis which has an arbitrary but constant cross-sectional area2.

2 Note for the experimentalist: The ring channel can be cut into the surface of the
iron core of the ring coil as an open groove. In practice, this means that one need
only make the iron core somewhat smaller in diameter than the inside of the coil.
Then the gap between the core and the coil forms the “channel”.
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Figure 14.9 The equality of the field H in an
axial channel to the field in the empty ring coil

V

The slim induction coil J is placed in this axial channel. It is used
to measure, independently of the width of the channel, the same field
H as in an empty coil. We can extend this result in a thought experi-
ment to an infinitely thin channel. The field measured in this way is
defined as the field within matter, and we denote it by the vector H.
By introducing these vector fields, B and H within matter, we arrive
with the aid of Eq. (14.2) at a definition of the vector field M, the
magnetization:C14.9C14.9. In textbooks on the-

oretical physics, it is usual
to introduce the magnetiza-
tion vector M after defining
the field B. The magnetiza-
tion is defined in terms of the
magnetic moments in the ma-
terial. Then H is simply an
abbreviation for .B=�0 � M/,
which can be used among
other things to write the
MAXWELL equations in
a simpler form.

M D 1

�0
B � H : (14.7)

This equation demonstrates especially clearly the difference between
the fieldsH and B in matter (see Comment C5.5.). Think for example
of the fields within the material of a permanent magnet, for whichM
is homogeneous and constant (Exercise 6.3).

For materials with a constant permeability� (and thus no hysteresis),
we find from Eqns. (14.1) through (14.4) the following relations:

B D ��0H (14.8)

and

M D .� � 1/H D �mH : (14.9)

These three equations describe the relationships between the vector
fields at every point in space.

With the vector fields H and B defined in the presence of matter, as
well as the fields E and D given in Chap. 13, the MAXWELL equa-
tions take on their general form:

divD D % ; (14.10)

curlE D � PB ; (14.11)

curlH D j C PD ; (14.12)

divB D 0 : (14.13)

Here, % is the charge density of the free charges (as opposed to the
bound charges within polarized matter, see Sect. 2.17); and j is the
“free” current density (as opposed to the “bound” current density of
the molecular currents in magnetized matter, see Sect. 4.4). In empty
space, with D D "0E and B D �0H, these equations are simplified
to those which we set out in Sect. 6.5. The following section demon-
strates some of their applications.
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The vector fields introduced for the interior of magnetic materials
will now be investigated in the case that the field coil is not com-
pletely filled by the material, but instead, only a smaller piece of the
material of some arbitrary geometry is placed in the field. In analogy
to the geometric properties of the electric polarization, we find that
in a magnetic field, also, the observed magnetization depends on the
geometry.

An ellipsoid of rotation is brought into a homogeneousmagnetic field
H0 .D B0=�0/ in such a way that its long axis coincides with the
direction of the field vectorH0. Then the magnetic field in its interior
is homogeneous and we find (in analogy to Eq. (13.13)):

H D 1

1 C N.� � 1/
H0 : (14.14)

Values for N, here called the demagnetizing factor, are collected in
Table 13.4. N is a number whose values range from 0 to 1 (0 	 N 	
1). Except for the case N D 0, the magnetic field H within magnetic
materials is thus reduced in comparison to the externally-applied field
H0. This is called demagnetization.

Some examples may help to elucidate this reduction of the magnetic
field H depending on the geometry (as we can see from Eq. (14.14),
it is important when � � 1, that is for ferromagnetic substances):

1. For a long, thin rod parallel to the direction of the applied magnetic
field H0, N D 0 and therefore the field within the material isC14.10 C14.10. This result can

also be obtained from
MAXWELL’s equa-
tion (14.12). j and PD are
both zero. Then, curlH D 0,
and in integral form,H
H � ds D 0. We choose

the closed path to be a long,
narrow rectangle, whose long
sides are parallel to the long
axis of the rod, one of them
within the rod and the other
outside it. From this, we
obtain Eq. (14.15).

H D H0 : (14.15)

The magnetization

Mrod D .� � 1/H0 (14.16)

is thus the same as when the material completely fills the field coil,
i.e. no demagnetization is observed. B in the rod is equal to ��0H0.

2. For a sphere, N D 1=3 and thus the magnetic field within the
material is given by

H D 3

�C 2
H0 ; (14.17)

and the magnetization is

Msphere D 3.�� 1/

�C 2
H0 D 3

�C 2
Mrod : (14.18)

Therefore, for � � 1 (ferromagnetic material), the magnetization of
a sphere is considerably smaller than that of the rod (Exercise 14.2).



Part
I

272 14 Matter in a Magnetic Field

Figure 14.10 Magnetic shield-
ing inside a hollow magnetic
shell

Figure 14.11 Schematic drawing of an electro-
magnet (ring coil wound on a toroidal core)

3. For a flat disk (N D 1), we findC14.11

C14.11. This can also be
found from the MAXWELL

equation (14.13), in integral
form

H
B � dA D 0. We

choose the closed surface
to be in the shape of a flat
pillbox whose lid and bottom
surfaces are parallel to the
disk, one within the material
and one outside it. It then
follows that B D B0, and
from this, Eq. (14.19).

H D 1

�
H0 ; (14.19)

and thus for the magnetization:

Mdisk D � � 1

�
H0 I (14.20)

then, for � � 1, it is another factor of three smaller than in the
sphere.

4. As a practical example of demagnetization, we place a hollow
ferromagnetic body, e.g. a hollow iron ball, in a previously homoge-
neous magnetic field (Fig. 14.10). The field inside the ball vanishes
due to the cancellation of the magnetization from the opposite sides,
except for a small remnant field. This is the principle of magnetic
shieldingC14.12 (Exercise 14.3).

C14.12. As an additional
example, consider the ho-
mogeneous field B within
a hollow sphere made of
a magnetic material (inside
radius a, outside radius b)
(for � � 1):

B D 9

2�.1 � a3=b3/
B0

(see for example J.D. Jack-
son, Classical Electrody-
namics (W. de Gruyter,
Berlin). 2nd ed., 1983,
p. 231). A suitable material
would be for example the
alloy supermalloy (Ni 79,
Fe 15.7, Mo 5, Mn 0.3
weight %; its permeability at
B D 2 � 10�3 V s/m2 (D T)
is � D 105, coercive field
2 � 10�7 T). A practical
application is found in the
large field-free chambers
used for shielding the earth’s
magnetic field (and other
ambient fields) to allow
medical investigations using
“SQUID” systems (extremely
sensitive superconducting
magnetometers).

5. Demagnetization effects also play a role for electromagnets
(Fig. 14.11). In the figure, an iron ring of circumference 2�r is
wrapped with N turns of wire which carry a current I. The air gap in
the iron core has a width of d, which is sufficiently small that stray
fields are negligible. It forms a transverse slit between the two iron
poles (Fig. 13.5). The fields B and H within the gap and in the iron
core are denoted by the indices d and Fe. We want to compute Bd.

From Eq. (14.13), it follows that the magnetic flux density Bd is the
same as in the filled part of the coil (core)C14.11,

Bd D BFe : (14.21)
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gap and the iron core. We find

HFe D 1

�
Hd (14.22)

(demagnetization).

Both fields,H as well as B, are reduced in comparison to a coil which
is completely filled with an iron core (no air gap).C14.13 C14.13. In Video 8.4

http://tiny.cc/xbggoy
(see Fig. 8.24), this field re-
duction can be very clearly
seen by making a gap of
0.4mm width using a few
sheets of paper. The force,
which is proportional to
B2 (Eq. (8.26)), decreases
from more than 530N to
15N, i.e. the field is reduced
by more than a factor of 6
(Exercise 14.4)

We obtain

Bd D �0 Hd D �0�NI

2�r C �d
: (14.23)

Derivation of Eq. (14.23): The relation between the current I and the field
H follows from the MAXWELL equation (14.12), where the second term
vanishes for a stationary state. In integral form, it is then given by

I
H � ds D NI ; (14.24)

where the path integral passes around the current NI. In the present case,
the integration path follows a circle 2�r through the iron core and the air
gap. We obtain

HFe.2�r � d/C Hdd D NI ; (14.25)

and, together with Eq. (14.22) and the assumption that d � 2�r, we arrive
at

Hd

�
2�r C Hdd D NI : (14.26)

This leads directly to Eq. (14.23).C14.14 C14.14. The depolarization
in a filled parallel-plate con-
denser (Fig. 13.1) can be
determined in perfect anal-
ogy using the method shown
here. We begin with a nar-
row air gap. At the transition
from the air gap to the di-
electric, the field D remains
unchanged, i.e. it is contin-
uous (Eq. (14.10), see also
Comment C14.11), while
the field E is reduced due
to depolarization. At a con-
stant condenser voltage, the
amount of free charges, and
thus also D, must increase.

As the gap width d increases, the field thus decreases. Assuming
a constant susceptibility of e.g. � � 1000 for iron, one can find
from this equation that even a relatively narrow gap will have a strong
effect on the fields, both within the gap and in the iron core itself.

Qualitatively, we have already observed similar behavior on changing
the iron magnetic circuit in a coil with an iron core (Fig. 8.12.)

14.7 The Molecular Magnetizability

The different behavior of paramagnetic and diamagnetic materials
was already indicated qualitatively in Sect. 14.4. Its quantitative ex-
planation is important among other things for an understanding of
molecular structure and thus for chemistry. For this, we will need the
concept of molecular magnetizability.

http://tiny.cc/xbggoy
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In the interior of a body of volume V, an external magnetic flux den-
sity B, assuming a negligible demagnetization effect (since � � 1)
will produce the homogeneous magnetization

M D 1

�0
.� � 1/B : (14.7)

Then the body will acquire a magnetic momentm parallel to the field
direction, with

M D m
V
: (14.3)

In an atomic picture, the overall magnetic moment m is interpreted
as the time-averaged contributions m0 of the N individual atoms or
molecules, that is

M D N

V
m0 D NV m0 : (14.27)

Note that m0 is a microscopic quantity, while m is the macro-
scopic magnetic moment of the whole body. We combine the
equations (14.7) and (14.27), obtaining

m0 D 1

NV
M D .� � 1/

�0NV
B : (14.28)

Experimentally, we find for diamagnetic materials that � is constant,
and thus the contributions m0 are proportional to the magnetic flux
density B. For this reason, we set

m0 D ˇB (14.29)

and call ˇ the molecular magnetizability. We then find

ˇ D .� � 1/

�0NV
D �m

�0 NV
D �mV

�0 NAn
; (14.30)

(for example, ˇ in Am4/(V s), �m D magnetic susceptibility, NV is the
number (particle) density of the molecules, V=n the molar volume, NA

the AVOGADRO constant D 6:022 � 1023 mol�1 (Vol. 1, Sect. 13.1), and
�0 D 1:257 � 10�6 V s/(Am)).

14.8 The Permanent Magnetic Moments
mp of Paramagnetic Molecules

These can be calculated from the experimentally-determined molec-
ular magnetizability ˇ (Eq. (14.30)). We demonstrate this in the
present section.



14.8 The Permanent Magnetic Moments mp of Paramagnetic Molecules 275

Pa
rt
IWithout an applied field, the directions of the moments mp are ran-

domly distributed in space as a result of thermal motions. The sum of
the magnetic moments mp averaged over time and space is equal to
zero. However, in the presence of a magnetic field, the moments have
a preferred direction. As a result, each individual molecule makes
a contribution m0 averaged over time to the total magnetic moment
m of the body. This contribution is usually only a small fraction x
of the paramagnetic momentmp which every molecule carries.C14.15 C14.15. Note, however, the

remarks in small print in
Sect. 14.4, Point 2, paramag-
netic materials.

We thus have

m0 D xmp : (14.31)

This fraction x can be calculated, as long as the interactions between
the molecules can be neglected, as is the case in gases and dilute
solutions. We then find

x � 1

3

mpB

k T
(14.32)

(k D BOLTZMANN constant D 1:38 � 10�23 W s/K, cf. Vol. 1, Sect. 13.10,
as well as Sects. 14.6. and 16.6).

The fraction x is thus essentially equal to the ratio of two energies:
The work mpB is necessary to rotate the carrier of the magnetic mo-
ment mp to an orientation perpendicular to the field direction. kT
is the thermal energy which can be transferred to it by a molecu-
lar collision. A precise calculation would have to consider not only
a perpendicular orientation, but rather all possible orientations of
the molecular moments relative to the field direction (LANGEVIN-
DEBYE formula). This leads in the first approximation to the numer-
ical factor 1/3.

Combining the equations (14.29), (14.31), (14.30), and (14.32) yields

�m D 1

3

m2
p�0NV

k T
D const

T
; (14.5)

that is CURIE’s law (Sect. 14.4, for NV D const). In paramagnetic
materials, the molecular magnetizability therefore decreases with
increasing temperature. Figure 14.12 shows an example (see also
Fig. 14.5).

Furthermore, combining Eqns. (14.5) and (14.30) gives an expression
for the permanent magnetic moment of a molecule

mp D
p
ˇ � 3 � k T : (14.33)

A numerical example for the O2 molecule: From Table 14.1 (p. 264),
we read off the value of the magnetic susceptibility of oxygen re-
ferred to the amount of substance, �m=.n=V/, and using Eq. (14.30),
we calculate its molecular magnetizability to be

ˇ D 5:5 � 10�26 Am4

V s
:
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Figure 14.12 The effect of the tem-
perature on the magnetizability
of the paramagnetic O2 molecule
(E.C. Stoner, Magnetism and Mat-
ter (Methuen, London 1934), p. 343.
For measurements below 200K, see
E.C. Wiersma et al., Koninklijke
Akademie von Wetenschappen te Am-
sterdam, 34, 494 (1931).)
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Table 14.2 Permanent magnetic moments of paramagnetic molecules

Molecule or Ion NO O2 Mn FeCCC NiCC CrCCC

mp in 10�23 Am2 1.70 2.58 5.40 4.92 3.00 3.54

Inserting this value and room temperature, T D 293K, into
Eq. (14.33) gives mp D 2:58 � 10�23 Am2. Further examples are
given in Table 14.2.

With this value for the moment, we can estimate the fraction x in
Eq. (14.32). Compare the analogous computation for electric dipole
moments at the end of Sect. 13.10.

14.9 The Elementary Magnetic Moment
or Magneton. The Gyromagnetic
Ratio and the Electronic Spin

In this section, we want to investigate the origins of the permanent
magnetic moments discussed above and collected in Table 14.2. We
start with the moment which is produced by the orbiting electrons
within atoms. If an electron traverses a circular orbit of radius r with
the velocity u, then it has an angular momentum (from Sect. 6.6 in
Vol. 1) of

L D �! D mr2
u

r
D mru (14.34)

.� D moment of inertia; ! D angular velocity; m D mass/:

In addition, according to Eq. (4.4), it gives rise to a ring current of I D
�eu=l D �eu=2�r (e D 1:602 � 10�19 A s is the elementary charge,
Sect. 3.6), and this current is associated with a magnetic moment of

mp D IA D � eu

2�r
�r2 D �1

2
eur : (14.35)
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mp

L
D Magnetic moment of the particle

Angular momentum of the particle
(14.36)

is called the gyromagnetic ratio. For an electron in a circular orbit,
combining Eqns. (14.35) and (14.34) gives for the gyromagnetic ratio

mp

L
D �1

2

e

m
D �8:8 � 1010 A s

kg
(14.37)

.e=m; the specific charge of the electron; is equal to 1:76 � 1011 A s=kg/:

In BOHR’s model for the hydrogen atom (e.g. as described by POHL

in the 13th edition of “Optik und Atomphysik”, Chap. 14), an electron
on the innermost circular orbit in the hydrogen atom has the elemen-
tary angular momentum

L D h

2�
(14.38)

.h D PLANCK’s constant; 6:626 � 10�34 W s2 D 4:36 � 10�15 eV s/:

Substituting this expression into Eq. (14.37) yields the elementary
magnetic moment or BOHR magneton

mBohr D e

m

h

4�
D 9:27 � 10�24 Am2 : (14.39)

The measured values in Table 14.2 are of the order of magnitude of
the BOHR magneton. We consider this agreement to be an indica-
tion that the orbital angular momentum can play an important role
in forming the magnetic moments of atoms and molecules. An ad-
ditional contribution is made by the electron’s spin, which we will
discuss in the following.

The measurement of a gyromagnetic ratio was first carried out for
a ferromagnetic substance, iron. With iron, we observed in Sect. 4.4
the first of the phenomena which are now termed “gyromagnetic”:
A ferromagnetic object during the process of magnetization acquires
not only a magnetic moment, but simultaneously a mechanical angu-
lar momentum. They are the sums of all the magnetic moments mp

and all the angular momenta L of the N participating electrons in the
object.C14.16 C14.16. See the EINSTEIN-

de HAAS effect (Sect. 4.4).
The inverse effect has also
been observed: A rotating
iron rod becomes magnetized
(BARNETT effect).

For the quantitative evaluation, we proceed as follows: The rod in Sect. 4.4
has the moment of inertia �. At the remanent magnetization, the rod ac-
quires an angular momentum of NL D �!0. Here, NL is the angular
momentum of all N participating electrons. The rod leaves its rest position
with the maximum value !0 of its angular velocity and reaches its impulse
deflection of ˛0. The quantity !0 is found from the relation !0 D !˛0,
where ! is the circular frequency of the rod which acts as a torsional pen-
dulum. After measuring the angular momentum NL, we take the rod out
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of the field coil and measure its remanent magnetic moment m D Nmp,
e.g. by using the procedure described Fig. 8.15. (In practice, it is expedi-
ent to use an alternating current in the coil, causing a periodic force to act
on the magnetic moments in the rod. The rod (torsional pendulum) thus
responds with forced oscillations (Vol. 1, Sect. 11.10). Adjustment of the
frequency of the current in the coil to the resonance frequency of the tor-
sional pendulum gives a large increase in sensitivity to the rotations of the
rod ( resonance enhancement)).

In this way, we obtain experimentally the gyromagnetic ratio of an
electron in iron:

mp

L
D �1:75 � 1011 A s

kg
D � e

m
: (14.40)

Today, it has proven to be expedient to quote only relative values of
gyromagnetic ratios: A measured value is referred to the gyromag-
netic ratio of an electron in a circular orbit and defines its “g-factor”
(often called the LANDÉ g-factor) by the equation

g D mp

L

.�mp

L

�
circular orbit

: (14.41)

We find the value g D 2 for the electrons in iron using Eqns. (14.40)
and (14.37). (Precision measurements on free electrons later gave the
value g D 2:0023.)

The gyromagnetic ratio of an electron in ferromagnetic iron is thus
practically twice as large as would be expected from the orbital cur-
rent of the electron on a BOHR orbit. This gyromagnetic ratio there-
fore cannot originate from the orbital motion of the electrons, as in
BOHR’s model. Instead, the electrons must have an angular momen-
tum L and an associated magnetic moment mp even when they are
not moving on circular orbits, i.e. when their centers of gravity are
at rest. Both quantities are most simply explained as the result of
a proper rotation, like that of a spinning top. For that reason, the an-
gular momentum of a non-orbiting electron has been given the name
spin.C14.17C14.17. To distinguish be-

tween these two angular
momenta (of the orbital mo-
tion and the proper rotation),
the terms orbital angular mo-
mentum and proper angular
momentum or spin have been
introduced.

Its magnitude was determined by making use of the di-
rectional quantization found experimentally by W. GERLACH and
O. STERN (see e.g. evunix.uevora.pt/~stadler/FAN-06-07/History_
of_the_Stern-Gerlach_experiment.html ). The spin of an electron is

LS D 1

2

h

2�
: (14.42)

Inserting Eq. (14.42) into Eq. (14.40) yields the permanent magnetic
moment of the electron associated with its spin:

mp D � h

4�
� e

m
: (14.43)

It thus has the same magnitude as the elementary magnetic moment
named for BOHR ( Eq. (14.39)), mBohr (often denoted as �B).

evunix.uevora.pt/~stadler/FAN-06-07/History_of_the_Stern-Gerlach_experiment.html
evunix.uevora.pt/~stadler/FAN-06-07/History_of_the_Stern-Gerlach_experiment.html
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Diamagnetic Polarization.
LARMOR Precession

Now, how does diamagnetism come about? In diamagnetic atoms,
the electrons in the electronic shells have their permanent spin mo-
ments pairwise oppositely directed (antiparallel); furthermore, their
orbital moments cancel pairwise. Only in this way is it possible that
the electronic shells have no overall permanent magnetic moments.
A moment is formed by induction when the atom is brought into
a magnetic field.

In Fig. 14.13, the equatorial plane of a planar atomic model is shown
as a shaded disk. The symmetry axis A of the atom is tilted by an ar-
bitrary angle # relative to the direction of the field B. At the moment
represented by the drawing, an electron is at a distance rn from the
vector B. For simplicity, we assume that the magnetic field increases
linearly with time after being switched on; its maximum strength B
is attained after a time �t. During the period when the field is in-
creasing, Eq. (6.2) applies. There is thus an electric field along the
circumference of the circle 2�rn with the magnitude

E D PB�r2n
2�rn

D rn
2

PB : (14.44)

It causes the electron to accelerate:

a D Ee

m
D 1

2

e

m
� rn PB : (14.45)

This acceleration increases its orbital velocity along the circular orbit
2�rn within the time �t by an amount

u D 1

2

e

m
rnB ; (14.46)

corresponding to the angular velocity ! D u=rn, that is

!Larmor D 1

2

e

m
B : (14.47)

This angular velocity or circular frequency, named for its discoverer,
is independent of the radius rn; it holds for all the elementary charges

Figure 14.13 The origin of LARMOR precession. The
double arrow indicates that the electrons in a diamagnetic
molecule are circling as pairs in opposite directions.

A B

ϑ

ϑ rn
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within the atom. As a result, all those elementary charges rotate to-
gether, that is the atom as a whole rotates around the axis defined by
the magnetic field. An observer supposed to be at the center of the
atom would see no changes in the electronic orbits. The orbits of the
electrons within an atom can have a common axis of rotation. If this
axis is not parallel to the direction of B, then it moves around that
direction B on a precession cone. The sense of the rotation ensures
that the magnetic moment that it generates opposes its own origin, the
magnetic field (LENZ’s law, Sect. 8.3). According to equations (14.9)
and (14.7), this means that �m is negative and � < 1, as observed for
diamagnetic materials.

We can thus explain both paramagnetism and diamagnetism with
simple models.

14.11 Ferromagnetism,
Antiferromagnetism,
and Ferrimagnetism

When paramagnetic atoms are bound together in a solid, they as a rule
continue to be paramagnetic. As an example, we mention the triply-
ionized Gd ion, Gd3C, in the alum Gd2(SO4)3�8H2O3 Here m0, the
average contribution of an ion to the overall magnetic moment m,
which is given by m0 D M=NV (Eq. (14.27)), increases in an applied
magnetic field proportionally to B (Fig. 14.14, top) and inversely pro-
portionally to the temperature T (CURIE’s law, Fig. 14.15A0). Only
at low temperatures and in high magnetic fields does m0 attain the
order of magnitude of a BOHR magneton, mBohr (Fig. 14.15A).

Ferromagnetic solids (Sect. 14.4) exhibit a behavior which is sur-
prisingly different. As an example, we choose nickel. At a small

Figure 14.14 The average contribution
m0 of a Ni atom and a Gd3C ion to the
overall magnetic moment m D MV
(Eq. 14.9). (m0 D M=NV, in units of the
BOHR magneton mBohr; T D 300K). Top:
Gd2.SO4/3 � 8H2O (measured as described
in Sect. 14.3); bottom: Ferromagnetic, mi-
crocrystalline nickel (magnetic flux density
B0 defined as in Fig. 14.7 (B0 D �0H)).
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3 Crystalline gadolinium sulfate octahydrate (see also Sect. 14.4, Point 3.2). Its
density is % D 3:01 g/cm3 and the particle number density of the Gd ions is NV D
4:86 � 1021 cm�3.
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Figure 14.15 Influence of the temperature on solids with different magnetic
behaviors: The average contribution m0 of one molecule or one atom or ion
to the overall magnetic moment m, and the reciprocal magnetic susceptibility
(%=�m) relative to the density of the material (the flux density B0 is defined
as in Fig. 14.7). (Literature to Parts A and A0: see Landolt/Börnstein, 6th
edition, Vol. II/9, “Magnetische Eigenschaften” (Springer-Verlag 1962), in
the article by I. Grohmann and S. Hüfner, pp. 3-200 ff. For the other parts
of the figure, see E. Kneller, “Ferromagnetismus” (Springer-Verlag 1962),
Chap. 4–6).

fraction of the magnetic flux density which we required for Gd3C,
the average atomic contribution m0 in Ni has already reached its sat-
uration value (Fig. 14.14, bottom). It increases below the CURIE

temperature (TC D 631K) with decreasing temperature, and already
at room temperature, it has a value of 0:58mBohr (Fig. 14.15, B).
A similar behavior is observed for iron: In Fig. 14.7, already at
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B0 D 3 �10�3 V s/m2 and room temperature, m0 D 2:0 �10�23 Am2 D
2:1mBohr is observed.

When the average contributions m0 from the individual atoms to the
overall magnetic moment m reach the order of magnitude of mBohr,
then a large fraction of the atomic moments must already be oriented
parallel to each other. Only very large magnetic fields at very low
temperatures can achieve such a parallel orientation; that is shown by
materials which behave paramagnetically. There remains only one
explanation: In solids with ferromagnetic behavior, new forces ap-
pear within the crystal lattice. They bring about an orientation of the
atomic magnetic moments within microscopic regions of the crystal.
These regions (WEISS domains or magnetic domains) are sponta-
neously magnetized up to saturation. Macroscopically, the directions
of the magnetizationM of all the domains are distributed statistically
over all angles; therefore, a ferromagnetic crystal is “as a whole”
not magnetized before it is brought into an external magnetic field4.
Thermal motions limit the spontaneous magnetization, i.e. the for-
mation of domains in which all the microscopic elementary magnetic
moments are oriented parallel to each other, and thus for example
there is not some fraction of them which is antiparallel to the rest.
An external field can now align the directions of spontaneous magne-
tization, which is present in spite of the thermal motions, so that all
the domains are oriented in the same direction, parallel to the field.
The saturation value of the magnetization M which can be observed
in an applied field decreases from its maximum value at T D 0K
monotonically up to the CURIE temperature TC (Fig. 14.15B). Above
this CURIE temperature, the crystal behaves simply as a paramagnet
(Fig. 14.15B0).C14.18C14.18. In this tempera-

ture range, the magnetic
susceptibility �m of the fer-
romagnet is described by the
CURIE-WEISS law: �m D
CT=.T � TC/;
CT is the CURIE constant,
and TC is the CURIE temper-
ature.
A recent review of magnetic
microstructures, as well as an
overview of ferromagnetism,
can be found in the book
“Magnetic Domains” by Alex
Hubert and Rudolf Schaefer,
Springer-Verlag (1998).

The assumption of microscopically small, magnetically saturated
crystal regions in materials which exhibit ferromagnetic behavior is
not new (I.A. EWING, 1891).C14.18 Two points have emerged in more
recent times: 1. The recognition that the alignment of the elementary
magnetic moments within the spontaneously saturated regions can-
not be explained by magnetostatics alone; and 2. The experimental
means to observe these saturated regions and the direction of their
spontaneous magnetization microscopically. These two points will
be discussed in the following.

In order to visualize microscopically the spontaneously-magnetized
crystal regions (domains), one polishes the surface of a non-mag-
netized iron crystal, preferably using electropolishing. Then one
brings a suspension of extremely fine ferromagnetic Fe2O3 power
onto the surface. The powder achieves the same result for micro-

4 This holds of course only for objects which contain many spontaneously-
magnetized domains. If the body is in the form of fine powder in which each
powder particle contains only one spontaneously-magnetized domain (“single-
domain particles”), then the particles act like giant paramagnetic molecules with
very large magnetic moments mp; this is called superparamagnetism. The smaller
the particles, the lower their CURIE temperature, since not the thermal motions,
but instead the surface tension limits their spontaneous magnetization.
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Figure 14.16 Left: Visualization of the domain boundaries between
spontaneously-magnetized regions, and the directions of the magnetization
M within them. Right: An explanatory sketch. In polycrystalline material,
the domain boundaries often assume rather complex shapes.

N S
a b

Figure 14.17 Furrows, scratches etc. produce poles N S on the surface of
a magnetized object (so long as they are not parallel to the direction of the
magnetization, which is perpendicular to the plane of the page in Part b)

scopic dimensions as iron filings on a macroscopic scale (Chap. 4).
Figure 14.16 shows an image of this type on the left, and on the right,
a sketch which explains the image on the left. At the domain bound-
aries, poles occur. The dark powder collects within their magnetic
fields.

These images not only allow us to recognize the boundaries of the
domains, but also the directions of the magnetizationM within them.
For that purpose, a brush with glass bristles was used to scratch fine
furrows on the surface and thereby to localize magnetic poles along
them. Such poles however are formed only when the furrows are
nearly perpendicular to the direction of the local magnetizationM, as
can be seen from Fig 14.17a. Therefore, the darker lines filled with
the powder can be seen in Fig. 14.16 only where the furrows cross
the magnetization directions (arrows in the sketch).

In order to investigate the magnetization process, let us first heat a fer-
romagnetic object (made e.g. of iron) temporarily to above its CURIE

temperature; after cooling, it will be in an overall non-magnetized
state. In which manner can an applied magnetic field then convert
this macroscopically non-magnetized object into a magnet, so that it
acquires an overall magnetic moment m?

The microscopically observed, spontaneously-magnetized domains
in Fig. 14.16 (left) are not bounded by surfaces in the mathemat-
ical sense, but rather by separation layers of finite thickness (ca.
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Figure 14.18 The magnetization process. The lines denoted by 1 and 2 indi-
cate domain walls. The arrows show the direction and relative strength of the
magnetization M. The short arrows in Part III indicate the sense of rotation.

0.1�m), called domain walls or BLOCH walls. The transition of the
direction of magnetization of a domain into that of its neighboring
domain occurs within these domain walls. The intersections of the
walls with the surface of the sample show relatively simple patterns
in Fig. 14.16, since the surface was cut parallel to one of the cubic
crystallographic faces. The sketch at the right in Fig. 14.16 which ex-
plains the observed pattern can be reduced to a schematic in which the
lengths l have become zero; this schematic can be seen in Fig. 14.18.

Now suppose that the iron cube is placed in a magnetic field B which
is parallel to a face diagonal of the cube. This field gives the macro-
scopic magnetization of the cube a preferred direction and thus pro-
duces an overall magnetic moment m which can make its effects felt
in the space around the cube. How does this occur?

Of the two angles between the field B and the local magnetization
vectors M, ˛ is smaller than ˇ. As a result, the regions containing
˛ grow at the cost of those containing ˇ; this occurs through a shift
of the domain wall 2 to the right (in the figure, Part II). In Part III,
only two domains are still present. Their magnetization vectors M
initially have the same orientations as those on the left and above in
Part II; they are symmetric to the remaining domain wall 1. There-
fore, this wall will not be shifted further; instead of a wall motion,
a new process occurs: The directions of magnetization rotate as the
field increases further, and both domains approach the direction of
the field (Part III). This domain rotation process comes to an end
when the whole crystal has a unified magnetization (Part IV), i.e. its
magnetization is saturated (Exercise 14.5).

The wall motion during the process of magnetization can be observed
and recorded microscopically. An impressive effect is the “sticking”
of domain walls on disturbances in the crystal lattice, such as non-
ferromagnetic inclusions. When the walls break loose irreversibly,
there are sudden, jerky jumps in the magnetization M. These also
can be readily observed.

A polycrystalline material, a thin, soft iron wire Fe, is shown in
Fig. 14.19, surrounded by an induction coil J. The coil is connected
to an amplifier and thence to an oscilloscope with its horizontal de-
flection proportional to the time, and also to a loudspeaker. N-S is
a small bar magnet; it can be moved back and forth in the direc-
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of statistically distributed jumps in
the magnetization during a uniform
variation of the magnetizing field
(BARKHAUSEN effect)

N S J
Fe

Amplifier

Oscilloscope Loud-
speaker

Figure 14.20 Resolution of the BARKHAUSEN

effect (steps in the magnetization) in a hysteresis
loop, schematic

M

B0

tion towards or away from the iron wire, along a ruled scale. As it
approaches the iron wire, the magnetization of the wire increases.
When the magnet is removed, the magnetization again decreases. In
this way, the hysteresis loop of the iron wire can be repeatedly tra-
versed. Earlier, in Fig. 14.7, the loop appeared to ba a smooth curve.
Now, we find that it is composed of many small steps, as can be
seen in Fig. 14.20; each step represents an irreversible jump due to
a jerky wall motion. These motions can be seen on the oscilloscope
as individual steps along the curve. In the loudspeaker, they pro-
duce a crackling noise which is named for H. BARKHAUSEN (the
Barkhausen effect). Most of these jumps occur in a purely statistical
manner. A few of the strongest, however, occur again and again at
the same positions of the bar magnet.

Domain-wall motions occur predominantly in weak applied magnetic
fields, while domain rotations occur in stronger fields. There, the sit-
uation is complex. Briefly, one can summarize the whole process as
a magnetic recrystallization, which usually begins at locally-formed
“nucleation centers” (they play a role not only in crystallization, but
also in evaporation and condensation processes).

Based on these experimental findings, we can readily understand the
sketch in Fig. 14.21A: Iron crystallizes in the body-centered cubic
(bcc) system, i. e. its crystal lattice consists of two parallel, inter-
meshing cubic sublattices. The vertices of the cubes of the second
lattice lie at the intersections of the body diagonals of the first lattice.
The cubes sketched in the figure belong to a magnetic domain which
is spontaneously magnetized to saturation. Instead of the atoms, only
the magnetic moments of the atoms are drawn at the vertices of the
cubes, differently colored and readily distinguishable for the two sub-
lattices.

In Fig. 14.21, Parts B and C complement Part A: They contain
the magnetic structures which are discussed in the following. In
Fig. 14.21B, equally strong atomic moments in the two sublattices
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a b c

Figure 14.21 Ferromagnetic (A) and antiferromagnetic (B) ordering of
the atomic magnetic moments in a body-centered cubic crystal lattice; C:
Schematic representation of a ferrimagnetic material

are oriented antiparallel to each other. Each of the two sublattices
is spontaneously magnetically saturated, but the resultant overall
magnetic moment of the domain is zero. This is the simplest case
of a body which exhibits antiferromagnetic behavior. The antifer-
romagnetic order is reduced by random thermal motions, just like
ferromagnetic order, as the temperature increases. The long-range
order vanishes at a temperature TN, the Néel temperature (named
for Louis NÉEL). Above TN, antiferromagnetic materials behave as
paramagnets in an applied magnetic field.C14.19C14.19. In antiferromagnets,

the magnetic susceptibility
�m in the temperature range
above TN is described by
�m D CT=.T C�/, where �,
the CURIE-WEISS tempera-
ture, is positive.

Also at temperatures below TN, an antiferromagnet behaves at a con-
stant temperature like a paramagnet, i.e. its magnetization M in-
creases linearly with the applied flux density B. However, the influ-
ence of the temperature on M=NV and on the reduced susceptibility
�m=% is more complex than for a simple paramagnetic material. Fig-
ures 14.15C and C0 give examples for antiferromagnetic MnO.

With decreasing temperature below the NÉEL temperature, 1=�m again
increases (Fig. 14.15C0). The reason: The orientation of the atomic mag-
neticmomentsmp in an appliedmagnetic field becomes less effective when
the antiferromagnetic coupling between the moments mp of the atoms in-
creases relative to the thermal energy.
The specific heat capacity of the solids with ferromagnetic and antiferro-
magnetic behavior is anomalously large in the neighborhood of the CURIE

or the NÉEL temperature (Fig. 14.22). Explanation: In order to destroy
the ordering of the atomic magnetic moments, heat must be added to the
sample.

Figure 14.22 Variation
of the specific heats of
ferromagnetic and anti-
ferromagnetic materials
near their magnetic tran-
sition temperatures (the
CURIE temperature and
the NÉEL temperature,
respectively)
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but instead have differing overall resultant magnetic moments (Fig.
14.21C). Then the difference between the sublattice magnetizations
gives rise to a spontaneous magnetization. Such materials are termed
ferrimagnetic (ferrites). A well-known example is magnetite, known
for over 2000 years as “lodestone”, Fe3O4.

This mineral has the spinel structure. Its chemical formula is FeO�Fe2O3.
The negative oxygen ions form a face-centered cubic (fcc) sublattice, into
which one divalent and two trivalent iron ions per formula unit are in-
cluded. The divalent iron ions can be partially or completely replaced by
other metal ions; this gives rise to a large variety of cubic ferrites, as these
compounds are called.
The ferromagnetism of the ferrites comes about as follows: One half of
the trivalent iron ions forms one sublattice, while the other half forms an-
other sublattice together with the divalent metal ions. The divalent oxygen
ions are diamagnetic, and thus have no permanent magnetic moments mp.
The magnetic moments on the metal ions are oriented antiparallel to each
other in the two sublattices. The moments of the trivalent iron ions thus
mutually cancel. The resulting spontaneous magnetization is formed by
the magnetic moments of the divalent metal ions.

In ferromagnetic materials, the magnetization M can be increased
only up to a maximum or saturation value by applying an external
magnetic field of increasing flux density B. The same is true of fer-
rimagnetic materials. The temperature dependence of the saturation
values ofM is shown in the curve in Fig. 14.15D; it is similar to that
for ferromagnetic materials. However, the influence of the temper-
ature on the reduced susceptibility �m=% (Fig. 14.15D0) is different
from the case of ferromagnets (Fig. 14.15B0).

As a result of the inequivalence of the two antiferromagnetically cou-
pled sublattices, not only are the saturation values of their magnetic
moments m different, but also so is the temperature dependence of
the spontaneous magnetization of the sublattices. For this reason,
it can happen that the resulting spontaneous magnetization goes to
zero with increasing temperature before the CURIE temperature is
reached. This can be shown using a lithium-chromium ferrite in a sur-
prising demonstration experiment.

In Fig. 14.23, a rod made of this material is hung from a thread. The rod has
a remanent momentm. In field-free space, it will be oriented perpendicular
to the plane of the page. Between two magnetic poles, it orients itself
parallel to the plane of the page, for example with the arrow pointing to
the right. Then the rod is warmed by hot air and thermal radiation from
a glowing heating coil beneath it. At T D 38 °C, it turns until it is again
perpendicular to the plane of the page; it has thus become non-magnetic. If
the temperature is increased still further, the rod again turns into the plane
of the page, but this time with the arrow pointing to the left. Therefore, the
overall magnetic moment m of the rod has reversed its direction by 180°.

The ferrites are ceramic-oxide materials (first described in 1779).
As semiconductors, they have resistivities which are many orders
of magnitude greater than those of metals. Therefore, perturba-
tions caused by eddy currents play no role in their properties.
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Figure 14.23 The magnetic moment of
a ferrite is formed as the difference be-
tween two oppositely-directed magnetic
moments with differing temperature de-
pendencies. At T > 38 °C, the ferrite
rod rotates by 180° (here, the ferrite is
LiC2 �Cr2C

6 � Fe3C
6 �O2�

16 ).

Heating coil

N S

Figure 14.24 A “compass needle”
whose long axis points from east to
west, because its north and south poles
are located on its sides (Exercise 14.6)

This makes the ferrites exceptionally important as materials for
high-frequency and communications technology. Complex ferrites,
e.g. PbO� 4Fe2O3�BaO� 6Fe2O3, can be powdered and bound together
with a glue, and they have very high coercive fields. They are widely
applied for example in magnetic data storage or as low-cost materials
for making strong permanent magnets.

For example, one can fabricate short, thick permanent magnets from
ferrites with a high coercive field, although this shape has a large de-
magnetizing factor (Sect. 14.6). An example is shown in Fig. 14.24.

Exercises

14.1 In order to determine the magnetic susceptibility �m of
graphite (arc-lamp carbon), the weight of a sphere made of this
material with a diameter of d D 6mm is measured in an inhomo-
geneous magnetic field (Fig. 14.3). For the magnetic flux density B
at the position of the sphere, we find B D 2:0 T, and for the field
gradient, dB=dz D �20:0V s/m3 (the z direction is oriented upwards,
opposite to the force of gravity). When the magnetic field is switched
on, the weight of the sphere decreases by 5:1 � 10�5 N (� 5mg � g,
i.e. � 2%). Calculate �m. Is it necessary to take the demagnetizing
factor into account? (Sects. 14.3, 14.6)

14.2 a) In analogy to the derivation of the electric field Ep in the
interior of a uniformly polarized sphere, as described in Sect. 13.6
(Eqns. (13.12) through (13.16)), derive the magnetic field Hm in the
interior of a uniformly-magnetized sphere (a permanent magnet with
magnetizationM), beginning with Eqns. (14.14) to (14.17).
b) What do you find in this case for the flux density Bm within the
sphere? (Sect. 14.6)
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magnetic fieldHa, the fieldHi within a spherical cavity in a magnetiz-
able plate of permeability �a is to be computed. The plate is oriented
perpendicular to Ha (analogously to Fig. 13.8). Ha is parallel to H0,
as in the electrical case; Eq. (13.18) holds also for magnetic fields
(see e.g. M.H. Naifeh and M.C. Brussel, Electricity and Magnetism
(John Wiley, New York 1985), p. 308). Find the relationship between
Hi and Ha. (Sect. 14.6)

14.4 With the pot magnet in Fig. 8.24 (Video 8.4), we want to es-
timate the forces F0 for a gap width of zero and Fd for a gap width
d D 0:4mm. The permeability of the iron is � D 727, the number of
turns in the magnet coil is N D 175, and the current is I D 0:75A.
The end surface of the inner pole has an area of A D 7:55 cm2 and is
the same as that or the outer pole (the ring), so that Eq. (14.23) may
be applied. The length of the path integral (Eq. (14.26)) is l D 12 cm
(note that in the calculation of the path integral, the quantity d occurs
twice). (Sect. 14.6)

14.5 In Video 10.1, “The inertia of the magnetic field”, the slow
buildup and decay of a magnetic field are shown (Sect. 10.2, Com-
ment C10.5).
a) Initially, switch 1 (Fig. 10.6) is closed and the increase of the
current up to its maximum value of 15mA is followed (the OHMic
resistance of the coil is R D 130�). Evaluate this rise by plotting it
on semilogarithmic graph paper and test it for an exponential depen-
dence.
b) In a second experiment, the decay of the current is determined by
closing switch 2 and shortly thereafter opening switch 1. Again, look
for an exponential dependence.
c) Finally, the leads to the coil are exchanged, switch 2 is opened and
switch 1 closed, and again the rise in the current is registered. What
time dependence is found now? How can you explain qualitatively
the observed time dependence in all three experiments? (Sect. 14.11)

14.6 Explain why the magnetic flux density B in front of the ce-
ramic disk in Fig. 14.24 is smaller than that in front of a long bar
magnet with the same homogeneous magnetizationM. As a simplifi-
cation, approximate the shapes of the disk and the bar by ellipsoids of
rotation. For the disk, the ratio of thickness to diameter is l=d D 0:1.
(Sect. 14.11)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_14) contains supplementary material, which
is available to authorized users.
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Introduction. Measuring
the Optical Radiant Power 15

15.1 Introduction

Some black night in your darkened bedroom, stick your head un-
der the covers and press on the corner of your eye. Then you will
see a bright light, in the form of a colored, yellow, shining ring.
The words printed here in italics are used by our natural language
to describe sensory perceptions. Every involvement with light and
its measurement (photometry, see Chap. 29), and every investigation
of colors and brilliance do not belong in the realm of physics; they
are the jurisdiction of psychology and physiology. Taking this fun-
damental fact into account from the outset can avoid many fruitless
discussions and diversions.

The usual excitation of our visual perceptions, light, brightness, color
and brilliance is caused by a form of radiation. Originating with ra-
diating objects or light sources, “something” arrives at our eyes. It
requires no kind of transporting medium on its way there. The radi-
ation of the sun and the stars reaches us through the vast emptiness
of space. Today, school children learn that this radiation consists of
electromagnetic waves of very short wavelengths. We often call this
light-producing radiation “optical radiation”, or simply light. The
word light in the sense of radiation is used even for invisible rays
(ultraviolet, infrared). This double meaning, light as a sensory per-
ception, and light as a physical radiation, corresponds to the language
convention in acoustics, as well (Vol. 1, Sects. 12.24–12.30). There,
also, the perception of sound is excited by a type of radiation. The ra-
diation which causes the perception of sound is usually called “sound
waves”, acoustic radiation, or simply sound. In this case, also, the
word sound is used without hesitation for inaudible sounds (ultra-
sound, infrasound).

15.2 The Eye as a Radiation Detector.
MACH’s Stripes

Our eyes can accomplish a great deal in the physical investigation of
the radiation which excites our sensory perception of light. They can
take us much further than our ears do in the analogous problems of

293© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_15
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Figure 15.1 The origin of MACH’s
stripes. When the disk is rapidly ro-
tated, the image which is shown in
Fig. 15.2 as a photograph is seen.
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Figure 15.2 MACH’s stripes at the
boundaries between white and grey,
and between grey and black

acoustic radiation. But, like every organ of sensory perception, our
eyes fail when it comes to quantitative measurements. They fail to
give us an exact numerical description of “less” or “more”.

A drastic example is provided by MACH’s stripes. In Fig. 15.1, a star
cut from white paper has been pasted onto a dark cardboard disk. The
disk is illuminated at a window or by a lamp and is rotated rapidly
with a motor. The eye perceives three concentric circular zones: The
innermost zone has the greatest brightness per surface area, and the
outermost zone is the least bright. The middle zone provides a con-
tinuous transition between the other two. This is shown as a drawing
in the lower part of Fig. 15.1.

However, we see – both on the rotating disk and in its photographic
image, Fig. 15.2 – quite a different light distribution from what is
in fact present. We see the inner, bright circle surrounded by a still
brighter border. We see the dark ring bounded on its inner side by
a still darker border. According to the strong impression given by our
eyes, the most light would seem to come from the bright border, and
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Figure 15.3 On “inverted seeing”
(image of a surface which is par-
tially wetted). Look at the image
alternately as printed and then ro-
tated by 180ı.

the least light from the dark border. Every objective observer would
be led inevitably to the wrong conclusion that the ambient light is
most strongly reflected by the bright ring, and least reflected by the
dark ring.

The light distribution sketched in the lower part of Fig. 15.1 can be
observed in many arrangements and experiments. For this reason,
these “MACH’s stripes” have caused many an error in diverse physi-
cal observations.

Nevertheless, we should not hastily dismiss them as an “optical illu-
sion”. The phenomenon of MACH’s stripes is of great importance for
our visual sensory perceptions.

Think for example of reading dark printed letters on white paper. The
lenses of our eyes by no means produce a perfect image. The outlines
of the printed letters are not sharply imaged on the sensitive layer in
our eyes, the retina. The transition from the dark letters to the bright
background of the paper is washed out, as in a poorly-focussed photo.
But our visual perceptions can compensate for this error with the
help of MACH’s stripes. The eye sees, figuratively speaking, a bright
border at the boundary of the bright paper, and a dark border at the
boundary of the dark letters in its image of the printed page. In spite
of the fuzzy image on the retina, this gives us the impression of sharp
outlines.

Another useful hint shows how our vision is decisively influenced
by processes within our brains: Such “central processes” depend in
a very complex way on the processes within the retina of the eyes. An
example is “inverted seeing”, as explained in Fig. 15.3 (an exchange
of deep and high levels in an image). Keep in mind also what is
said in Sect. 18.15 about the “depth of focus” in images. So much
for these important phenomena which are generally typical of the
operation of our visual sensory perceptive apparatus.
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15.3 Physical Radiation Detectors.
Direct Measurements of Radiant
Power

Our eyes are by no means the only indicators for the radiation which
is emitted by glowing objects: All bodies which are struck by the
radiation will be warmed, that is, they receive energy. In the sun’s
radiation or the radiation from an arc lamp, we can feel this warming
effect directly with the temperature sensors in our skin. The palm of
the hand is especially sensitive.

This heating effect of the radiation offers a method for measuring its
radiant power, that is the quotient of energy/time transmitted by the
radiation. The principle is explained in Fig. 15.4. There, a metal
plate is being irradiated by an incandescent lamp. The plate has been
blackened with soot so that it absorbs practically all the incident ra-
diation. A thermometer and an electric heater are also built into the
plate.

Wewait until a constant temperature has been established. Then equi-
librium has been reached: During each time interval, just as much
energy is brought to the plate by the radiation as it loses through heat
conduction etc. Then we block off the radiation and adjust the heater
current so that the same temperature is maintained; this requires a cer-
tain electrical power, that is a certain product of current and voltage,
measured in volt � ampere D watt. This electrical power is equal to
the previously-absorbed radiant power: Thus, we have calibrated the
radiometer.C15.1C15.1. For a quantitative

description of the optical
radiation in the visible wave-
length range of light from
around 400 to 750 nm (1 nm
D 1 nanometer D 10�9 m),
several additional, special-
ized quantities have been
defined which take into
account the perception of
brightness by the human eye.
For example, analogous to
the radiant intensity with the
unit watt/steradian, we have
the luminous intensity, with
the unit candela (one of the
seven SI base units). These
quantities will be discussed in
detail in Chap. 29.

By comparing this calibrated but not very sensitive instrument with
a more sensitive radiometer, e.g. a radiation thermocouple or ther-
mopile, we can then calibrate the latter (Fig. 15.5).

Solid angle dΩ
Irradiated receiver

area dA'

Heating coil
Thermometer

V A

Figure 15.4 Calibration of an optical radiometer. The voltage of the current
source can be adjusted. The radiant power d PW is radiated into the solid angle
d˝ and is then absorbed in the receiver area dA0; thus we define the radiant
intensity of the lamp as emitter or source as I D d PW=d˝ , and for the receiver
area dA0 , the irradiance (or irradiation intensity) as Ee D d PW=dA0 (a detailed
treatment of these quantities will follow in Chap. 19).
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Figure 15.5 Schematic of a thermo-
couple (e.g. cubic SnTe-Constantan),
into which a soot-covered Ag foil has
been inserted for measuring the radiant
powerC15.2 C15.2. The thermocouple

in Fig. 15.5 is a simple
radiometer. The active
(e.g. cubic SnTe-Constantan)
junction is underneath the Ag
foil, which serves as receiver
for the radiation. The open
circles indicate two other
junctions where the Cu leads
to the voltmeter are attached;
they must be kept at the
same constant temperature
(“reference temperature”) to
avoid unwanted additional
thermovoltages. A general
summary of the use and
design of thermocouples
can be seen for example
at www.msm.cam.ac.uk/
utc/thermocouple/pages/
ThermocouplesOperatingPrinciples.
html. Today, radiometers
often use a thermopile,
a series of thermocouples
connected together to
increase sensitivity. An
example of a commercial
instrument is shown at www.
kippzonen.com/Product/
36/CA2-Laboratory-
Thermopile#.V6xVelfuKrW.

1 cm
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0.4 mm diameter
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15.4 Indirect Measurements of Radiant
Power

In the case of radiometers which are based on the production of heat
by the radiation (thermal radiometers), the incident radiant power
is distributed over all the components of the absorbing object. The
observed increase in its temperature corresponds only to the average
energy increase of all the molecules in the detector. This limits the
sensitivity of such radiometers. Much more sensitive radiometers
are based on allowing all the radiant energy to be absorbed by only
a small component, namely only by some fraction of the electrons
which are a component of the radiometer. The electrons which re-
ceive the energy can be conveniently measured in the form of an
electric current. This is the case for example with vacuum photo-
cells (Fig. 15.6, left) (The photoeffect or photoelectric effect was
described in the 13th edition of POHL’s “Optik und Atomphysik”,
Chap. 14,), with photodiodes (Fig. 15.6, right) (cf. 21st edition of
POHL’s “Elektrizitätslehre”, Chap. 27), with ionization chambers
(Fig. 15.7), and with GEIGER-MÜLLER counters in their different
forms (ibid., Chap. 20). In all of these devices, the measured electric
currents are proportional to the absorbed radiant power. They thus
provide an indirect measurement of the radiant power. Unfortunately,

Light

Light

Alkali
metal

A

Ammeter Ammeter

Transparent
metal electrode

Opaque
metal electrode

A

Selenium layer

Figure 15.6 A vacuum photocell (left) and a photodiode (right). Both are
convenient to use as radiometers in demonstration experiments, but they are
unfortunately very selective. That means that their indicated values are indeed
proportional to the radiant power, but they must be separately calibrated for
every type of radiation.

www.msm.cam.ac.uk/utc/thermocouple/pages/ThermocouplesOperatingPrinciples.html
www.msm.cam.ac.uk/utc/thermocouple/pages/ThermocouplesOperatingPrinciples.html
www.msm.cam.ac.uk/utc/thermocouple/pages/ThermocouplesOperatingPrinciples.html
www.msm.cam.ac.uk/utc/thermocouple/pages/ThermocouplesOperatingPrinciples.html
www.kippzonen.com/Product/36/CA2-Laboratory-Thermopile#.V6xVelfuKrW
www.kippzonen.com/Product/36/CA2-Laboratory-Thermopile#.V6xVelfuKrW
www.kippzonen.com/Product/36/CA2-Laboratory-Thermopile#.V6xVelfuKrW
www.kippzonen.com/Product/36/CA2-Laboratory-Thermopile#.V6xVelfuKrW
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F B

U R V

Figure 15.7 A gas-filled ionization chamber for detecting X-rays, in the form
of a cylindrical condenser, used in connection with a DC amplifier and a volt-
meter V (U � 103 V, R � 109�). F is an aluminum foil entrance window
for the radiation, and B is an insulator.

the proportionality constants depend on the type of radiation being
measured. Their application therefore requires much more physical
knowledge than in the case of a thermoelement. Where radiation
measurement instruments (radiometers) appear in the illustrations of
this book, we can generally take them to be thermocouples. When
a more sensitive measurement is required, the necessary information
will be provided in the description of the experimental setup.

Technical details have no place in this book. Nevertheless, we mention two
points:
1. A very high sensitivity and broad applicability are exhibited by photo-
multiplier tubes, which are technically advanced vacuum photocells with
a built-in amplifier (electron multiplier): The primary electrons which are
ejected from the photocathode by light are accelerated by a first-stage volt-
age onto a metal plate (e.g. AgMg). They cause secondary electrons to be
emitted there, whose number is a large multiple of the number of primary
electrons. These secondary electrons are accelerated in turn by a second
voltage stage onto another plate, ejecting tertiary electrons, and so forth
through a number of stages (called ‘dynodes’), providing a very high over-
all amplification factor.
2. In order to make use of the convenient aspects of AC amplification, one
uses a “chopper” to irradiate the instrument with light pulses (intermittent
light). This has the added advantage that measurements can be carried out
without requiring a darkened room: The constant current resulting from
the background illumination is filtered out by the AC amplifier.



Pa
rt
II

The Simplest Optical
Observations 16
16.1 Light Beams and Light Rays

Physics is and remains an empirical science. In optics, as in other ar-
eas, observations and experiments have to provide the starting points
for concepts and physical laws. It is reasonable to begin our treat-
ment of optics, as in other fields, with the simplest experiences from
daily life.

Every human being knows the difference between clear and hazy air,
and between a clear and a murky liquid. Hazy air contains a large
number of microscopic suspended particles, usually referred to as
smoke, smog or dust. In a similar manner, liquids are clouded by
small suspended particles. We can for example make clear water
murky by adding a small amount of India ink, which contains very
finely divided carbon powder, or with a few drops of milk, a suspen-
sion of microscopic particles of fat and casein (Video 16.1). Video 16.1:

“Polarized light”
http://tiny.cc/5dggoy
In this video, a plastic dis-
persion (styrofan) is used to
make the light beam visible
in a water-filled cuvette (see
Fig. 24.4).

Room air is always more or less hazy; it usually contains many sus-
pended dust particles. If necessary, tobacco smoke can be used to
increase its haziness. Now, we carry out our first experiment us-
ing room air (Fig. 16.1): We employ a carbon-arc lamp in the usual
sheet-metal housing as light source. The front end of the housing has
a circular opening B which serves as the exit aperture for the light.
Looking from the side, we can see a white, shimmering cone of light
which extends from this opening far into the room. The light thus
propagates within a cone (which is bounded by straight, dashed lines
in the figure). It is called the light beam. This light beam has a large
opening angle !; it is determined by the opening B which serves as
an aperture diaphragm. Travelling in beamswith straight-line borders
was listed in Vol. 1 as one of the basic properties of wave propagation
(Sect. 12.6), provided that the wavelength is small compared to the
diameter of the aperture (Fig. 16.2).

Figure 16.1 The visible trace
of a light beam in hazy air (the
dashed rays were drawn in
later)

B
ω
ω

299© Springer International Publishing AG 2018
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B

Figure 16.2 The propagation of mechanical waves as a beam with straight-
line boundaries. The sketch shows water waves before and after passing
through a wide opening (schematic, after Fig. 12.12 in Vol. 1).C16.1C16.1. This is only

a schematic sketch. In the
case of mechanical waves,
e.g. water waves, the bound-
aries of the beam can be
only roughly discerned due
to diffraction (see Vol. 1,
Video 12.2: “Experiments
with water waves”
http://tiny.cc/tfgvjy).

The experiment shown in Fig. 16.1 illustrates the visible trace of
a light beam in a hazy medium. The dust particles which are struck
or illuminated by the light scatter a small fraction of it in all di-
rections, and some portion of this scattered light reaches our eyes.
Isotropic scattering from small particles is familiar from the mechan-
ics of waves. We recall a stick standing up in the smooth surface of
a pond: When water waves strike it, the stick becomes the source of
circular “secondary” wave trains with propagate in all directions over
the water surface (cf. Vol. 1, Fig. 12.17).

The further we move the opening away from the light source (the
carbon arc) in Fig. 16.1 (arc discharges were discussed in the 21st
edition of POHL’s “Elektrizitätslehre”, Chap. 18), the more narrow
the light beam and the smaller its opening angle ! become. In the
limiting case, the boundaries of the beam appear practically parallel
as viewed from the side. We then speak of a parallel-bounded beam
of light, or, for short, a collimated beam. In drawings, we represent
a light beam in one of two different ways:

1. By two boundary rays (e.g. chalk marks or pencil strokes) at the
sides of the beam. They define twice the opening angle, 2!.

2. By a single ray representing the beam axis. It defines the direction
of the light beam relative to some fixed direction.

We thus use the same techniques to represent light beams as we did
for the cones or beams of mechanical waves (cf. Fig. 16.2). There, the
rays in the drawing clearly represent lines normal to the wavefronts.

Only light beams can be observed. Light rays exist only on the
blackboard or on paper. They are merely an aid to graphical and
mathematical representation.

Later, we will demonstrate curved light beams experimentally in a corre-
sponding mannerC16.2C16.2. See Sect. 27.11 and

Video 27.1:
“Curved light beams”
http://tiny.cc/wfggoy.

and will represent them using curved lines or rays.

For demonstrations to a large audience, we need very hazy air in
order to make the trace of the light beam sufficiently bright. But we
can avoid this problem; instead of hazy air, we use a cloudy liquid in
a trough, or even more conveniently, a flat table with a matte finish.
We can obtain the latter by painting a flat board with matte white or
covering it with a sheet of white paper.

http://tiny.cc/tfgvjy
http://tiny.cc/wfggoy
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Figure 16.3 The visible trace of a collimated light beam along a white
painted board S (B is a round aperture, F a red filter). To avoid having too
great a distance from the light source with the associated problems, a lens C
(called a condenser lens; cf. Sect. 18.3) with a focal length of around 7 cm
(Sect. 16.7) is placed in front of the exit aperture of the light source.

The “dust” in commercial white paints consists of a very fine powder
made from a transparent material. Clear rock salt when powdered ap-
pears white. Clear ice gives white snow in the form of small particles.
If “light” or “dark” beer is spread thinly in the form of fine bubbles, it ap-
pears as a white foam “head”. White paper has a similar structure to white
pigments; instead of a suspension of very finely powdered crystals, it con-
sists of fine fibers which are tangled together and held by a layer of glue
(cf. Sect. 26.10).

We can thus allow the light to shine at a glancing angle along a white
painted board. Then we see its trace with a nearly blinding bright-
ness. For the demonstration of collimated light beams, we make use
of the convenient trick shown in Fig. 16.3. With this arrangement,
we can also readily demonstrate a “colored”1 light beam, for exam-
ple a beam of red light; we need only place a red filter in front of the
light source, for example a darkroom filter. We will continue to work
in the following with red-filtered light.

For the light which we commonly encounter in daily life, that is the
light of the sun, light from the sky, light from electric incandescent
lamps, candles, gas lamps,C16.3

C16.3. See Comment
C1.1. in Vol. 1.

or carbon-arc lights, we use the com-
pact collective term natural light. The usual word “white” light is too
vaguely defined.

16.2 Light Sources of Small Diameters

To demonstrate many optical phenomena, we require light sources
with a small diameter and a strong luminous exitance (source bright-
ness). The choice is limited.C16.4

C16.4. Light sources which
fulfill these conditions in an
excellent manner are avail-
able today in the form of
lasers. (The word “laser”
is an acronym and stands
for “Light Amplification by
Stimulated Emission of Radi-
ation”. Described in the 13th
edition of POHL’s “Optik
und Atomphysik”, Chap. 14;
see H.J. Eichler/J. Eichler,
“Lasers” (Springer Ver-
lag, Berlin 2003)). Some
of the experiments described
in this book can therefore
also be demonstrated using
a laser as light source (see
e.g. Video 27.1: “Curved
light beams”). In many
cases, the use of a laser how-
ever provides no particular
advantage, so that an aperture
or slit illuminated by an arc
lamp and condenser lens has
by no means lost its useful-
ness as a light source.

Among them are the carbon tips (the “crater”) of small arc lamps (di-
ameter � 3mm), or the small arcs in high-pressure mercury lamps

1 “Colored light” or “red light” is in terms of language at the same level as a “high
note”. Both expressions are justifiable only because of their convenient brevity.
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(diameter � 0:3mm)2. In general, the boundaries of the source in
such lamps are not sufficiently sharp. Therefore, instead of a lamp
as light source, we often employ a circular aperture illuminated from
behind, or a slit with straight edges. For the illumination from be-
hind, we place a lens of short focal length between the lamp and the
aperture: a condenser lens. One of many examples can be seen in
Fig. 16.3. The details of a proper illumination will be given later in
Fig. 18.12.

16.3 The Fundamental Facts
of Reflection and Refraction

Making use of the experimental aids described above, we now begin
by recalling school physics and the laws treated in some detail in
Vol. 1 (Sect. 12.7): the law of reflection and the law of refraction. We
employ the setup illustrated in Fig. 16.4. A thin red light beam I falls
at a slant from the upper left through the air onto the planar, polished
surface of a glass block B. At the surface, it is split into two partial
beams II and III. One of them, beam II, is reflected towards the
upper right. After the reflection, the rays as drawn seem to originate
from the “virtual” intersection point L0, the “mirror image” of the
object point. The other beam, III, enters the glass block, changing
its direction of propagation at the surface; it is refracted. All the rays
drawn in the figure lie in the same plane, the “plane of incidence”
(the plane of the page). Three of these rays belong together in each
case; they make the three adjacent angles ˛, ˇ and ˛0 with the “axis
of normal incidence” N. In Fig. 16.4, these angles are shown for the
center axes of the beams; the boundary rays are left off for clarity.
The set of angles obeys the law of reflection:

˛ D ˛0 ; (16.1)

and for the transition of the light from the air into the material B
(glass), the law of refraction (SNELL’s law)C16.5C16.5. WILLEBRORD SNELL

(1580–1626), a Dutch mathe-
matician. In Sect. 12.8, the
index of refraction n for
electromagnetic waves was
introduced; it thus holds for
light, as n D cvacuum=cmatter

(A detailed description
for light follows later in
Chap. 25).

sin˛

sinˇ
D const D nB : (16.2)

nB, often written without the subscript, is called the index of re-
fraction of the material B. Some numerical values are collected in
Table 16.1. In comparing two materials, the one with the higher in-
dex of refraction is referred to as the more “optically dense” material.

In Fig. 16.4, we show a boundary surface between air and glass.
Instead of this, we could employ a boundary surface between two

2 Even this diameter is still very large compared to the wavelength of visible light
(Sect. 16.9). In acoustics, in contrast, we can easily make the apertures of radia-
tion sources (e.g. of pipes and whistles) smaller than the wavelength of the sound
waves.
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Figure 16.4 Demonstration of re-
flection and refraction of a light beam
at the planar surface of a glass block
(flint glass). The block is standing in
front of a matte white screen, and its
back face is also ground to a matte
finish. (Red filter light, L; the light
source has a small diameter, and B
 is
its aperture diaphragm)

L

L'

B*

N

N

B

A

Air

Glass

α α'

β

I
II

III

Figure 16.5 Reflection and refraction at
the planar boundary surface between two
materials, water (A) and flint glass (B),
with different indices of refraction, nA
and nB (red filter light; only the center
axes of the light beams are drawn)
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arbitrary transparent materials A and B (with the indices of refrac-
tion nA and nB), for example, as in Fig. 16.5, between water and flint
glass. The law of reflection is unchanged, while in the case of refrac-
tion, we find for the transition from material A into material B:

sin˛

sinˇ
D nA!B D nB

nA
; (16.3)

e.g. nwater!flint glass D 1:60
1:33 D 1:20; cf. Table 16.1.

A comparison of Eqns. (16.2) and (16.3) yields nA D nair D 1. We
have thus defined the index of refraction of a material (as in general
and expedient usage) in terms of the transition of the light from room
air into that material. For the transition from vacuum ! material, the

Table 16.1 The indices of refraction of some materials

For the transition of red filter light
(� � 650 nm at 20 °C), from air into

Index of refrac-
tion nD

Fluorspar 1.43
Quartz glass 1.46
Light crown glass (lead-free silicate glass) 1.51
Rock salt crystal 1.54
Light flint glass (silicate glass with � 25wt.-% PbO) 1.60
Heavy flint glass (silicate glass with � 40wt.-% PbO) 1.74
Diamond 2.40 (!)
Water 1.33
Carbon disulfide 1.62
Methyl iodide (iodomethane) 1.74
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Figure 16.6 Reflection and refrac-
tion of mechanical waves (e.g. water
waves) at the boundary between
two materials with different wave
velocities (above higher than be-
low; thus shorter wavelength below)
(schematic)

B*

B

A

corresponding indices of refraction would be about 0.3 thousandths
higher. Thus, taking this transition as the basis of the definition, room
air would have the index of refraction nvacuum!air D 1:0003.

For mechanical waves, we observed reflection and refraction in the
form sketched in Fig. 16.6. The rays drawn continue as normals to
the wavefronts after reflection. Quantitatively, we find:

�A

�B
D nB

nA
or �B D �A

nA!B
: (16.4)

We will have occasion to apply this equation later to light, as well.

Figure 16.7 describes the same experiment as Fig. 16.5, however here
for the special case of a collimated light beam. In addition to the two
light rays at the edges of the beam, two cross-sections are drawn in as
the intersection lines 1 and 2. In a wave picture, these are wavefronts,
e.g. they represent crests of the waves.

From this sketch, we can read off the following results:

sA
sB

D sin˛

sinˇ
D nB

nA

or

sA � nA D sB � nB : (16.5)

In words: Between two cross-sections of a light beam, the product
of path and index of refraction, called the optical path length, is con-
stant. This is FERMAT’s principle.C16.6

C16.6. In equal time in-
tervals �t, a light beam
passes through a distance
sA D cA�t or sB D cB�t. It
follows from this, according
to Comment C16.5, that
�t D .1=cvac/nAsA or
�t D .1=cvac/nBsB.
The quantity n � s is thus
a measure of the time re-
quired by the light in order to
pass through the distance s
with the velocity cmatter

(where 1=cvac is a constant of
proportionality). This quan-
tity, the optical path length,
will repeatedly play a role in
the following sections. We
mention an important ap-
plication here: For the path
which is chosen by a light
wave in order to go from
a point P to another point P0,
it is found that the optical
path length, in general the
path integral

P0Z
P

n ds ;

is a minimum, so that the
light covers the distance most
rapidly along this path (this
holds also in inhomogeneous
media). This is FERMAT’s
principle (PIERRE DE FER-
MAT, 1601–1665, French
mathematician). See for ex-
ample Max Born and Emil
Wolf, Principles of Op-
tics (Pergamon Press, 4th
edition (1970)), Sect. 15.
(available online – cf. Com-
ment C25.11).

Figure 16.7 The definition of the op-
tical path of a collimated light beam.
The reflected light beam is not shown,
to keep the drawing simple and clear. Water

Flint glass

1

2

III

I

B

b Aα
β

sA = b·sin α

sB = b·sin β
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Figure 16.8 The reflection cone formed by reflection of light from the sur-
face of a cylindrical glass rod (C is a condenser lens; its mount carries an iris
diaphragm about 8mm in diameter. L is a lens of focal length f D 20 cm)
(Video 16.2) Video 16.2:

“Reflection cones”
http://tiny.cc/qdggoy
In the video, a reflecting
stainless steel tube is held
by hand in a light beam. De-
pending on the angle between
the tube’s axis and the light
beam, reflection cones are
formed, whose circular sec-
tions can be seen on the wall
of the lecture room. They
change depending on the po-
sition of the tube. At an angle
of 90ı, the section becomes
a linear band of light.

To illustrate the law of reflection (16.1), we mention a practically-
important but little-known special case: In Fig. 16.8, a thin light beam
strikes the smooth surface of a cylindrical rod at a grazing angle. The
light reflected from the surface forms a cone. The axis of the cone
coincides with the axis of the rod; thus, a screen perpendicular to
the rod shows a circular line at the intersection with the cone of the
reflected light. The direction of the incident light beam lies within
the surface of the cone. The more steeply the incident beam strikes
the rod, the larger is the opening angle of the cone.

Knowledge of this type of reflection is important for example in the inves-
tigation of rod-shaped formations using dark-field illumination, e.g. with
an optical microscope (Sect. 18.12) or an electron microscope. It is also
important for diffraction of X-rays by crystal lattices (Sect. 21.14) and for
the explanation of atmospheric halo phenomena, in which a ring touches
the image of a star or planet on the outside (for references, see Com-
ment C21.1). A beautiful collection of haloes can also be seen at https://
en.m.wikipedia.org/wiki/Halo_(optical_phenomenon) .

16.4 The Law of Reflection as
a Limiting Case. Scattered Light

According to the illustration shown in Fig. 16.4, the reflected light
should be restricted to beam II, that is to a three-dimensional cone
with its apex at L0. This description however holds only for an ideal
limiting case: In reality, we can see the point at which the light beam
I intersects the surface from any arbitrary direction. Thus, some por-
tion of the incident light must be “scattered” in a diffuse manner in all
directions and thus reaches our eyes. This scattered light is a cause of
annoyance to physicists and engineers, as a disturbing source of er-
rors; but it is a blessing for fathers: Without the scattered light, their
children would continually run into plate glass doors and windows.

http://tiny.cc/qdggoy
https://en.m.wikipedia.org/wiki/Halo_(optical_phenomenon)
https://en.m.wikipedia.org/wiki/Halo_(optical_phenomenon)
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For all objects which themselves“. . . all objects which them-
selves do not emit light
become visible to us only
through scattered light”.

do not emit light become visible to
us only through scattered light.C16.7

C16.7. this important state-
ment should be particularly
emphasized here. The deci-
sive role of scattered light for
“seeing” objects is often not
noticed by the novice.

Scattered light is produced in the main by imperfections in the
smooth surface, for example due to dust particles, imperfect pol-
ishing and inhomogeneities in the material. The diameter of dust
particles is seldom less than around 10�m. Light scattering thus
occurs primarily through reflection by innumerable small, randomly-
oriented mirror surfaces. Therefore, this type of light scattering is
expediently referred to as diffuse reflection. The scattered light van-
ishes almost completely when the reflecting surface is nearly perfect,
produced without mechanical treatment; an example is the freshly-
prepared surface of pure mercury, or the recently-cleaved surfaces of
mica crystals.

The dust particles which fall onto a mercury surface can be burned off by
waving the flame of a BUNSEN burner over it.C16.8

C16.8. Mercury surfaces
are used in particular to pro-
duce concave parabolic mir-
rors. The shape is obtained
through rotation (Vol. 1,
Fig. 9.3). See e.g. the note
by R.F. Wuerker in Physics
Today, July 2004, p. 82.

Mica sheets must be cleaved both on their upper and their lower sides.

16.5 Total Reflection

Total reflection is also treated in detail in Vol. 1.C16.9

C16.9. See Vol. 1, Sect. 12.9
and Video 12.2, “Experi-
ments with water waves”
http://tiny.cc/tfgvjy
(at 5:30 minutes).

For light, we
demonstrate it with the arrangement sketched in Figs. 16.9 and 16.10.
The light beam passes from the more optically dense material (B) to
the less dense medium (A), this time, exceptionally, from right to left.
The corresponding angles are again drawn in only for the central axes
of the light beams. We can reach two conclusions based on these
figures:

1. The refracted light beam III propagates at a larger angle to the
interface normal N than the incident beam I. Experimentally, we find

sin˛

sinˇ
D nB!A D nA

nB
D 1

nA!B
: (16.6)

The axes of the incident and the refracted light beams show the same
patterns in Figs. 16.4 and 16.9; only the optical path is reversed in the
two figures.

2. At large angles of incidence ˛, there is no longer a refracted
beam III. All of the incident light is reflected: Total reflection oc-
curs in Fig. 16.10. Quantitatively, the angle ˇ cannot become larger
than 90ı, that is, its sine cannot become larger than 1 in Eq. (16.6).
Thus, the formula

sin˛T D nA
nB

D 1

nA!B
(16.7)

determines the “critical angle” ˛T for total reflection. The critical
angle ˛T corresponds in the optically less dense medium to a graz-
ing beam, i.e. to a beam which propagates parallel to the interface
(compare Vol. 1, Fig. 12.25).

http://tiny.cc/tfgvjy
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Figure 16.9 Reflection and refrac-
tion of a light beam in passing from
an optically more dense to a less
dense medium (red-filter light). The
angle of incidence is again denoted
by ˛.
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Figure 16.10 The continuation of
Fig. 16.9. When the angle of inci-
dence ˛ is increased, the refracted
light beam is no longer present:
Total reflection occurs.
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Total reflection is a favorite object for demonstration experiments;
there are many setups for showing it. The best-known is a gimmick,
using a jet of water as a light guide (a “luminous fountain”).C16.10

C16.10. Light guides made
of glass fibers (“fiber optics”)
work on the same principle;
they are used extensively to-
day for optical-digital data
transport, for example in
telecommunications, and
for endoscopic examina-
tions (technical details can
be found e.g. in H. Kogelnik,
“Optical Communications”,
in the Encyclopedia of Ap-
plied Physics, Vol. 12, p. 119
(VCH Publishers, 1995).

In nature, total reflection can frequently be observed with air bubbles
under water; think of the bright, silvery shining bubbles on the sides
of water beetles.

The critical angle for total reflection can be rather precisely deter-
mined by a variety of methods. This fact is used in the construction
of refractometers.C16.11 C16.11. Refractometers are

commercially available in
many forms. Along with the
measurement of indices of
refraction, they can be used
for example to indicate the
alcohol or sugar content of
solutions directly as a digital
output.

These are apparatus for the rapid and con-
venient measurement of the index of refraction (usually of a liquid
sample); they are popular with chemists and medical researchers. An
example is described by Fig. 16.11.

Total reflection can occur at the interface between two media with
a very small difference in their indices of refraction. The light beam
must be incident at a grazing angle, i.e. ˛ must be nearly 90ı. In
this way, we have seen how sound waves can be reflected from the
interface between warm and cool air (Vol. 1, Fig. 12.56). The cor-
responding effect is also seen with light beams (Fig. 16.12): A col-
limated light beam enters at a grazing angle from below into a box
which is electrically heated. The inside surfaces of the box are black-
ened. When the heater is turned on, the box fills with hot air; some of
it expands over the rim of the box, while the rest forms a rather flat
interface (diffusion boundary as a substitute for a surface; cf. Vol 1,
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K F

Figure 16.11 A refractometer which is suitable for demonstration exper-
iments. A thick, semicircular glass plate with a known, large index of
refraction nB carries a glued-on rectangular glass cuvette into which the liq-
uid of unknown index of refraction nA is filled. At left, parallel to the flat
face of the glass plate and about 30 cm away, is a lamp K with a red filter F in
front of it. The light which passes through the liquid and enters the glass plate
at a grazing angle appears on the protractor scale as a thin red beam whose
right vertex as seen by the observer is quite sharply defined. The critical an-
gle ˛T can thus be rather precisely read off, and nA is then computed from
Eq. (16.7), or else the angular scale is calibrated directly in units of the index
of refraction. The round glass plate acts as a cylindrical lens (Sect. 16.7).
This is indicated in the figure by two dashed convergent rays.

Sect. 9.9). This interface between hot and cool air acts like a fairly
planar mirror. Strong drafts perturb the experiment and should be
avoided.

This total reflection by a warm layer of air is often observed in nature.
The hot ground in a desert region or a hot asphalt road surface warms
the air just above it. A traveller sees a mirror image of the bright sky
at a grazing angle, sometimes containing the mirror image of some object
near the horizon (fata morgana ormirage). The totally-reflecting boundary
layer usually appears as if it were the surface of a pool of water.

In physics, total reflection at grazing incidence plays a signifi-
cant role in spectral apparatus (“monochromators”) for X-ray light
(Sect. 22.6).

Slits, about
1.5 mm wide

ca. 0.5 m

Heater wires

1 m

ca. 8 cm
C

K

ca. 5 m

Figure 16.12 Total reflection of a collimated light beam at the interface between hot
and cool air (the beam is about 2 cm thick at its right-hand end; K is the crater of an arc
lamp (light source point))
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16.6 Prisms

Prisms represent important applications of the law of refraction in
optics and metrology. In Fig. 16.13, we see the two planar faces
of a prism which make an angle � with each other, the “angle of
refraction”. Perpendicular to the two faces, the plane of the page
forms the principal plane. Within the principal plane, a collimated
beam of light passes through the prism; only its central ray is drawn
in the figure. Refraction at the two faces of the prism changes the
direction of the beam by the angle of deflection ı. Quantitatively, we
can apply the equation

sin˛ D n sinˇ (16.2)

after some rearrangements (for the relation between ı, ˛, ˇ, and � ,
see Exercise 16.1)

tan
�
ˇ � �

2

�
D tan

�

2
�
tan

�
˛ � ı C �

2

�

tan

�
ı C �

2

� : (16.8)

The minimum deflection can be determined experimentally when the
collimated light beam passes symmetrically through the prism, as in
Fig. 16.13, right. Then we find

ˇ D 1

2
� and ˛ D 1

2
.ı C �/

(here, ˛ is the angle of incidence to the normal, ˇ is the angle of the re-
fracted beam, � is the angle of refraction (apex angle) of the prism, and ı
is the angle of deflection of the light beam).

Then we obtain from Eq. (16.2)

n D sin 1
2 .ı C �/

sin.�=2/
(16.9)

N N

γ γ

δ

δ
N

AA

α αβ β=γ
2

Figure 16.13 The deflection of a monochromatic beam (the ray drawn in-
dicates the central axis of the light beam) by a prism with a non-symmetric
optical path (left) and with a symmetric path (right). The dashed lines marked
‘N’ are surface normals to the prism faces. The line perpendicular to the prin-
cipal plane (the plane of the paper) at the apex point A is called the refracting
edge of the prism.
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and

n D sin˛

sin.�=2/
: (16.10)

These two equations can be used to determine the index of refraction
n. We measure either ı or ˛.

In the limiting case of small angles of refraction � , we can replace
the sine and tangent functions in Eqns. (16.8) and (16.9) by their
arguments (angles). Then we find for both the non-symmetric and
for the symmetric optical paths a deflection angle of

ı D .n � 1/� ; (16.11)

i.e. the deflection angle ı is proportional to the angle of refraction �
of the prism.

16.7 Lenses and Concave Mirrors.
The Focal Length

A divergent beam of water waves which is defined by an opening S
can be made convergent by means of a lens (Fig. 16.14). One thus
obtains a narrow “waist” in the beam of waves within a short region,
denoted succinctly as an “image point ” L0. Analogously, in optics,
we can allow a divergent light beam to fall on an aperture S and can
convert it into a convergent beam (Fig. 16.15) by placing a lens in
the aperture. In this way, we can form an “image” of a pointlike light
source L (the “object point ”). In Fig. 16.15, the beam axis and its
two limiting boundary rays are drawn. The aperture which defines
the beam is at the same time the mount S of the lens. The center
point of the aperture thus lies here on the (dot-dashed) symmetry axis
of the lens, the optical axis. In this case, the axis of the light beam
has a special name, the principal ray.

The quantitative treatment of lenses begins with cylindrical lenses.
If we wish to form an image of each point in the object with
a cylindrical lens as an image point, then we must not employ three-
dimensional light beams, but rather practically two-dimensional or
planar light beams. This means that we must use an aperture which

S

L

L'

Figure 16.14 A lens converts a divergent beam of mechanical waves into
a convergent beam (schematic, as in Fig. 12.20 in Vol. 1; see also Video 12.2:
“Experiments with water waves” http://tiny.cc/tfgvjy)

http://tiny.cc/tfgvjy
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S

L

L'

Figure 16.15 A lens converts a divergent beam of light which is defined by
the aperture (lens mount) S into a convergent beam (L0 is a real image point,
schematic)C16.12 C16.12. To distinguish it

from virtual image points,
which will be introduced
later, we refer here to a real
image point.

B

L'

Figure 16.16 Imaging of a distant object point by a cylindrical lens as an
image streak L0 . One must limit the width B of the incident light beam using
a slit in order to convert the “image streak” into an “image point”.

takes the form of a narrow slit which is perpendicular to the cylinder
axis of the lens. Continuing the experiment, we open the aperture
until it reaches the width Bmarked in Fig. 16.16 with a double arrow.
Then a cylindrical lens produces for each object point L an image
streak L0 rather than an image point. Only with two crossed cylin-
drical lenses with the same radius of curvature can we obtain the
effect of a spherical lens; i.e. for each object point L they produce an
image point L0 (Fig. 16.17a) and thus yield good (sharply focussed,
well resolved) images. Two crossed cylindrical lenses with different
radii of curvature produce two perpendicular image streaks L0 and L00
at different spacings, instead of an image point for each object point
(Fig. 16.17b; this is called astigmatism, cf. Sect. 18.5).

Starting from the cylindrical lens, we can relate the action of a lens to
the action of prisms. We restrict ourselves to a nearly flat cylindrical
lens, i.e. with a very limited curvature (“thin lens ”, Fig. 16.18) and
a light beam which is very narrow in both its dimensions and close to

L'

L'
L''

B
C

a

b

Figure 16.17 Imaging of a distant object point by two crossed cylindrical
lenses (a) with the same radius of curvature: One obtains a single image
point L0; (b) with different radii of curvature: One obtains two separate image
streaks L0 and L00 (cf. Sect. 18.5, Astigmatism). With a slit, one can reduce
either the width B or the width C of the incident light beam. In the first case
(width B small), we convert the image streak L0, and in the second case (width
C small), we convert the image streak L00 into an “image point”.
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L
a b

δ2

δ1
h1

L'
ω ω'

Figure 16.18 The relation between the action of a lens and the action of
prisms. The radii of curvature of the two faces of the lens are denoted in
Eq. (16.12) as r1 and r2.C16.13C16.13. This is a good ex-

ample of FERMAT’s principle
(Comment C16.6): Although
the geometric path length
depends on the angle of de-
flection ı, the optical path
lengths are the same. Thus,
the light can use all of the
paths sketched in the figure to
pass from L to L0.

the optical axis (called paraxial rays). (Unfortunately, in the draw-
ings, we have to exaggerate the opening angles ! and ! 0 of the light
beam for clarity!) This light beam is then divided up into small sub-
beams as shown in Fig. 16.18, and only the central axis ray of each
sub-beam is considered. At the same time, we divide the lens up into
a series of prisms which are one above the other at altitudes h above
the optical axis.

We thus arrive at the well-known lens formulas which are valid only
in the limiting case of thin light beams close to the optical axis
(“paraxial rays”):

.n � 1/

�
1

r1
C 1

r2

�
D 1

f 0 ; (16.12)

1

a
C 1

b
D 1

f 0 : (16.13)

In these equations, f 0 is termed the image-side focal length
(Fig. 16.19, left). Equation (16.12) is called the “lens-maker’s
equation”, and Eq. (16.13) is the “imaging formula”.

The derivation of Eqns. (16.12) and (16.13) is illustrated by Fig. 16.20.
There, the lens is thick and has strongly curved faces, in order to make
space for the large number of necessary symbols. For the small shaded
triangle with the outer (supplementary) angle ı, we have

ı D '1 C '2 D .˛1 � ˇ1/C .˛2 � ˇ2/ : (16.14)

L’

F’
F

f’ f

Figure 16.19 The definition of the image-side focal length f 0 (left) and the object-side focal
length f (right). The former is demonstrated using a series of collimated light beams. They all
originate at the same distant point L on the object. They are produced by subdividing a wide
collimated light beam using a lattice aperture.
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Object point Image point

α1
α2

χ2 χ1

r1

δ

δ = φ1 + φ2

r2
β1 β2

φ2φ1

Figure 16.20 The derivation of Eqns. (16.12) and (16.13)

Then, according to the law of refraction,

sin˛1
sinˇ1

D sin˛2
sinˇ2

D n (16.2)

or, for small angles, approximately

˛1 D nˇ1 and ˛2 D nˇ2 : (16.15)

We then obtain from Eq. (16.14)

ı D '1 C '2 D .n � 1/.ˇ1 C ˇ2/ : (16.16)

Furthermore, the large triangle with angles �1 and �2 and the small triangle
with angles ˇ1 and ˇ2 have the same apex angle; therefore, ˇ1 C ˇ2 D
�1 C �2 and Eq. (16.16) takes on the form:

ı D '1 C '2 D .n � 1/.�1 C �2/ : (16.17)

Note that the right side of Eq (16.17) is simply an application of the prism
formula, Eq. (16.11). Now, introducing the altitude h of the common apex
in Fig. 16.20, we find tan'1 D h=a and tan'2 D h=b, and also sin�1 D
h=r1 and sin�2 D h=r2. With the small-angle approximation (tan' � ',
sin� � �), we then rewrite Eq. (16.17):

ı D h

a
C h

b
D .n � 1/

�
h

r1
C h

r2

�
I (16.18)

or, dropping the leftmost equation and cancelling the common factor h,

.n � 1/

�
1

r1
C 1

r2

�
D 1

a
C 1

b
: (16.19)

Now we consider the case that the object is very distant, i.e. a !
1; 1=a ! 0. Then the image will be formed in the focal plane at a dis-
tance b D f 0 from the lens plane (cf. Fig. 16.19, left), so that 1=b D 1=f 0.
Substituting these expressions into Eq. (16.19) leads immediately to
Eq. (16.12), and comparing again to (16.19) gives (16.13).

The distances a and b and the focal length f 0 are measured tenta-
tively from the central plane of the lens (more details will be given in
Sect. 18.2). The set of all the image points of all the distant object
points make up the image-side focal plane. Its intersection with the
optical axis defines the image-side focal point F0.

In a corresponding manner, we define the object-side focal plane, the
object-side focal point F, and the focal length f ; cf. Fig. 16.19, right.
The light rays which originate from the point L on the object-side fo-
cal plane (and are divergent on that side of the lens) form a collimated
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Object Lens diameter B
Image

2ω 2φ 2φ'

2y 2y'

2ω'
a =   /tan ω 

B
2 b =   /tan ω' B

2

Figure 16.21 The imaging of an extended object by light beams originating from its indi-
vidual object points. ! and !0 are called the object-side and the image-side opening angles.
' and ' 0 are the inclination angles of the principal rays, which are equal here (see also Com-
ment C18.1).

beam after passing through the lens. For the comparison to mechan-
ical waves, several wave crests are drawn in as transverse lines. For
lenses in air (or in general with the same material on both sides), the
object-side and the image-side focal lengths are the same.

Practitioners call the reciprocal of the focal length the optical power of the
lens, i.e. power P D 1=f . The unit is 1m�1 D 1 diopter (analogously to
1 s�1 D 1Hz). A lens of power 1=f D 3 diopter D 3m�1 thus has a focal
length of f D 0:33m. When several lenses are placed one behind the other,
their powers add (approximately).C16.14

C16.14. The exact expression
for the power of two (thin)
lenses at a spacing d is given
by the ‘Gullstrand formula’;
see http://hyperphysics.phy-
astr.gsu.edu/hbase/geoopt/
Gullstrand.html. It can also
be used to calculate the
power of thick lenses (http://
hyperphysics.phy-astr.gsu.
edu/hbase/geoopt/gullcal.
html).

Formation of the image of an extended object can be traced back to
imaging of each of its individual points by a single light beam. This
is illustrated in Fig. 16.21 for the uppermost and lowest points of an
object. For many purposes, it suffices to sketch the principal rays
which are shown here as heavy lines3 (e.g. as in Fig. 18.25). From
Fig. 16.21, we can read off the frequently-used relationsC16.15C16.15. The image scale

or magnification as defined
here should not be con-
fused with the increase in
the viewing angle introduced
in Sects. 18.10, 18.11 and
18.13 for optical instruments.

Image scale D Image size 2y0

Object size 2y
D Image distance b

Object distance a
� tan!

tan! 0
(16.20)

(! is the object-side opening angle, ! 0 the image-side opening angle).
For angular units, see the footnote at the end of Chap. 17.

Furthermore, we have:

Image size 2y0 D Image distance b � 2 tan ' ; (16.21)

or, for small angles,

2y0 D b � tan 2' (16.22)

(' is the angle of incidence between the principal ray and the optical axis).

3 We repeat: The principal ray is the name of the axis of the light beam in the case
that the midpoint of the beam (in Fig. 16.21, this is the lens mount) lies on the
symmetry axis of the lens (Fig. 16.15).

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/Gullstrand.html
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/Gullstrand.html
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/Gullstrand.html
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/gullcal.html
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/gullcal.html
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/gullcal.html
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/gullcal.html
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Figure 16.22 The object
point lies inside the object-
side focal plane. The lens
only reduces the divergence
of the beam.

To the virtual
image point L1

f

Figure 16.23 The action of a concave lens
(F0 is the virtual image-side focal point)

F’

An example of Eq. (16.22): The disk of the sun has an angular diameter of
2' D 320 (arc minute), or 0.53°. Its image is at a distance of b D f behind
the lens, that is 2y0 D tan 320 � f D 9:3 � 10�3 � f . A lens with a focal length
of 1m produces an image of the sun with a diameter of 2y0 D 9:3mm.

A light beam from an object point L inside the object-side focal
plane (Fig. 16.22) is not made convergent by the lens (i.e. it is not
‘focussed’), but rather its divergence is only reduced. The dashed
backwards extrapolations of the two boundary rays drawn lead to the
virtual image point Ll. For the comparison with mechanical waves,
a number of wave crests are also indicated in Fig. 16.22.

Concave lenses exhibit no essentially new properties.C16.16 C16.16. Concave lenses, or
more generally, lenses which
are thinner at their centers
than at their outer rims, are
also termed diverging lenses.
In contrast, convex lenses, or
more generally, lenses which
are thicker at their centers
than at their outer rims, are
called converging lenses.

They in-
crease the divergence of the light beam. Figure 16.23 illustrates this
for the case of a collimated beam of light which is incident from the
left. It also provides the definition of the image-side (virtual) focal
point F0. Equations (16.12) and (16.13) remain valid with a proper
choice of the signs.

Concave mirrors are mainly important for physics and astronomical
applications in a particular mode of employment: The object or im-
age points are in the focal plane, near the symmetry axis (optical axis)
of the mirror, and the opening angle of the light beam is only moder-
ately large. The action of the concave mirror can then be found from
simple geometrical considerations employing the law of reflection.
The focal length of the concave mirror is equal to half its radius of
curvature R (Fig. 16.24).

Figure 16.24 The action of a concave
mirror (Exercise 16.2) F

R
Z
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16.8 The Separation of Parallel Light
Rays by Image Formation

Many optical phenomena take their simplest form when they are ob-
served using collimated (i.e. parallel) light beams. In experiments
of this type, one is often dealing with a splitting of a single parallel
light beam into two or more beams. In the simplest case, we observe
the scheme shown in Fig. 16.25. A collimated light beam is incident
from the left and passes through some sort of apparatus G. There, it
is separated into two parallel light beams. But the separation is not
complete, the beams still strongly overlap.

How can we obtain a sufficiently effective separation of two beams?
From the geometrical appearance, we would be inclined to say: First,
we must make the cross-sectional areas of the collimated beams
small; and second, we shift the plane of observation in Fig. 16.25
further to the right.

Both of these suggestions presuppose a strictly parallel form of the
beam. The beams must not become unfocussed, neither on limiting
their cross-sections nor at a large distance from G, nor should they
be broadened. However, it is impossible to fulfill these conditions
with real light beams. All so-called collimated or parallel beams are
in fact somewhat divergent. Among the various reasons for this, we
mention here only one, namely the finite diameter of all available
light sources.C16.17C16.17. For a discussion of

the feasibility of producing
truly parallel, collimated light
beams, see also Sect. 19.6.

The incomplete separation of the beams can be eliminated by us-
ing a lens (Fig. 16.26). It converts every collimated light beam into
a convergent beam. The observation is carried out in the image plane,
where the “waist” of the beams is narrowest.

For demonstration experiments, an approximation is always suffi-
cient. As in Fig. 16.27, we set a lens in front of the apparatus G.
The light is incident on the lens as a divergent beam. The image
plane is shifted far to the right, usually several meters. Then the light
beams which converge to the image points are very slender, and the
apparatus G receives nearly collimated light beams.

Figure 16.25 Incomplete
separation of two parallel
light beams after passing
through some sort of appara-
tus G

G
α

α

Figure 16.26 The unwanted
overlap is eliminated after
concentrating the two beams
into one image point each

G

α
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G

α

Figure 16.27 A simplification of the arrangement sketched in Fig. 16.26,
which is adequate for demonstration experiments. For comparison with
beams of mechanical waves, in Figs. 16.25–16.27 a number of wave crests
are indicated by transverse lines.

16.9 Description of Light Propagation
by Travelling Waves. Diffraction

The propagation of waves can be transversely bounded by an obsta-
cle, e.g. the blades of a slit. This transverse bounding of a wave can
be represented by straight lines or rays, but only to a more-or-less
good approximation. For this approximation to be valid, two con-
ditions must be fulfilled: The geometric dimensions of the obstacle,
e.g. the width B of the slit in Fig. 16.2, must be large compared to
the wavelength; and secondly, the point of observation should not be
too far from the obstacle. In reality, the geometrically-constructed
boundaries of the beam are always exceeded; the waves “run over”
their boundaries. This behavior of waves is absurdly described in the
passive form; we say: The waves are diffracted. Diffraction is in-
separably intertwined with every attempt to limit the boundaries of
a beam.C16.18 C16.18. Diffraction was de-

scribed in detail in Vol. 1
(Chap. 12). Here, we are con-
cerned with showing that this
phenomenon also occurs with
light waves. A more exhaus-
tive treatment will follow in
Chap. 21.

Figure 16.28 shows a model experiment and reminds
us briefly of the phenomenon of diffraction by a narrow slit. Accord-
ing to Vol. 1 (Sect. 12.13), the angular spacing of the first diffraction
minimum from the optical axis is given by the equation

sin˛1 D �

B
; (16.23)

and for the angular spacing of the first sub-maximum, we found

sin˛0
1 D 3

2

�

B
: (16.24)

By measuring these angles and the width B of the slit, we can obtain
a rather precise determination of the wavelength �.

These facts as we already know them fromVol. 1 are observed as well
for the propagation of light waves. Thus, light waves cannot be “cut
out” into an arbitrarily narrow beam by the two blades of a slit. Light
also exceeds the geometrically-constructed boundaries of a beam; it
is “diffracted”. In the region of diffraction, we can observe a periodic
distribution of the radiation intensity, with maxima and minima.

For a demonstration, we use the setup sketched in Fig. 16.29, top.
Compare it with the model experiment illustrated by Fig. 16.28. Note
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Figure 16.28 A model
experiment on diffraction
by a narrow slit (compare
Vol. 1, Sect. 12.12)

B

2 21 10

also the scale shown in the legend of Fig. 16.29. Slit II is intended
to limit the light beam to a narrow width, and it should, according
to the geometrical construction, give a bright spot on the screen with
a width of around 2mm. Instead, we find the pattern on the screen
that is shown as a photograph in Fig. 16.29 (center).

With light, sharply-bounded beams and their representation by means
of straight-line rays or lines on the blackboard are also merely an ap-
proximation. However, this approximation is often particularly good
in optics because of the small wavelengths of the light waves.

In order to obtain a quantitative description of our observations, we
measure the distribution of the irradiance (i.e. the quotient of radiant
power/irradiated area) in our first experiment on diffraction, shown in
Fig. 16.29 (see Comment C19.4). We place a narrow slit as aperture
in front of our radiometer, so that we use only a strip about 0.5mm
wide of its detector area. Then we put the radiometer at the posi-
tion of the screen in the light beam and slowly slide it in a direction
transverse to the optical axis. At each position, the deflection of the
radiometer is noted and then plotted as a graph. In this way, we obtain
the curve shown at the bottom of Fig. 16.29; it provides a quantitative
complement to the photograph of the diffraction pattern in the center
part of the figure.

Making use of Eq. (16.23) and the dimensions given in the figure cap-
tion, we determine the wavelength of our red filter light to be about
650 nm. It is around 20 000 times smaller than the wavelengths of
the sound waves and water surface waves that we used in mechanics
for demonstration experiments (� � 1:2 cm).

The irradiance plotted on the ordinate is proportional to the power
transported by the light waves, and this, in turn, is proportional for
all types of radiation to the square of the wave amplitude (see Vol. 1,
Sect. 12.24). Therefore, we can state that: The amplitude of a light
wave is in the first approximation a quantity which is proportional
to the square root of the deflection of a radiometer. This may not
satisfy our need for concreteness and clarity, but it is sufficient for
a quantitative treatment of numerous optical phenomena.C16.19

C16.19. See also Com-
ment C12.5.
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Illuminated slit
as a line-shaped

light source

Width 2y

Width BDiffraction
slit

Screen

K
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Angular spacing from the midline of the slit

Figure 16.29 Bounding of a beam of light (red filter light) by a slit. Top
part: The experimental setup. The angles between the dashed rays are greatly
exaggerated. Center: A short section of the diffraction pattern as observed on
the screen ( a photographic negative shown actual size for B D 0:3mm, b D
3:8m, a D 1m, 2y D 0:2mm). Bottom: The distribution of the irradiance in
the diffraction pattern of a slit as measured with a photodiode (i.e. measured
as the quotient of radiant power/area, e.g. in W/m2). This is the diffraction
pattern of a slit (B D 0:31 mm, b D 1m, a D 0:75 m, 2y D 0:26mm; the
width of the radiometer aperture used here (Fig. 15.6, right) was 0.55mm)
(Video 16.3).

Video 16.3:
“Diffraction and coher-
ence”
http://tiny.cc/xdggoy
Beginning at 9:30min., the
diffraction pattern of a sin-
gle slit is demonstrated. Both
red and blue filter light beams
are used. The experimen-
tal setup is explained at the
beginning of the video.

http://tiny.cc/xdggoy
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16.10 Radiation of Different
Wavelengths. Dispersion

We now repeat in Fig. 16.30 the fundamental experiment on refrac-
tion shown in Fig. 16.4, however with two modifications. First, we
use ordinary natural light (from an incandescent light bulb) instead
of red filter light. We allow a narrow, nearly collimated light beam
(width < 1mm) from the aperture B to be incident on the plane-
parallel glass block. Second, we observe the refracted beam after
it has emerged from the lower surface of the block, which is ex-
actly parallel to its upper surface. We find an important new result:
The beam of light from the incandescent lamp spreads out within the
glass block into a series of sub-beams. Parallel, colored light beams
emerge from the lower surface of the block. Figure 16.30 shows only
a red and a blue sub-beam. In reality, we see a continuous band below
the glass block with a whole series of bright colors, i.e. a continuous
spectrum. We can make this spectrum visible to a large audience; to
this end, we need only use a lens l2 to project the exit position b of
the light beam with sufficient magnification onto a screen.

Slitsca. 0.3mm wide

ca.20 cm
K C

B

e

β

c

a d

g b

α = 69°

Flint glass

blue red

nred = 1.62

Spectrum
ca. 25 cm wide

Screen

f~15 cm

l2

ca. 4 m

20 cm

N

Figure 16.30 Production of a spectrum by refraction in a plane-parallel glass
block. The line-shaped light source here and in Fig. 16.31 is a narrow slit S
illuminated by an arc lamp K through a condenser lens C. From a onwards to
the right and out to lens l2, the dashes do not refer as usual to rays, but rather
to a diverging light beam. The screen must be set up at a grazing angle, so
that the chromatic aberration (Sect. 18.8) of lens l2 is compensated and the
band of the spectrum has a practically uniform width. At b, the spectrum is
around 2.5mm wide. However, light reflected along the paths c, d, e, g can
be observed at g. There, the spectrum is about 8mmwide owing to the longer
path length of the light within the glass (about a factor of three), and, with
lens l2, it can be projected onto the screen where it has a width of around
75 cm.
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K

C S

B

ca. 5 m

ca. 3°

violet red

Screen

Spectrum
ca. 30 cm wide

ca. 50 cm

Figure 16.31 Production of a spectrum with a prism, as a demonstration
experiment. The light beam which is incident on the prism is only approxi-
mately parallel. The lens images the slit (line-shaped light source) onto a wall
screen at a distance of several meters. Here, out of the “colored light beam”,
only the red and violet sub-beams are drawn. The grazing angle of the screen
is again necessary for the reason given in the caption of Fig. 16.30. A typical
setup for accurate measurements using a precisely collimated light beam is
shown later in Fig. 22.2.

Refraction in a plane-parallel glass block thus generates a series of
colored beams from a beam of colorless natural light. These colored
beams are fanned out within the glass block, but after emerging from
the block, they are parallel to each other. As previously, we will
accept the somewhat vague expression “colored beams” and will first
try to continue the fanning-out of the sub-beams outside the block.
This can be readily accomplished: We simply have to abandon the
parallel form of the upper and lower glass surfaces and instead make
the block in the shape of a prism.

With the stronger fanning-out, we can use a much wider light beam
than in the case of the plane-parallel glass block. At first, however,
we are bothered by the overlap of the individual colored sub-beams;
therefore, we make use of the trick explained in Sect. 16.8. We place
a lens within the wide aperture B and make all the emerging light
beams convergent, i.e. we form an image of the illuminated slit S on
a screen (Fig. 16.31). There, we can clearly see the brightly-colored
band of a continuous spectrum.

Now we carry out a quantitative evaluation of these observations.
First of all, we need to eliminate the unphysical terms “red”, “blue”
etc. light beams and instead characterize the various radiations of the
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Table 16.2 Indices of refraction at different wavelengths

Index of refraction at the wavelength
Material � D

656 nm
� D
578 nm

� D
436 nm

� D
405 nm

Light crown glass
(BK1)*

1.5076 1.5101 1.5200 1.5236

Light flint glass (F1)* 1.6150 1.6200 1.6421 1.6507
Heavy flint glass
(SF4)*

1.7473 1.7552 1.7913 1.8060

Diamond 2.4099 2.4175 2.4499 2.4621

* These are the technical designations for the glass types (Schott AG, Mainz, Ger-
many)

sub-beams physically, i.e. by means of a measurable quantity. This
is the concept of the wavelength: We separate a narrow light beam
from the spectrum, which appears to the eye to contain a single color
(i.e. to be “monochromatic”), and, using the now well-known proce-
dure of diffraction by a slit, we measure its wavelength (Fig. 16.29,
practical lab experiment). We thus find for a light beam

in the violet spectral region, wavelengths of 400–440nm4

in the blue spectral region, wavelengths of 440–495nm
in the green spectral region, wavelengths of 495–580nm
in the yellow + orange spectralregions, wavelengths of 580–640nm
in the red spectral region, wavelengths of 640–750nm.

The process of refraction thus produces a variety of radiations from
the radiation of (colorless) natural light, which are colored to the eye,
and each of them can be attributed to a wavelength range between
400 and 800 nm. In the coming sections, it will suffice to quote an
average wavelength for each of these regions. With this, however, we
mean a whole range. The same is true of the red filter light which we
often employ.

For each such radiation or spectral range, characterized by an
(average) wavelength, we can determine separately the index of
refraction n of a particular material. In principle, the setup shown in
Fig. 16.4 is adequate for this purpose. Then, for various materials
which are often used in optics, we obtain the indices of refraction
given in Table 16.2.

The dependence of the index of refraction n on the wavelength is
called dispersion.C16.20

C16.20. The dispersion
which occurs in the range
of visible light, in which the
index of refraction decreases
with increasing wavelength,
is termed normal disper-
sion. In other wavelength
ranges, the relation between
wavelength and index of re-
fraction is more complex; see
Fig. 27.1 (bottom right) and
27.2.

The technical details of the measurements
are unimportant to us. Here, we are first of all concerned with an
additional observation which is of fundamental importance. We re-
place the eye by a physical indicator, e.g. a thermocouple (Fig. 15.5).
It can be moved in Fig. 16.31 along the band of the spectrum so as
to measure the radiant power as a function of wavelength. The de-
flection of the indicator does not go to zero beyond the ends of the

4 1 nm D 1 nanometer D 10�9 m.



16.10 Radiation of Different Wavelengths. Dispersion 323

Pa
rt
II

visible spectrum, that is beyond the border of the violet at one end
and the red at the other. On the contrary, on both sides of the visible
spectrum, we observe a considerable signal from invisible radiation.
Refraction thus produces not only a visible spectrum, but also invisi-
ble light beams outside the visible range. These regions are given the
collective names “ultraviolet”5 and “infrared”6.

For our earlier demonstration experiments, we produced red light not
by refraction, but instead by employing a red filter: We passed the
natural light from an arc lamp through a piece of red glass. The word
filter is based on an old custom: One describes the colorless radiation
of an incandescent lamp as a mixture 7 of various colored radiations
having different wavelengths. The ‘filter’ allows only one of them to
pass through.

In a corresponding manner, we can also prepare filters for the invisi-
ble radiations. As a filter for the ultraviolet, we can most conveniently
use a piece of glass with a high content of nickel. To the eye, it ap-
pears completely black and opaque; but in the language of the above
description, it allows ultraviolet light from the mixture of radiation
emitted by the arc lamp to pass through. In order to make the ul-
traviolet light beam visible, for demonstration experiments we can
use excitation of fluorescent radiation. Numerous substances “fluo-
resce”, i.e. they glow brightly with visible light when they are struck
by ultraviolet light. Thus, in Fig. 16.3, instead of a red filter, we make
use of an ultraviolet filter and paint the board which serves as screen
with a fluorescent pigment, e.g. a layer of paint containing a pow-
dered zinc salt. A bright, greenish fluorescence indicates the trace of
the invisible ultraviolet collimated light beam.

As a filter for infrared radiation, glass plates containing manganese
oxide (MnO) are suitable. To detect the infrared radiation, one
usually employs the warming of the irradiated object. Thus, in
Fig. 16.32, we set up a searchlight with infrared light by using an arc
lamp and an infrared filter, and we can ignite matches at a distance
of 10m using its invisible radiation.

C F V ca. 10 m St H

Figure 16.32 Igniting a match St by means of a beam of invisible infrared radiation
(C is an auxiliary condenser lens, F is an infrared filter, V is the shutter and H is
a concave mirror)

5 J.W. RITTER: Gilberts Ann. 7, 527 (1801).
6 F.W. HERSCHEL: Philosophical Transactions, Part II, 284. London 1800.
7 This old-fashioned terminology is often convenient, but according to the current
state of knowledge, it is at best rather imprecise (see Sects. 20.11 and 22.4).
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16.11 Some Technical Resources:
Angled Mirrors and Mirror Prisms

Angled mirrors and mirror prisms are frequently-used technical aids
to experimentation. In addition, the role of refraction and dispersion
in mirror prisms provides us with a useful subject for contemplation.

Often, one wants to deflect a light beam by a certain angle ı. This can
be most simply accomplished by a single mirror reflection according
to the scheme shown in Fig. 16.33. But this setup is overly sensitive
to a sideways tilting of the mirror; tilting through an angle � (tilt axis
perpendicular to the plane of the page) changes the angle ı between
the incident and the reflected beam by 2� .

If we use a double reflection by an angled mirror, in contrast, side-
ways tipping of the mirror has no effect, since, as can be seen in
Fig. 16.34, the angle ı between the incident and the doubly-reflected

Figure 16.33 The influence of
tilting a mirror on the direction of
a reflected light beam (only the
central axis of the beam is shown) 2σ δ

σ

Figure 16.34 An angled mirror with
a measurable wedge angle � permits
a free-hand measurement of the an-
gular spacing ı between two objects
in the directions B and C (the sextant
used by seamen and astronomers).
Imagine that your eye is at A and that
the right face of the mirror is partially
transparent, e.g. only half silvered.

A

B

C

δ = 2γ

180-μ-γ

μ

γ

2
1

1
2

Figure 16.35 Mirror prisms with right-angled triangular shapes. At the left:
with silvered cathetus faces for reversing beam directions; at the right: with
a silvered hypotenuse face for exchanging light beams 1 and 2. A revers-
ing prism can be used to invert images which are upside down, e.g. for the
projection of physics demonstration experiments (Exercise 16.4).
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Figure 16.36 The optical path through a right-
angled corner mirror: The principle of the “cat’s-
eye mosaic”

beam depends only on the wedge angle � between the two mirror
faces. We find

ı D 2� : (16.25)

For a beam deflection of 90ı, � must be chosen to be 45ı. Two mirror
faces which are perpendicular to each other (� D 90ı) yield ı D
180ı, that is they reflect the incident beam backwards, parallel but
opposite to its original direction, etc. (Fig. 16.35). The same effect is
produced by a corner mirror (Fig. 16.36).

Exercises

16.1 a) Derive Eq. (16.8) for a prism by application of the law of
refraction (16.2). Note: Apply the law of refraction to each face of
the prism, take the sum and the difference of the resulting expres-
sions and rewrite them as products. b) A light beam is incident at
an angle ˛1 D 30ı onto a 60ı-prism with an index of refraction
of n D 1:5. Compute the angle of deflection ı, by which the light
beam is refracted in total. Note: Calculate ˇ1 from Eq. (16.2) and
insert its value into Eq. (16.8). (Sect. 16.6)

16.2 Show that for image formation using a concave mirror (Fig.
16.24), for near-axial light beams, the focal length f is equal to half
the radius of curvature R of the mirror. (Sect. 16.7)

16.3 Show that the lens formula for near-axial light beams (Eq.
(16.13)) is also valid for imaging by a concave mirror. (Sect. 16.7,
18.2)

16.4 In mirror prisms (Fig. 16.35), in addition to reflection, re-
fraction also always occurs. If natural light (from an incandescent
lamp) is used, one thus also observes dispersion (Sect. 16.10). Af-
ter the light beam emerges from the prism, the different sub-beams,
which are refracted through different angles, are shifted parallel to
each other. Why can one still see the object without colored fringes
when using a mirror prism? (Sect. 16.11)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_16) contains supplementary material, which
is available to authorized users.

https://doi.org/10.1007/978-3-319-50269-4_16
https://doi.org/10.1007/978-3-319-50269-4_16
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Image Formation and
Light-Beam Boundaries 17
17.1 Fundamentals of Image Formation

For image formation, basically only one condition needs to be ful-
filled: The rays which originate at “object points” must be limited
to a small spatial opening angle ! by passing through an aperture
(Sect. 16.1) on their way to the image plane (e.g. a projection screen
or a photographic plate). In Fig. 17.1a, the aperture B is a small round
opening (pinhole camera!); in Fig. 17.1b, it is a small planar mirror.
In both cases, as a suitable object to be imaged, we have chosen an
arrow or letter made with small light bulbs.

Which opening angle ! for the radiation gives the sharpest “image
points” (or, in modern terms, “pixels”) for a given distance between
the object and the image plane? (The image points are small circular
disks which make up the image.) The answer will be given later in
Sect. 21.8. The decisive quantity which determines it is the wave-
length, which is a property of the radiation.

Before answering this question, we turn to image formation using
lenses and concave mirrors, due to their practical importance. This is
nothing fundamentally new; it simply makes it possible to use larger
opening angles ! and thus to permit the image to be better resolved.
A lens in, in front of, or behind the aperture makes the optical path
length (Sect. 16.3, see also Fig. 16.18) for all the rays between the
object and the image points, even within a large opening angle, prac-
tically the same; e.g. for the rays 1 and 2 in Fig. 17.1c. A concave

Figure 17.1
The role
played by
the aperture
B in image
formation

Object, consisting of
illuminated points

Screens

Planar mirror

Concave mirror

Apertures

B
B

B
B

2ω 2ω

2ω

2ω'
2ω

2ω'

a b

c d
1
2
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Figure 17.2 A shallow-water lens for surface
waves on water. It images an “object point”,
the wave center located to the left of the fig-
ure on the optical axis, as an “image point”
in the image plane. The image point has a fi-
nite extension, as a result of diffraction by
the opening of the lens mount. (See Vol. 1,
Video 12.2)Video 12.2 (Vol. 1):

“Experiments with water
waves” http://tiny.cc/tfgvjy.

mirror has the same effect owing to its curvature (Fig. 17.1d). This
is all that we can say within the geometrical-optical picture which
describes the light beam in terms of rays. We can penetrate further
into the subject of image formation only by considering the wave na-
ture of the radiation (i.e. its wavelength). This is shown in detail in
Vol. 1, in particular in Figs. 12.20, 12.21 and 12.31 in Chap. 12 of
that volume. We will refer to those figures in the following section.

17.2 Image Points as Diffraction
Patterns from the Lens Mount

With Fig. 17.2, we remind the reader of an important result which
we obtained by considering mechanical waves: An image point from
a lens is not the intersection of two geometric straight lines (rays),
but rather a diffraction patternC17.1C17.1. The diffraction of

light was introduced already
in Sect. 16.9. A more de-
tailed treatment will follow in
Chap. 21.

from the mount (i.e. the outer
boundary) of the lens or mirror. This diffraction pattern has a finite
extension; it is not a “geometrical point”.

For light waves, this important fact can be demonstrated with the ap-
paratus sketched in Fig. 17.3. There, we form the image of a lattice of
points on a screen located 5m away, using a good-quality telescope
lens L1 (an objective with a focal length of 70 cm). The point lattice
(3mm on a side) is composed of 25 object points, each one a round
hole of 0.2mm diameter, and is illuminated from behind by intense
red light. The light beam which emerges from the lens is bounded by

Point lattice

K
C Screen

5 m82 cm

f = 70 cmL1

Figure 17.3 Imaging of a small square point lattice using a telescope objec-
tive. The lattice consists of 25 holes, each 0.2mm in diameter, at a spacing of
0.7mm; see Fig. 17.4. For demonstration in a large room, f (the focal length
of the lens) must be chosen to be shorter.

http://tiny.cc/tfgvjy
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Figure 17.4 The point lattice as imaged on the screen in
Fig. 17.3 (photographic negative, 1=2 actual size)

the circular lens mount (diameter 5 cm)1. The image on the screen
has been photographed in Fig. 17.4. The photo shows a lattice com-
posed of 25 cleanly separated circular disks. They give an upper
limit for the diameter of an “image point”. Now, we place an ancil-
lary aperture B1 just in front of the object (Fig. 17.5), and let only the
central hole be imaged, that is one single “object point”. Its image
remains on the screen, maintaining its sharpness.

Now the decisive observation: We add a second aperture in the form
of a rectangular slit B2 just behind the lens in Fig. 17.5. This produces
a rectangular boundary for the light beam emerging from the lens,
for example with a width of B D 0:3mm. On the screen, we see the
image which is reproduced as a photo in Fig. 17.6 (1=2 actual size):
The object point is imaged in the image plane as a long “brushstroke”,
with shorter replicas on each side. Using blue-filter light, we see the
same “brushstrokes”, but they are somewhat shorter (Fig. 17.7).

Ancillary
aperture

Aperture slit,
width B = 0.3 mm

K
C B1 B2

Figure 17.5 An ancillary aperture B1 covers 24 of the 25 openings in the
point lattice (object). The remaining opening is imaged by the same objective
lens as in Fig. 17.3; but this time, the light beam is bounded with a rectangular
shape by a second aperture B2.

α = 0 5 10 15 20'

Figure 17.6 The image point formed by a lens whose beam has been lim-
ited by a narrow rectangular slit B2, 0.30mm wide and perpendicular to
the long direction of this figure; it has the form of a brushstroke. The im-
age was photographed using red-filter light (� � 660 nm) at a distance
of 5m. (Photographic negative, 1=2 actual size, ˛ D 200 corresponds to
sin˛ D 5:8 � 10�3 rad). For angular units, see the footnote at the end of this
chapter.

1 The illumination lens or condenser C has to form an image of the crater K of the
arc lamp (the source point of the illumination) in the plane of L1, and its diameter
must be greater than that of the lens L1.
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Figure 17.7 As in Fig. 17.6, but
using blue-filter light, with � �
470 nm

sin α = 0 2 4 6 ∙10–3

Figure 17.8 The image point cast by
a telescope objective lens through a circular
aperture of 1.5mm diameter, photographed
at a distance of 5m (top picture 1min., bot-
tom picture 5min. exposure time; red-filter
light, actual-size negatives)

In both cases, the images resemble a horizontal section from the well-
known diffraction pattern cast by a slit (Fig. 16.29, center). The
minima are at the same spacing as before (compare Fig. 17.6 with
Fig. 16.29, bottom). Therefore, we can explain Figs. 17.6 and 17.7
with some certainty: An image point is in reality a diffraction pat-
tern from the boundary of the lens. Its first minimum appears, as
seen from the center of the lens, on both sides of the midpoint of the
image at an angle ˛, as defined by Eq. (16.23)2

sin˛ D �

B
: (16.23)

Normally, the boundary or mount of a lens is not rectangular, but
rather circular; then instead of a slit, we have the circular opening of
the lens mount. Therefore, in continuing our experiments, we replace
the slit B2 in Fig. 17.5 by a circular aperture (e.g. with a diameter
of 1.5mm). The result can be seen in Fig. 17.8; it is, as expected,
the diffraction pattern of a circular aperture. Qualitatively, we can
say that it is formed by rotation of the diffraction pattern from a slit
around its center point (Fig. 17.6). Quantitatively, this is not quite
correct; in the case of a circular opening, we have to add a numerical
factor of 1.22 on the right-hand side of Eq. (16.23).C17.2C17.2. For the calculation

of the value of this factor,
1.22, see e.g. Max Born and
Emil Wolf, Principles of
Optics (Pergamon Press,
4th edition (1970)), Sect. 49
(available online – see Com-
ment C25.11).

This is, how-
ever, practically unimportant, given the wide range of wavelengths �
in the visible spectral region (around 400–750nm).

Result: The image point cast by a lens is a diffraction pattern of
the opening which limits the effective lens diameter. We can state

2 In Fig. 17.5, we can consider the light beam which falls on the slit B2 to be
a collimated beam to a good approximation. Thus the condition for the validity of
Eq. (16.23) is fulfilled.
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Figure 17.9 Photographs of two images of the same letter ‘F’ ( a copper
stencil), formed on the left using a lens, and on the right using a pinhole
camera. The lens mount and the aperture of the pinhole camera are both
3.5mm in diameter (!) Object and image distances are each 17m. The images
were thus just the same size as the object. They are reproduced here actual
size. The surprisingly large “image points” which compose the images are
shown later in Fig. 21.19.

without serious exaggeration that “. . . in imaging by lenses,
the opening which bounds
the light beam is more
important than the lens
itself”.

in imaging by lenses, the opening
which bounds the light beam is more important than the lens itself.
The role played by the lens is only secondary; it makes the incident
plane or divergent wave train convergent and focusses it into a small
region. In this way, it places the diffraction pattern from its opening
at a conveniently accessible distance. The image which is composed
of these “diffraction-pattern image points” is then formed at a man-
ageable size.

If we remove the lens, the remaining aperture acts just like a pin-
hole camera (Fig. 18.35). In the latter, the diameter of the aperture
must be adjusted to suit the desired distances of the object and the
image plane. This topic, as mentioned at the beginning of this chap-
ter, will be treated in Sect. 21.8. If this adjustment has been carried
out correctly, the resulting sharpness (resolution) of the image can-
not be further improved by inserting a lens into the aperture. This is
demonstrated in Fig. 17.9 for an aperture of 3.5mm diameter.

There is no fundamental difference between the image points of
a pinhole camera and those of a lens. Both are merely diffraction
patterns of the aperture. To be continued in Sect. 21.8. . .

17.3 The Resolving Power of Lenses,
Particularly in the Eye
and in Astronomical Telescopes

The significance of the experiments just described will be explained
by giving some examples. We return to Fig. 17.5, remove the ancil-
lary aperture B1, and thereby form an image of all 25 object points
in the point lattice. Then we again add a rectangular aperture to the
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a b c

Figure 17.10 The images of the point lattice in Fig. 17.3 are drastically
modified, depending on the shape and size of the boundary of the objective
(red-filter light, photographic negative, 1=2 actual size)

lens, that is we again produce long “brushstrokes” as image points
(Fig. 17.6), initially with a horizontal orientation (the slit B2 is verti-
cal). Then the lens forms the image shown in Fig. 17.10 a. Instead of
the point lattice (Fig. 17.4), we see an image of five bright horizon-
tal lines which result from the overlap of the horizontal brushstrokes.
We then rotate slit B2, and with it the brushstrokes, by an angle of 45ı
to the vertical. Now, instead of a point lattice, we see the image as
shown in Fig. 17.10b, etc. One inappropriate restriction of the light
beam can thus make the image completely different from the object
it is supposed to represent.

With the usual shape of the lens boundary, a circular lens mount,
we obtain circular diffraction disks as image points, surrounded by
concentric rings of decreasing intensity (Fig. 17.8). Seen from the
center of the lens, the first ring of minimal intensity (which appears
bright in the photographic negative) in this diffraction pattern is at an
angular spacing of ˛ from the center of the diffraction disk. Then for
a lens diameter B, we find to a good approximation

sin˛ D �

B
or ˛ � �

B
: (16.23)

In order to separate (resolve) two object points in the image, they
have to be roughly as far apart as shown in Fig. 17.11: The central
disk of the one image point must fall in the first minimum of the other
(or be still further away).C17.3C17.3. This condition is

known as the
“RAYLEIGH criterion” in the
literature.

That is, the angular spacing 2' of the
object points should not be much smaller than the angle ˛ calculated
from Eq. (16.23). Then we find for the smallest “resolvable” angular
spacing

2'min � �

B
: (17.1)

Example: Our eyes are basically similar to photographic cameras. In-
stead of the photographic film or plate (or CCD detector array), they
contain the retina, which takes the form of a mosaic. The boundary
of the lens of the eye (f D 23mm) is defined by the iris (pupil). Its
opening diameter in daylight is about 3mm. Taking � D 600 nm D
6 � 10�4 mm as the average wavelength of sunlight, we obtain from
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Figure 17.11 The resolving power of a lens: Separating the two diffraction
patterns (from a circular lens aperture of 1.5mm diameter) which appear as
neighboring image points. The object consisted of two holes of 0.2mm di-
ameter at a spacing of 0.3mm (photo taken with red-filter light at a distance
of 5m; photographic negative, actual size) (Video 17.1) Video 17.1:

“Resolving power”
http://tiny.cc/9dggoy
The video shows that “image
points” are simply diffraction
patterns from the lens mount.
The resolving power which
is limited by the diameter
of these diffraction patterns
is demonstrated using two
neighboring circular openings
at different spacings, illumi-
nated with red and with blue
light. A preliminary experi-
ment using a single opening
demonstrates the reduction
of the effective lens diame-
ter using a circular aperture.
The initially sharp image is
gradually converted into the
enlarged pattern of a diffrac-
tion disk as the lens diameter
is decreased (see Sect. 21.3).

.

Eq. (17.1)3

2'min D 6 � 10�4 mm

3mm
D 2 � 10�4 D 41 arc second :

This means that our eyes must just be able to distinguish two ob-
ject points at an angular spacing of around 1 arc minute; or, in other
words: About 1 arc minute is the smallest “resolvable” angle of sight
2' for the eye (cf. Fig. 18.23). This rough estimate agrees with prac-
tical experience. For a demonstration, we can use a black-and-white
square lattice. For an observer at a distance of 10m, the spacing of
the lines on the lattice has to be about 3mm in order to resolve them
visually. It then follows that:

2'min D 3 � 10�4

or

2'min D 1 arc minute :

With optimized illumination, we can approach roughly half this value. We
thus do not have to make the spacing quite as great as shown in Fig. 17.11.

The astronomical telescope is also practically just a variant of a pho-
tographic camera: A lens or a concave mirror, with a photographic
plate or photodetector in its focal plane. For a lens or mirror diam-
eter of 300mm, the smallest resolvable angle of vision is 100 times
smaller than for the naked eye, i.e. about 0.4 arc seconds. With a di-
ameter of 1.2m, we can still resolve two fixed stars at a spacing of
0.1 arc second, etc. Each of the two stars is visible only as a diffrac-
tion disk from the lens or mirror mount. If the objective of a telescope
has a triangular boundary, the diffraction pattern from a fixed star
looks like that shown in Fig. 17.12. A true image of the disks of fixed
stars, corresponding to an image of the Sun’s disk, cannot be obtained

3 Units: 1 degree (ı) D 1:745 � 10�2 rad, 1 minute of arc (0) D 2:91 � 10�4 rad,
1 second of arc (00) D 4:86 � 10�6 rad (cf. Vol. 1, Sect. 1.5).

http://tiny.cc/9dggoy
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Figure 17.12 The image point
formed by a lens which is
bounded by a triangular aper-
ture with a side length of 9 cm
(at a distance of 5m, taken with
red-filter light, negative shown
actual size)

with earthbound telescopes. The diameter of the Sun’s disk is 32 arc
minute, while the diameters of the disks of even nearby stars is less
than 0.01 arc second. To form images of the disks of fixed stars, the
diffraction-limited image points of even the largest telescopes (mirror
diameter for example 5m)C17.4 are still much too large.C17.4. Here, Pohl is refer-

ring to the Hale Telescope
operated by the California
Institute of Technology (Cal-
tech) since 1948 on Mount
Palomar in the neighborhood
of San Diego, CA/USA.
A considerable perturbation
is due to the Earth’s atmo-
sphere. For example, using
the HUBBLE Space Tele-
scope, which has a mirror
diameter of only 2.4m at an
altitude of 500 km – that is,
far outside the perturbing
influence of the atmosphere,
and which orbits the earth as
an artificial satellite, it is pos-
sible to observe the surface
of the star ˛ Orionis (Betel-
geuse). A large, bright spot
was seen there. The angular
diameter of the disk amounts
to 0.047 arc second. It was
determined using FIZEAU’s
method (Sect. 20.16) (See
e.g. R.L. Gilliland and
A.K. Dupree, Astrophysical
Journal 463, L39 (1996))
(Exercise 17.2).

The resolving power of the eye and of telescopes is determined by the
boundary of the light beam, not by details of the lens construction.
That is the important result of this section.

Exercises

17.1 The International Space Station (ISS) circles the Earth at an
average altitude of ca. 350 km.
a) What is the minimum spacing d of two lighthouse beams so that
they can be seen as separate (resolved) by an astronaut with the naked
eye?
b) What diameter B would a camera objective require at this altitude
in order to resolve two persons on the ground standing 2m apart (cor-
responding to the RAYLEIGH criterion) in the camera image? (Use
the average wavelength of sunlight, 600 nm.) (Sect. 17.3)

17.2 Compare the smallest resolvable angular spacing 2'min for the
HUBBLE Space Telescope at a wavelength of � D 250 nm with the
angle 2˛ under which the disk of the star Betelgeuse appears from
the Earth (˛ D 0:047 arc second). (Sect. 17.3)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_17) contains supplementary material, which
is available to authorized users.

https://doi.org/10.1007/978-3-319-50269-4_17
https://doi.org/10.1007/978-3-319-50269-4_17
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Fundamental
and Technical Details
of Image Formation
and Beam Limitation

18

18.1 Preliminary Remark

In optics, lenses play roughly the same role as wire leads in elec-
tricity and magnetism. Both are indispensable aids to experimental
observations. How to use wire leads can be quickly learned and is
for the most part compatible with everyday experience. How to make
effective use of lenses, in contrast, requires rather extensive, detailed
knowledge. The six pages in Sect. 16.7 are by no means sufficient.
In particular, the most important aspect is lacking there: The major
role played by light-beam delimitation in all questions relating to im-
age formation. We met up with that aspect only briefly in Sect. 17.2.
In the present chapter, we offer additional examples, once again de-
rived directly from experiments and individual observations.

18.2 Principal Planes, Nodes

In dealing with simple thin lenses, their focal lengths, the distance
to the object and the distance to the image from the midplane of the
lens are the significant quantities. This midplane is also used in the
well-known geometric constructions of image formation which are
popular in high-school optics treatments (Fig. 18.1).C18.1

C18.1. POHL consistently de-
notes quantities on the object
side of the lens (as we have
already seen in Chap. 16) by
letters without a prime, and
those referring to the image
side by letters with a prime,
even when they are not dis-
tinct, as is the case here and
in the following figures. f
and f 0 are unequal when ma-
terials with differing indices
of refraction are located on
the two sides of the lens, as
for example with the lens of
the eye. See also Fig. 18.24.

We thus neglect the finite thickness of the lenses, considering it to
be insignificant. This approximation is, however, nearly always not
admissible for thicker lenses and for compound lenses (e.g. objec-
tive lenses for microscopy and photography). Then, the description
of the optical path of the rays requires more than a single midplane:
We must introduce two reference planes perpendicular to the optical
axis, the two principal planes H and H0; and we must measure the fo-
cal lengths and the object and image distances with reference to these
planes (C. F. GAUSS). Likewise, for the geometrical construction of
the image, the rays must be extended to one of the principal planes

335© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_18

https://doi.org/10.1007/978-3-319-50269-4_18
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Figure 18.1 The geometric construction of the image point P0 which corre-
sponds to the object point P. The focal points F and F0 are shown; they are
properties of the lens. It suffices to trace any two of the three rays 1–3. This
construction is purely formal. The object size 2y can be arbitrarily greater
than the diameter of the lens, e.g. in the case of a photographic camera. Then
the rays 1 and 2 themselves no longer intersect the actual lens, but they inter-
sect its midplane. Nevertheless, they are ‘bent’ at the midplane, as seen in the
lower part of the figure (Exercises 18.1, 16.3).

and then ‘bent’ there. This is illustrated in Fig. 18.2. The physical
meaning of this construction can be seen in the demonstration exper-
iments shown in Fig. 18.3. The beam axes (rays) which pass through
F are called image-side telecentric, while those that pass through F0
are termed object-side telecentric.

Figure 18.2 also illustrates a general definition of the focal lengths,
namely

on the image side: f 0 D y

tan ' 0 ; and on the object side: f D y0

tan '
:

(18.1)

1
3
2

1
3

P
y

y'

f f '

F'
F

K y

y'

K' φ'φ

H'H

P'
2

Figure 18.2 The definitions of the object-side and image-side principal
planes H and H0. With thick lenses and compound lenses, we measure the
object distance on the object side and the image distance on the image side,
as well as the corresponding focal lengths. The points K and K0 are shown
for comparison to Fig. 18.5. If we want to measure the focal length using
Eq. (18.1), and therefore want to make e.g. ray 2 the central axis of a light
beam, we have to place an aperture around the focal point F as an entrance
pupil. This makes ray 2 a principal ray, and thus its angle of inclination to the
optical axis on the object side is conventionally denoted as '.
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F

F
F'

F'
H'

H' H

H

Figure 18.3 Demonstration experiments for illustrating the schematic ray diagram
in Fig. 18.2 (red-filter light). For clarity, only the light beams belonging to the
rays 1 and 2 are shown (1=9 actual size). In the bottom part of the figure, the
image-side principal plane H0 is closer to the object than the object-side plane H!
(Drawings from photographs of the demonstration experiments. This applies also
to later figures, such as Figs. 18.4, 18.10 and 18.13).

To locate the principal planes experimentally, one makes use of two
telecentric light beams. They are incident first from the right, parallel
to the optical axis (Fig. 18.4, top) and then from the left (Fig. 18.4,
bottom). One finds the positions of the focal points F and F0 by
extrapolating the central rays (short-dashed lines) until they inter-
sect. With this compound lens, the two principal planes H and H0
are no longer between the individual lenses (a large converging lens
and a small diverging lens). Furthermore, we clearly see the very un-
equal distances of the two focal points from the central plane of the
compound lens.

In the usual applications, the same substance, namely air, is found on
the object and the image side of the lens. In certain cases, however,

F

H

H
H'

H'

F'

f

f '

Figure 18.4 A demonstration experiment for locating the principal planes of
a compound lens composed of a converging lens and a diverging lens. This
type of compound lens is often used in cameras as a telephoto objective for
taking large close-ups of distant objects, for example wild animals. This
requires a long focal length (cf. Eq. (16.22)).C18.2

C18.2. With today’s tele-
photo objectives, the focal
length f ’ can be twice as long
as the whole lens system.
In Fig. 18.4, the principal
plane H0 would then be at the
left margin of the figure.
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A
Object Frosted

glass plate
A'
Image

N K

K'

a'
a''

a

Figure 18.5 The locations of the two nodal points K and K0 in a pinhole
camera filled with water. The aperture through which the image is formed is
kept from leaking by a thin glass plate.

the image side contains a different substance, often a liquid (lens of
the eye!). We then require the concept of nodal points. It can be most
simply explained for the special case of a pinhole camera which is
filled with water in its interior (Fig. 18.5). The image formation of
the object point A as an image point A0 can be described in two ways:
Either by referring to the two rays a and a0, which are ‘bent’ relative
to each other by refraction, or by using the rays a and a00, which are
parallel to each other on the object and the image sides, and whose
intersection points with the optical axis (the dot-dashed symmetry
axis of the imaging aperture) define the two points K and K0, called
the nodal points.

In a corresponding way, we define the nodal points even when
a lens is inserted into the aperture. As an example, consider the eye
(Fig. 18.24). On the object side, it is bounded by air, and on the
image side, the interior of the eyeball; it contains a gelatinous liquid
called the vitreous humor.

The two nodal points of the relaxed (unaccomodated) eye lie (for normal
vision, not peripheral vision) 7.0 and 7.3mm behind the outermost point
(crest) of the cornea (the outer surface of the eye). The principal planes, in
contrast, are only about 1.35 and 1.65mm behind the crest of the cornea,
while the focal point lies within the eyeball .22:8C1:6/ D 24:4mm behind
the crest of the cornea.

In general, however, the same material is found on both sides of the
lens. Then the intersection points of the optical axis with the principal
planes (the ‘principal points’) become the “nodal points” K and K0:
This means that rays which pass through them are parallel to each
other on both the object side and the image side. Two such rays
(denoted by 3) are drawn in Fig. 18.2.

This property of the nodal points can be used to locate the principal planes
experimentally. The compound lens is mounted on a slider, with its op-
tical axis (the symmetry axis or lens axis; shown dot-dashed) parallel to
the spindle of the slider (Fig. 18.6). The slider is in turn mounted on
a vertically-rotatable axle. Then, the lens is used to cast the image of a sta-
tionary light source onto a distant screen, and the optical axis is swung
back and forth. This in general causes the image on the screen to move; by
shifting the slider, we can find a position where this motion ceases. In that
case, the axis of rotation is directly under the object-side nodal point, and
the axis of rotation lies in the object-side principal plane.
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Figure 18.6 Illustration of the ex-
perimental determination of the
object-side principal plane by locat-
ing the object-side nodal point. The
lens can be rotated around a vertical
axis and can be slid with the slider
relative to that axis.

Principal planes

Optical
axis

Spindle of the
micrometer slider

Indexing
drum

Rotation axle

When a higher precision is required, one must determine both of
the principal planes, even for simple lenses of moderate thickness;
approximating them by the central plane of the lens is not exact. Fig-
ures 18.7 and 18.8 show some examples.

Figure 18.7 The principal planes of three
thin lenses. Even in the case of the menis-
cus lens a, they deviate only slightly from the
central plane of the lens. (A “meniscus lens”
is a lens with one concave and one convex
curved surface). (1=6 actual size; fa D 28 cm,
fb D 20 cm, fc D 21 cm)

a b c
H H HH' H'H'

H'H

F = 60 cm F' = 60 cm

r1 = 10 cm = r2

Figure 18.8 A 10 cm-thick meniscus lens, which in spite of having the
same curvature on both sides is a convergent lens, with its principal planes
far outside the lens itself (also shown 1=6 actual size). See the references
in Comment C16.14, and also e.g. http://ocw.mit.edu/courses/mechanical-
engineering/2-71-optics-spring-2009/video-lectures/lecture-5-thick-lenses-
the-composite-lens-the-eye/MIT2_71S09_lec05.pdf

http://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/video-lectures/lecture-5-thick-lenses-the-composite-lens-the-eye/MIT2_71S09_lec05.pdf
http://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/video-lectures/lecture-5-thick-lenses-the-composite-lens-the-eye/MIT2_71S09_lec05.pdf
http://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/video-lectures/lecture-5-thick-lenses-the-composite-lens-the-eye/MIT2_71S09_lec05.pdf
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18.3 Pupils and the Boundaries
of Light Beams

The contents of this section are especially important. The rays
sketched in Fig. 18.1 are possible central axes or delimiting rays
of light beams; they are compatible with the positions of the focal
points F and F0. But these light beams must by no means actually
be present in reality. The light beams which are present in fact often
look very different from the rays that we draw in geometric diagrams.
Their form is determined by pupils. A pupil is (on both the object
side and the image side) a cross-sectional area common to all the
light beams. It is called the “entrance pupil” for light beams on the
object side, and the “exit pupil” for light beams on the image side
(ERNST ABBE, 1840–1905).

Examples:

1. In the simplest application of a lens, e.g. as in Fig. 16.21, the lens
mount (the “bezel”) delimits the light beams coming from the object
side (with an opening angle of!) and acts thus as an “entrance pupil”.
It also delimits the image-side light beams (opening angle ! 0) and
therefore acts as an “exit pupil”. In this simplest example, the two
pupils merge into one.

2. In Fig. 18.9, bottom, there is a circular aperture B in front of the
lens. It serves as entrance pupil and delimits the object-side light
beams (opening angle !). Behind the lens is its real image B0. This
aperture image acts as exit pupil and delimits the image-side light
beams (opening angle ! 0). Follow the heavy lines from the lower

Object

Object

Image

Image of the
aperture

Aperture

Mirror

Entrance pupil
Exit pupil

2ω

2ω

2ω'

2y

2y 2φ 2φ'2y'

B
f f '

B'

Figure 18.9 Delimiting of the imaging light beams by pupils. The entrance pupil
is an aperture in both figures; below, it is a transmission aperture (opening), and
above, it is a mirror (reflection aperture). The real image of B acts as exit pupil. '
and ' 0 are the object- and image-side principal-ray angles of inclination. The lens
bezel acts as a delimiting aperture for the field of view (Sect. 18.14).
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Figure 18.10 A demonstration experiment for showing the locations of pupils. One
half of an optical bench can be rotated around the center of the entrance pupil B and is
hung from a spring S. Thus, the object point ˛, an opening which is illuminated from
behind, can be swung up and down, and at the same time, its image point ˛0 moves. The
light beam wanders up and down on the object and image sides in this process. Only
two cross-sections of the beam remain at rest: The aperture B which serves as entrance
pupil, and its image B0, the exit pupil. To provide a marker, one can cover the upper
edge of the entrance pupil with a red glass filter, and its lower edge with a green glass
filter. Then the lower edge of the exit pupil appears red, and its upper edge appears
green. We thus see how B0 arises as the image of B. In contrast, the image point ˛0,
which is moving up and down, remains colorless; it contains both red and green parts of
the beam, which are complementary colors, so that together, they give white light (for
the demonstration, we use a cylindrical lens).

edge of B to the upper edge of B0. They show that B0 is the image of B.
Often, instead of a transmission aperture, a mirror is used (reflection
aperture; Fig. 18.9, top). Example: The mirror is attached to the
rotating coil of a sensitive galvanometer, and the lens as objective of
a telescope is used for taking scale readings.

The aperture B is imaged actual size (B0) in Fig. 18.9 by choosing
the distance of the aperture from the lens in the drawing to be 2f
(compare Eq. (16.13) and Fig. 18.1). When the aperture B is shifted
towards the lens, the exit pupil shifts to the right, and at the same
time, it increases in size. If the aperture B is placed in the object-side
focal plane, then its image becomes virtual and lies at infinity to the
right side of the figure; then the common cross-section of the image-
side light beams, i.e. the exit pupil, is also at infinity on the right.
Thus, the image-side principal-ray angle of inclination ' 0 D 0 and
the the optical path is telecentric on the image side. Examples are
shown in Figs. 23.1 and 24.20. The optical path of the light beams
sketched in Fig. 18.9 and the positions of the two pupils there can
be rather impressively demonstrated in the experiment. Details are
given in Fig. 18.10 and its caption.

3. In Fig. 18.11, there is an aperture B behind the lens but within
the image-side focal length f 0. B0 is its virtual image. This aperture
image B0 acts as entrance pupil. Although it is behind the image, B0
delimits the usable light beams on the object side (opening angle !).
The aperture B itself acts as exit pupil, it delimits the image-side light
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Figure 18.11 As in Fig. 18.9: The exit pupil here is a circular aperture B
located on the image side. Its virtual image B0, likewise located on the image
side, acts as entrance pupil.

beams (opening angle ! 0). Once again, some heavy black (dashed)
rays indicate that B0 is a (virtual, upright) image of B.

4. Frequently, for demonstrations we use an illuminated opening as
object; it serves as a light source which is sharply bounded and with
a well-defined size and shape (Sect. 16.2). However, it is often diffi-
cult to place the lamp close enough to this opening, and the diameter
of the lamp or the lens used for imaging is also often too small. In
such cases, we can make use of an illumination lens C, called a con-
denser, between the lamp and the opening. We demonstrate how
a condenser is used with an example in which an illuminated slit
serves as a line-shaped light source. In Fig. 18.12, assume that the
diameters of both the imaging lens L and of the primary light source
(e.g. the crater of the arc lamp) are small. Nevertheless, we want
to image the slit along its whole length, so that it appears uniformly
bright. Then the condenser C has to cast an image of the lamp onto
the imaging lens. This image of the lamp may itself be smaller than
the area of the lens; in that case, the lens bezel no longer acts as en-
trance and exit pupil for the image formation, but instead the image
of the lamp serves this function. If we make the lamp’s image equal
to or larger than the area of the imaging lens, we obtain the largest
possible opening angle ! 0 and thus the maximum possible irradiation
intensity in the image.

In many cases, as in Fig. 18.12 and some others (e.g. Figs. 18.33 and
24.20), in addition to the imaging optical system, there is also a system for
the illumination. In these cases, pupils are indicated for the whole optical
arrangement. Thus, for example, in Fig. 18.12, the area of the lamp (crater
of the electric arc) is the entrance pupil, and its image on the lens L which
forms the main image is the exit pupil. When several apertures are present,
it is important to distinguish the one which limits the pupils from all the
others. It is called the aperture stop (Sect. 16.1).

The facts which are elucidated in Figs. 18.9–18.12 may be summa-
rized as follows: The light beams which actually propagate (going
from an object point to the lens and from the lens to the corresponding
image point) are determined by the entrance and exit pupils. These
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Figure 18.12 Delimiting of the light beam and the positions of the pupils
when imaging with a condenser lens which uniformly illuminates an opening
(here, a wide slit); for the positions of the pupils, see also the above small-
print paragraph)

pupils are either physical apertures (e.g. openings, lens bezels, mir-
rors), or they are the light-emitting surfaces of a light source, or else
they are images of an aperture or of the light source. These images
can be real or virtual. The entrance pupil is the common cross-section
of all the light beams coming from the object side, while the exit pupil
is the common cross-section of all the light beams passing through
the image side. The diameters of the pupils determine the usable
opening angles ! and ! 0. The centers of the pupils practically always
lie on the symmetry axis of the lenses (the optical axis). Then these
center points are the intersections of the object-side and the image-
side principal rays and are thus at the apex of the principal-ray angles
of inclination ' and ' 0.

In using lenses, “In using lenses, one there-
fore needs to keep two
things clearly separated:
The rays used in the geo-
metrical construction and
drawn upon the patient
sheet of paper, and the real,
usable light beams, which
are delimited by pupils”.

one therefore needs to keep two things clearly sepa-
rated: The rays used in the geometrical construction and drawn upon
the patient sheet of paper (e.g. Fig. 18.1), and the real, usable light
beams, which are delimited by pupils. Of course, we could also con-
struct the images drawn in Figs. 18.9 ff. using the scheme shown in
Fig. 18.1. The reader may even wish to check the validity of Fig. 18.9
or 18.11 in this manner. However, we must never confound the rays
drawn with the axes or the boundaries of the real light beams which
in fact are observed in the experiments.

A precise insight into the delimiting of light beams by pupils is abso-
lutely indispensable for all optical apparatus and experimental set-
ups. The boundaries of the light beams play a decisive role in the
construction of optical systems, e.g. the compound lenses with which
we reduce the unavoidable imaging aberrations to an acceptable level.

The bounding of the light beams determines the radiant power which
can be transmitted by an optical system, and therefore (using the lan-
guage of everyday life), all questions of brightness.

In all optical instruments, e.g. microscopes and telescopes, the light-
beam boundaries limit the field of view, the depth of focus, the per-
spective and the usable magnification.

Finally, the light-beam boundaries also determine the resolving
power of all optical instruments, not only that of the eye and of
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telescopes (Chap. 17). They limit e.g. in the microscope the smallest
length within the object which can still be distinguished; in a spectral
apparatus the smallest differences in wavelengths which can still be
separated, etc.

18.4 Spherical Aberration

The derivation of the lens formulas in Sect. 16.7 presumed that the
light beams were thin and near to the optical axis. The approximation
used was that the ratios of the sines of two angles could be replaced
by the ratio of the angles themselves (small-angle approximation).
For larger angles, the ratio of the angles is larger than the ratio of
their sines. Thus, for example, sin 90ı D 1, sin 45ı D 0:7, so that
while 90ı=45ı D 2, in contrast, 1=0:7 D 1:4. This fact is the reason
for the occurrence of imaging aberrations, even when monochromatic
light is used, as soon as the ideal situation of very thin light beams
near to the optical axis (i.e. paraxial rays) no longer applies.

In Sects. 18.4–18.9, we deal with the most important imaging aber-
rations, giving a brief summary in each case. Up to Sect. 18.8, we
assume that red-filter light is being used. Furthermore, when the
contrary is not expressly stated, we assume that the light beams are
bounded by a circular aperture, in the simplest case by the lens bezel.
The center point of this aperture is presumed to lie on the symmetry
axis of the lens, i.e. the optical axis of the setup.

We start with spherical aberrations. The object-side and image-side
opening angles ! and ! 0 were defined in Fig. 16.21. If at least one
of them is large, then each single zone of the lens produces its own
image point P0 from a single object point P that lies on the lens axis.
These image points no longer overlap, but instead form a series of
image points along the optical axis. (The individual zones of the
lens thus have slightly differing focal lengths.) This imaging error is
called “spherical aberration”.

In order to demonstrate spherical aberration, in Fig. 18.13 (left-hand
part), we place the object point (the crater of an arc lamp) far to the
left on the optical axis. In the plane of the page is a matte-white
screen which is grazed by the light beams. In addition, we place
a diaphragm with four openings near the lens; it allows four nearly
parallel light beams to pass. Their intersection with the plane of the
page shows an outer and an inner pair of beams. The inner pair passes
through the neighborhood of the center of the lens, while the outer
pair passes through a lens zone near its outer rim (lens bezel). The
intersection point of the outer beam pair occurs before the intersec-
tion point of the more central pair, as seen in the direction of the light
propagation: This lens is “spherically undercorrected”.

Fig. 18.13 (right-hand part) shows the corresponding experiment us-
ing a concave lens. The pair of beams from near the rim of the lens
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Figure 18.13 The demonstration of spherical aberration using cylindrical
lenses (with their cylinder axes perpendicular to the plane of the page); at left:
spherically undercorrected, at right: spherically overcorrected (Video 18.1) Video 18.1:

“Spherical aberration”
http://tiny.cc/1eggoy
In the video, the demonstra-
tion of spherical aberration
is carried out using a small
glowing filament which is
imaged onto the wall of the
lecture room. Various metal
panels placed in front of the
lens permit us to use either
only the central portion of
the lens, or only the zone
near its outer rim. When the
light passes only through its
central portion, the image
is sharply focussed. When
only the rim zone is used, the
image is completely unrec-
ognizable. Only when the
experimenter moves the im-
age plane closer to the lens
by using a white cardboard
screen can the image of the
filament be discerned, but it
is still of a rather poor qual-
ity.

intersects, again in the direction of light propagation, behind the pair
which passes near the center of the lens. This lens is “spherically
overcorrected”.

In order to correct for spherical aberration, we see that a suitable
combination of convex and concave lenses can be used. Spherical
aberration can always be corrected only for certain values of the ob-
ject and image distances. For telescope and camera objectives, one
chooses an object at infinity. Microscope objectives are corrected for
an object located close to the object-side focal point.

For many imaging applications (e.g. in the lecture room), the object
and image distances are very different. In such cases, it often suffices
to use a simple plano-convex lens: We let the light beam with the
greater opening angle be on the planar side of the lens. Then the rays
pass through the outer zones of the lens with approximately “mini-
mum deflection” (Sect. 16.6) (since the object distance is much less
than the image distance, the path of the rays through the rim zone of
the lens is more symmetric when the planar side of the lens is oriented
towards the object). This simple trick strongly reduces the spherical
aberration (compare Fig. 18.15, figure caption).

Not only convex lens surfaces, but also planar surfaces can give rise to
spherical aberration. As a result, microscope objectives can be corrected
only for a prescribed cover-glass thickness when light beams with a wide
opening angle are used (i.e. beams with a large aperture; cf. Sect. 18.12).
This must be taken into consideration when using a particular objective.

18.5 Astigmatism and Arching
of the Image Plane

Spherical aberration occurs even for object points on the optical axis.
In general, however, a given object point P will be at some distance
from the optical axis, for example when one wishes to photograph
a landscape. In this case, simple lenses can produce an image point
only with extended (planar) light beams or “light fascicles”. Such
beams are obtained by using a very narrow slit in a diaphragm. The

http://tiny.cc/1eggoy
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Figure 18.14 The demonstration of astigmatism and image-surface camber-
ing (also known as “arching”), using very thin, planar light beams defined by
a slit (the experimental setup is shown as a plan view (from above), not as
a side view). In the upper part of the figure, the planar light beam is in the
plane of the page. Below, the planar light beam is perpendicular to the plane
of the page; we see only its principal ray. The lateral rays which emerge from
the slit pass below and above the plane of the page. If we replace the slit
by a round opening, then we will no longer obtain image points, but rather
“image streaks”. In order to make them visible to a larger audience, we use
a lens of large diameter, around 10 cm (Video 18.2).

Video 18.2:
“Astigmatism”
http://tiny.cc/reggoy
In order to give an impres-
sion of the distortions of the
image points caused by astig-
matism, the crater of an arc
lamp is projected in the video
onto the wall of the lecture
room using a lens with a long
focal length and large diame-
ter. We see a small, relatively
sharp disk of light. If the lens
is rotated around a vertical
axis, then only light beams
which pass obliquely through
the lens can contribute to im-
age formation. The light disk
in the image plane then takes
on long, stretched-out shapes
(0:25min). Finally, with
the lens slanted, the lamp is
moved closer to it. During its
motion, both horizontal and
vertical image streaks appear
in turn (0:55min). When,
however, the distance to the
lamp is varied while the lens
is oriented normally (' D 0)
(1:28min), only the size of
the circular “image point”
changes.

long axis of the slit can lie either in the incident plane (tangential)
or perpendicular to the incident plane (sagittal). The former case is
shown in the upper part of Fig. 18.14, while the latter is shown below,
as plan views.

For the demonstration, we change the angle of inclination ' of the
principal rays arriving from the object side, by sliding the object point
P (for example the crater of an arc lamp) along a rail E in the object
plane. At the same time, we determine the distance b of the screen at
which a sharply-focussed image point appears. (The necessary shifts
in distance, often several meters, are most conveniently managed by
using a cart, similar to that shown in Fig. 18.15b.)

For every angle of incidence ', both orientations of the slit each give
one rather sharp image point, P0 and P00. They lie at different dis-
tances from the lens. Only in the limiting case of ' D 0 are both of
them found at the same distance. The difference of the distances of
these two image points is called the astigmatism. The set of all the
image points P0 and P00 for the planar light beams lying in the plane of
incidence and perpendicular to it each form a rotationally-symmetric
concave surface. The two image surfaces are cambered and touch
each other for the limiting case of ' D 0, that is when the object and
the image point are on the optical axis.

http://tiny.cc/reggoy
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Figure 18.15 A wheel with several rims drawn onto a matte glass plate (the
spokes and rims are transparent, while the rest of the area is opaque) is an
excellent object for testing a lens for astigmatism and image-surface cam-
bering (about 1=2 actual size). Among others, a demonstration experiment
using a plano-convex lens of around 13 cm focal length and 4 cm diameter is
very impressive. If the planar surface is oriented towards the object, there is
a strong image-surface cambering and astigmatism. The spokes and the rims
are sharply focussed at different distances from the lens. It is expedient to
put the optical bench onto a cart, since it must often be moved over several
meters in order to sharply focus either the spokes or the rims, using beams
either from near the center of the lens or from near its outer edge. If the
convex surface of the lens is oriented towards the object, the image surface
is surprisingly flat, but now the strong spherical aberration makes the rims
appear one-sidedly washed out towards the center of the image. (R D wheel
figure (object), L D lens.)

If we replace the slit by a circular aperture, for example the lens bezel,
then we observe an additional complication. At the locations of the
two image points P0 and P00, we see at the same time two nearly linear
formations which are perpendicular to each other: Each of the two
image points has degenerated into an image streak. In P0, the streak
is perpendicular to the plane of incidence, while at P00, it lies in the
plane of incidence.

To explain these image streaks, we can refer to Fig. 16.17. In each
direction, a lens which is struck by light beams at a slanted angle
can be replaced by two cylindrical lenses with different curvatures
for light beams with a small opening angle. Therefore, with slanted
incidence, the same effects must be observed as in Fig. 16.17b with
incident beams parallel to the optical axis.

When lenses in meniscus form (concavo-convex, e.g. Fig. 18.7 a) are
used, at a suitable position of the aperture, the order of the concave-
cambered image surfaces is exchanged. That means that the image
surface nearer to the lens is due to the extended light beam which is
perpendicular to the plane of incidence (that is, the sagittal beam).
By combining convex and meniscus lenses, one can cause the two
concave surfaces to very nearly merge, thus strongly reducing the
astigmatism. In addition, the common concave surface can be more
or less flattened out, so that the camber of the image surface is re-
duced to an acceptable level. Such compound lenses (objectives) with
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strongly reduced astigmatism and a roughly planar image surface are
called anastigmatic.

To test an objective for image-surface cambering and for the degree of
its astigmatism, the degeneration of the image points to image streaks
is employed: One places a drawing of a wheel, with spokes and a rim,
perpendicular and symmetric to the optical axis. When the correction is
imperfect, either only the spokes or only the rim can be brought into sharp
focus. Often, the drawing shows several concentric rims (Fig. 18.15). With
well-corrected objectives, even the outer rims as well as the spokes should
be projected in sharp focus onto a flat screen.

18.6 Coma and the Sine Condition

In spherical aberration, the object point lies on the optical axis,
i.e. the angle of inclination ' of the principal ray is zero. The cross-
sectional area of the beam retains its circular symmetry on the image
side. Correspondingly, the image point degenerates to a circular disk
when the opening angle becomes too large.

However, with astigmatism, the object point lies outside the optical
axis, i.e. the principal ray (which passes through the center of the
aperture) has a finite angle of inclination (' > 0). It is no longer per-
pendicular to the surface of the lens. As a result, the cross-sectional
area of the beam acquires an elliptical shape on the image side, so
that the two image points become image streaks even at small open-
ing angles !.

Now, however, if at least one of the opening angles is large, then the
cross-section of the beam retains only its symmetry with respect to
the plane of incidence on the image side. The image points acquire
a “tail” which effectively broadens them and reduces their intensi-
ties; they degenerate to a coma. A coma can occur even when the
spherical aberration has been corrected. Even then, at large opening
angles !, a small angle of inclination ' of the principal ray changes
the focal lengths of the individual zones of the lens. Therefore, each
lens zone projects the image in a different size onto a surface element
that is perpendicular to the optical axis. This however would make
the use of light beams with a large opening angle impossible for mi-
croscopes, telescopes and other optical instruments. It is thus not
sufficient, as shown above in Sect. 18.4, to reduce the spherical aber-
ration for only one object and one image point on the optical axis.
Rather, this must be done for other object and image points which
are not on the optical axis. This can be accomplished by following
a certain rule for the ratio of the opening angle ! on the object side
to the opening angle ! 0 on the image side. These angles must fulfill
the sine condition:

n sin!

n0 sin! 0 D �y0

�y
D const or

sin!

sin! 0 D �y0

�y
D const I (18.2)
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Figure 18.16 The derivation of ABBE’s sine condition. An aperture B which serves as entrance
pupil is imaged as the exit pupil at B0. For the illumination of B, we suppose that there is an
extended light source some distance to the left. The indices of refraction n and n0 on the object and
the image sides are taken to be equal in this sketch; therefore, the wavelengths � and �0 are drawn
to be the same.

the latter expression holds when the indices of refraction n and n0 on
both sides of the lens are equal.

To derive the sine condition most simply, we refer to Fig. 18.10. There,
the entrance pupil was formed by an aperture B, and its image served as
exit pupil B0. The same can be seen in Fig. 18.16; however, here, the light
source is not an illuminated opening, as in Fig. 18.10, but instead a light
source with a large surface area, far to the left in Fig. 18.16. We have drawn
two collimated beams which each originate at a point on the distant light
source. Some wavefronts are indicated in each beam. One of the beams
passes through the center of the lens, while the other passes through a zone
near the rim of the lens. The central axes of these two beams make an
opening angle ! on the object side, and an angle! 0 on the image side. Both
beams intersect the image plane with the same cross-section (the diameter
of the image is 2�y0). The wavefronts are perpendicular to the rays which
form the edges of the beams; they appear as straight lines on the object
side. On the image side, we can see that their curvature just in front of the
image plane is small enough to be neglected. The last wavefront which
is drawn in on the right can be treated as flat. Then from Fig. 18.16, we
can read off the optical paths p D n2�y � sin! and p0 D n02�y0 � sin! 0.
Since for image formation, the optical paths of all the rays that belong to
corresponding object and image points must be equalC18.3, we must have
p D p0. This leads to the sine condition (18.2).

C18.3. This follows from
FERMAT’s principle; see
Comment C16.6. A detailed
derivation can be found
for example in P. Drude,
“Lehrbuch der Optik”, Verlag
S. Hirzel 1900, Chap. III.9.
This book, in its Chap. III.10,
also contains a derivation of
the tangent condition which
is mentioned in the following
section.

An optical arrangement for forming an image which obeys the sine
condition is called aplanatic. Such a lens can thus image a certain
surface element which is perpendicular to the optical axis (and not
just an object point) with wide-angle beams. However, a lens can de-
liver an aplanatic image only for certain object and image distances,
which must be predetermined during its fabrication.

18.7 Geometric Distortion

Spherical aberration, astigmatism and coma impair the quality of the
image points. They are aberrations in image definition. In addition,
there are positional aberrations. They give rise to a camber of the
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a b c

Figure 18.17 A square a centered on the optical axis has a barrel-shaped
distortion at b and a pillow-shaped distortion at c (a is drawn with about 10-
fold magnification on a matte glass plate, preferably as a light figure on a dark
background)

Arc-lamp
crater

(light source)

Movable
condenser

lens

Object Screen

Image of light source
as pupil for

barrel-shaped pillow-shaped
disortion

10 cm ca.
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ca.
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f = 37 cm
D = 10 cm

Figure 18.18 The dependence of the distortion on the position of the pupil
(the object is for example a square lattice). D is the lens diameter

image surface and distortion of the image: A square is distorted ei-
ther to a pillow shape (Fig. 18.17c) or to a barrel shape (Fig. 18.17b).
An image is free of distortion at a fixed position of the pupil when the
principal-ray angles of inclination ' and ' 0, e.g. in Fig. 18.11, fulfill
the condition tan ' 0= tan ' D const (tangent condition; see Com-
ment C18.3). Often, however, the position of the pupil is not fixed;
it varies for different zones of the objective. Then the distortion can
no longer be corrected. An example of this situation can be seen in
Fig. 18.18.

18.8 Chromatic Aberration

The focal length of a lens depends not only on the shape of the lens
surfaces, but also on the index of refraction n of the lens material. The
focal length f is proportional to the reciprocal of (n � 1) (compare
Eq. (16.12)). All materials which can be used to fabricate lenses,
i.e. glasses, crystals and plastics, exhibit dispersion; in general, their
index of refraction increases within the visible spectral region as the
wavelength decreases (cf. e.g. Table 16.2). Therefore, the lens has
a different focal length for each wavelength.

The focal length determines both the position of the image and also its size.
Therefore, there is a chromatic aberration both in the image position as
well as in its reproduction scale. (In addition, the other aberrations acquire
a dependence on the wavelength which is of practical significance.)
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Figure 18.19 A demonstration of the chromatic aberrations of the image po-
sition and its reproduction scale for image formation by thin lenses. Only
with a thin lens is the position of the principal planes practically independent
of the wavelength. Therefore, only for a thin lens does the same position
of the focal point imply equality of the focal lengths and of the reproduc-
tion scale which they determine (the angle of inclination ˛ of the screen is
about 10ı) (Video 18.3).

Video 18.3:
“Chromatic aberration”
http://tiny.cc/seggoy
The video shows a special
example: An arrow formed
from holes illuminated from
behind is projected onto the
wall of the lecture room us-
ing a glass lens with a strong
dispersion. The holes are illu-
minated by an arc lamp with
a condenser lens and an aux-
iliary lens, giving a weakly
convergent beam, so that the
slender light beams from the
arrowhead and from its tail
strike only the rim zone of
the lens, while those from
the middle of the arrow strike
only the center zone of the
lens. The image, which is
upside down, shows colored
borders for the arrowhead
and tail. The dispersion be-
tween the refraction of red
and blue light, which gives
rise to chromatic aberra-
tions, increases near the rim
of the lens. Red light (with
a longer wavelength) is less
strongly refracted than blue
light (with a shorter wave-
length). Slipping a red filter
into the optical path allows us
to compare monochromatic
and polychromatic image for-
mation. We can see that the
position of the red borders
fits onto those of the full red
light disks.

Both of these chromatic aberrations can be readily demonstrated using
a simple eyeglass lens. We use the lens to image a slit onto a distant screen
which can be slid along the direction of the light beam, and put alternately
a red or a blue filter in front of the slit. In order to focus the blue image,
the screen must be placed considerably closer to the lens than for the red
image: “chromatic aberration of the image position”. The blue image is
also about seven-eighths the size of the red image: “chromatic aberration
of the image size” (i.e. of the reproduction scale). If the screen is tilted
to the side (see Fig. 18.19), we see a broad, colored band instead of the
image of the slit. The non-physicist would be inclined to call this band
a ‘spectrum’, just like a rainbow. The physicist can admit of only a remote
similarity in both cases.

As with all imaging errors, chromatic aberrations can be reduced but
not eliminated. For this reduction, called “achromatization”, one uses
in practice at least two lenses. For the achromatization of the image
position, convex and concave lenses made of different materials are
required. To achromatize the reproduction scale, two convex lenses
made of the same type of glass can be used with parallel light beams.
Their axes must coincide and their spacing should be equal to half
the sum of their focal lengths. Achromatic lenses consisting of two
lenses of the same type of glass can be found for example in the ocu-
lar lenses of binoculars (Fig. 18.20): They allow parallel light beams
of different wavelengths to pass into the eye between the two focal
points F0 with a parallel displacement relative to one another. A par-
allel displacement (just as in the mirror prisms in Sect. 16.11) leaves
the image on the focal plane of the eye unchanged.

2y

blue H'

F' blue

F' red

red

red
blue φ'

Figure 18.20 A demonstration of an achromatic ocular using two lenses made of the same
type of glass. The second lens makes the initially divergent rays of different wavelengths
parallel. This allows them to be focussed together on the focal plane of the eye.

http://tiny.cc/seggoy
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18.9 Achievements of Optical
Technology. The SCHMIDT Mirror

Optical technology has made it possible to reduce lens aberrations,
sometimes individually, sometimes in combination. The main tool
for this purpose is the use of compound lenses. These consist of
a series of individual lenses with spherical surfaces and a common
optical axis. Non-spherical surfaces are relatively seldom used, for
example parabolic mirrors for telescopes and searchlights, or non-
spherical lenses as condensers for projection apparatus.

Every lens and every mirror must be precisely adapted to its special
use. The objective lens of a microscope must meet quite different
requirements from those of a telescope objective. A magnifying lens
used for reading a scale has a different construction from that of
a magnifying glass for examining photographs, and so forth. Gen-
eral methods for reducing the individual lens aberrations have long
been known, but the optimal solution of each special problem neces-
sitates in general a numerical calculation which makes skillful use
of the various types of glass available. Technology has made ad-
mirable progress in this field and has thereby provided considerable
support for research. A particular success was for example the devel-
opment of the coma-free SCHMIDT mirror (BERNHARD VOLDEMAR

SCHMIDT, 1879–1935). The principle of this important invention is
explained in Fig. 18.21 and in Comment C18.4.

The development of objectives with continuously-variable focal lengths
(“zoom lenses”) is also remarkable. They consist of at least two individual
lenses, which can be displaced by differing amounts relative to the image
plane. Jokingly called rubber lenses, they can change their focal lengths
and reproduction scales continuously by up to a factor of 5 (for exam-
ple during the filming of a motion picture), with a focal ratio of nearly 1:1
(see Sect. 18.15).

M S SA

C C

a b

Figure 18.21 The principle of the coma-free SCHMIDT mirror. Part a: At the
center of curvature C of a concave spherical mirrorM is the aperture A which
serves as entrance and exit pupil. The image points lie on the spherical surface
S whose center of curvature is at C. They have no chromatic aberrations, but
when the diameter of the aperture A is large, there is an undercorrection of
the spherical aberration of the mirror. Part b: SCHMIDT compensated this by
a spherical overcorrection using a glass plateC18.4,

C18.4. B.V. SCHMIDT, who
lost his right hand at age 11
in an accident while exper-
imenting with gunpowder,
invented the telescope which
bears his name at the Ham-
burg Observatory in 1931.
He developed the correction
plate (lens) and at the same
time a process for grinding
the lens. He used the lens as
the lid of an evacuated vessel
(the vacuum is on the right
side in Fig. 18.21, Part b), in
order to grind it to a concave
shape while it was elastically
distorted by air pressure, thus
producing the “peculiar” pro-
file shown in Fig. 18.21. His
invention made it possible for
the first time for astronomers
to obtain wide-angle celestial
photographs.

whose special profile is
sketched here (greatly exaggerated). After the spherical aberration had been
corrected in this manner, opening angle ratios of 1:1 were readily attained.
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18.10 Increasing the Angle of Vision
with a Magnifying Glass or
a Telescope

In considering the eye, we may continue to employ the analogy with
a photographic camera for the time being. The eye can accommo-
date, i.e. it can produce sharply-focussed images of objects at various
distances. In a camera, for this purpose the distance between the rigid
glass lens and the image plane (detector array, film or photographic
plate) is varied. The eye, in contrast, changes the curvature of its
lens surfaces by muscular contraction, and thereby changes the focal
length f 0 of its elastically-deformable lens.

The range of accommodation for a normal eye stretches from an ar-
bitrarily great distance (“infinity”) down to the “near-point distance”.
This closest distance for sharp focus, requiring the strongest accom-
modation, can be below 10 cm in children. For adults between age
20 and 40, one finds near-point distances of around 20–25 cm, and so
forth. – However, very strong accommodation is uncomfortable. For
writing, reading and fine handwork, in general a distance of around
25 cm is preferred. This preferred working distance is called (rather
unfortunately) the “distance of most distinct vision”.

An important but complicated process is three-dimensional vision,
whether directly, in a mirror, or through a water surface. Its essential
aspects are dealt with in physiology.

In describing even elementary optical observations, one fact must
be kept firmly in mind: A single object point, alone in the field of
view, can be physically localized only by two eyes.C18.5 C18.5. See also Sect. 1.4 in

Vol. 1: The stereoscope.
One eye can

always determine only the direction in an unknown environment in
which we see such an object point L, but never its distance (compare
Fig. 18.22).

With the aid of Fig. 18.23, we define the angle of vision. The angle of
vision must not fall below a certain minimum value (about 1minute
of arc) for well-known reasons (Sect. 17.3); otherwise, the eye can
no longer resolve the point or separate it from its surroundings.

How can we increase the angle of vision, how can we make pre-
viously indiscernible details in an object visible? Answer: We ap-
proach the object more closely. How closely can we approach it?
Normally down to about 25 cm, the distance of distinct vision, with
comfort. At still closer distances, persons with normal vision find ac-
commodation difficult, and without accommodation, they would see
only an unfocussed image. However, the curvature of the eyeball can
be assisted by placing a convex lens in front of it (Fig. 18.24). Then
the observer can approach the object more closely, e.g. to 12 cm,
without any effort of accommodation, and still see a sharp image.
This closer approach roughly doubles the angle of vision in compar-
ison to the distance of distinct vision ('wi='w=o � 2). Or, in other
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N

L

L'

L''

Figure 18.22 An object point L under water is viewed by two eyes and ap-
pears to be raised vertically to the point L0. This cannot be understood in
terms of this construction which is carried out with only one eye. That would
lead us to an object point L00 which appears to be shifted towards the observer.
Instead, we have to carry out the construction separately for both eyes. Then
the two planes of incidence intersect in the vertical (normal) line N, and L0
also lies on this normal as the point of intersection of the two axes of the light
beams.

Object

2y 2φw/o

Figure 18.23 The definition of the angle of vision 2' without any instru-
ments or visual aids, denoted by 2'w=o

Object

2y 2φwi

f

Figure 18.24 Increasing the angle of vision (to 2'wi) by using a magnify-
ing glass or loupe. Instead of using the image formed by the lens in the iris
opening of the eye, the opening itself serves to good approximation as the en-
trance and exit pupil. The differences between the principal and nodal points
are neglected here. A more detailed treatment of the action of a magnifying
glass would go beyond the framework of this book.

words, we have placed a magnifying glass (or loupe) in front of the
eye. A magnifying lens with a still stronger curvature would per-
mit approaching the object to 5 cm, then its magnification is about
5x, and so forth. The purpose of a magnifying glass is thus to in-
crease the angle of vision by permitting a closer approach of the eye
to the object. The magnification of the lens is here not a constant in
the physical sense. It increases with the age of its user owing to the
gradually decreasing ability of the lens of the eye to accommodate.

Experienced observers always use a magnifying glass with their eye
relaxed, that is accommodated to ‘infinity’. They place the object
in the focal plane of the magnifying glass (Fig. 18.24). Then the
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2φw/o
2φwi

Image
afI

Figure 18.25 Increasing the angle of vision by using a single-lens telescope,
here as a simple sketch showing only the principal rays. One can imagine
a frosted glass screen in the image plane; it is however not necessary. (Nu-
merical example: fI D 4m, distance of the eye from the image a � 20 cm,
magnification fI=a D 20x)

light beams coming from the individual object points enter the eye as
parallel beams. The lens of the eye refracts the beams so that they
are convergent and focusses their narrowest points of convergence as
image points onto the retina of the eye.

Often, it is not possible to approach the object more closely (an air-
plane in the air, the moon, etc.). Then one can use an objective lens to
project an image of the object. The image is of course much smaller
than the object itself, but the observer can approach it to within about
25 cm (the distance of distinct vision) and thus increase the angle of
vision. This is the principle of the single-lens telescope shown in
Fig. 18.25. By adding a magnifying glass in front of the eye of the
observer, the approach can be made much closer and the angle of vi-
sion still larger. This is a two-lens telescope as shown in Fig. 18.26.
The objective and the magnifying glass (“ocular”) are connected by
a tube (which holds them fixed and shields unwanted stray light from
the surroundings). The telescope thus also simply serves to increase
the angle of vision. The magnification or “power” x of a telescope is
defined as the ratio “angle of vision with” over “angle of vision with-
out” the instrument (its measurement procedure will be described in
Sect. 18.13).

2φw/o

2φwiImage
1

2

EP

I
B

fI +  fII

B'II
~fII

AP

Figure 18.26 Adding a magnifying glass as ocular (lens II, focal length fII)
allows the eye of the observer to be brought closer to the image and thereby
increases the angle of vision still further. On the object side, we again show
only the principal rays which come from the rim of the object; on the image
side, however, the corresponding light beams are drawn in. The objective
lens bezel serves as entrance pupil EP, and its real image B0, projected by
the ocular, is the exit pupil AP. We can imagine this image to just fill the
opening of the iris in the observer’s eye, as in Fig. 18.24. The eye should
be relaxed when using a magnifying glass or ocular, that is the entering light
beams should be parallel. (The rays 1 and 2 show that B0 is an image of B.)
The magnification is roughly equal to the ratio of the focal lengths: x ' fI=fII
(see Sect. 18.13).
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The type of telescope sketched in Fig. 18.26 was suggested in 1611
by JOHANNES KEPLER (1571–1630), and is called an “astronomi-
cal” telescope. it shows an upside-down image of the object. There
are various methods for obtaining an upright image, for example ad-
ditional lenses or mirror prisms (Fig. 16.35) between the objective
and the ocular.

18.11 Increasing the Angle of Vision
with a Projector or a Microscope

The generally well-known optical instruments ‘projector’ and ‘mi-
croscope’ serve – like the telescope and the magnifying glass – to
increase the angle of vision. The two instruments are essentially
similar in principle. In both, the object is placed just outside the
object-side focal point of an objective lens. This lens then projects
a strongly enlarged image of the object. The image can be observed
on a screen (real image).

When it is sufficiently large, the image can be clearly observed with
a sufficiently large angle of vision even by observers located some
distance away; this is the function of a projector (slides, motion pic-
tures!).

The microscope, in contrast, is intended for individual observations
of small objects. The image projected by the objective lens is at
the upper end of the microscope tube (“tubus”). The observer uses
the ocular (a magnifying glass) to approach the image closely and
thus observes it under a large angle of vision. The magnification or
“power” is defined for the microscope again as the ratio “angle of
vision with” over “angle of vision without” the instrument.

In order to measure the magnification of a microscope, we lay a millimeter
ruler on the object table of the microscope and allow a piece of it to pro-
trude over one side, e.g. to the right. Then we look through the microscope
with the left eye, while the right eye looks at the ruler directly. We can
readily bring the two fields of vision together. We see for example 1mm
through the microscope over 130mm on the directly-observed ruler. Then
the magnification is 130x.

18.12 Resolving Power of the
Microscope. The Numerical
Aperture

The discussion in Sect. 17.3 on the resolving power of lenses holds
equally well for the microscope as for the eye and the telescope. The
angular spacing of two still separately visible object points – called
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Lens diameter BObject
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2ω

2y 2y'

2ω'

2φ'2φ

a b

Figure 18.27 The resolving power of the microscope. Here, the same conditions apply as in
Sect. 17.3 for the derivation of Eq. (17.1) for the eye and the telescope. On the right side of
the lens, the light beams have in reality nearly parallel boundaries: The object points on the
left side are nearly in the focal plane of the objective. In the drawing, for clarity the object
distance a is shown overly large and the image distance b overly small. Furthermore, in the
sketch, the indices of refraction n and n0 on the object side and the image side are shown as
being equal. The drawing thus applies to a microscope without any immersion fluid.

2' in Fig. 18.27 – must not be smaller than the angle ˛ calculated
from the equation

sin˛ D �

B
: (16.23)

Then

sin 2'min D �

B
or, from Fig. 18.27;

2y0

b
D �

B
: (18.3)

However, in the case of the microscope, the smallest resolvable angle
2'min is less interesting than the smallest separable spacing of two
object points; that is, in Fig. 18.27 the distance 2ymin, measured in
units of length.

For its calculation, we read off from Fig. 18.27 for the image-side
(small) opening angle ! 0 the following relation:

sin! 0 � ! 0 � B

2b
: (18.4)

Furthermore, in the microscope, the sine condition must be fulfilled,
i.e. the image-side opening angle ! 0 must be related to the object-side
opening angle ! by the equation

n sin!

n0 sin! 0 D 2y0

2y
: (18.2)

Equations (18.2), (18.3) and (18.4) can be combined to yield

2ymin D �

2n sin!
; (18.5)

in the case that the space between the object and the microscope ob-
jective is filled with an “immersion fluid” (water or oil) with the index
of refraction n, and n0 D 1.
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This shows that the resolving power of a microscope is determined by
two quantities: First, by the wavelength � of the light, and second by
a quantity which characterizes the objective, (NA D n sin!), called
the “numerical aperture” . In it, ! is the opening angle of the light
beams accepted by the objective and n is the index of refraction of
the material (air or immersion fluid) between the objective and the
object (for example stained thin sections of biological material).

Optical technology has been able to attain values of the numerical
aperture NA D n sin! using immersion fluids of up to about 1.4
(! D 70ı, sin! D 0:94, n D 1:5). The average wavelength � of
visible light is around 600 nm. With these values, from Eq. (18.5) we
find

2ymin D 600 nm

2 � 1:4 � 210 nm D 0:21�m :

The smallest spacing of two object points which can still be re-
solved by high-quality microscopes is thus only slightly less than
half the wavelength of the light used.C18.6C18.6. There are more recent

developments which per-
mit the size of the resolving
power to be reduced below
the diffraction limit. These
include the optical scanning
near-field microscope and
the fluorescence microscope
(e.g. the STED microscope
developed by S. HELL),
with which resolving powers
(smallest resolvable spacing)
of typically less than 30 nm
can be attained.

The order of magni-
tude corresponds to our experience in mechanics. There (Vol. 1,
Figs. 12.12 ff.), we produced shadow images of partially-immersed
objects using water surface waves. For that simplest type of image
formation, we found that the objects must be no smaller than roughly
the wavelength of the water waves (cf. Vol. 1, Fig. 12.20).

Later, we compare Eq. (18.5) to the coherence condition in Fig. 20.4, in
which n D 1 is assumed. This will give the equation an intuitively clear
interpretation!

Microscopic image formation at high resolution requires that the
object-side light beams have a large opening angle !. This can
be seen from the denominator in Eq. (18.5). For light-emitting ob-
jects (primary light sources) such as a glowing filament, the usable
opening angle is limited only by the structural characteristics of the
object. In the case of illuminated objects (secondary light sources),
in contrast, for example the usual stained thin sections observed for
biomedical applications, the opening angle is determined by the type
of illumination. It is provided by illumination lenses, called “con-
denser lenses”.C18.7C18.7. The function of a con-

denser lens was already
explained in Fig. 18.12.

Figure 18.28 shows two types of construction.
At the left, the light passes through the object (a thin section) and
into the objective, and thence to the eye of the observer. The object
is viewed against a bright background, or with bright-field illumina-
tion. At the right, in contrast, the light for illumination of the object
is kept out of the objective (by total reflection at the surface of the
cover glass). Only the light scattered or refracted by the thin section
(three small arrows!) can enter the objective. The object then appears
bright against a dark background, or in dark-field illumination.

We are already familiar with bright-field and dark-field illumination
from everyday life. We use for example lace curtains with large
openings in front of a bright window; this provides bright-field il-
lumination. A fine Brussels lace, on the other hand, mounted on
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Cover glass

Slide Slide
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objective
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From the lamp

J

H

Figure 18.28 Two condenser lens systems. Both provide an extended light
source in their focal planes, and this coincides with the plane of the object.
The extended light source is obtained by using a convergent lens which im-
ages a (pointlike) light source in its entrance pupil. Left: A bright-field
condenser. Right: A dark-field condenser with a twofold reflection at the
inside surface of the cover glass. H is a cavity, J the immersion fluid (water
or oil) for avoiding total reflection at the upper surface of the condenser.

Real images
of the lamps

Free object
distance

s

a'
a'

B
2ωx'

Figure 18.29 Measurement of the numerical aperture (sin!) of a microscope
objective. A very fine circular opening, illuminated by two lamps, is laid on
the object table of the microscope. The lines drawn through the small opening
B are the axes of very narrow light beams. The table is moved towards the
objective until one sees a sharp image of the opening with the ocular (that is,
the free object distance as measured from the front surface of the objective is
adjusted). Then one looks into the tubus without the ocular and increases the
distance x of the two lamps until their real images a0, which lie practically in
the focal plane of the objective, vanish. Now we have

sin! D x
2

�
s2 C x2

4

��1=2 � x
2s :

dark, non-reflecting velvet so that the light is kept from the eye of the
observer, provides dark-field illumination.

Because of the fundamental importance of the numerical aperture of a mi-
croscope objective, a method for measuring it is described in Fig. 18.29.

Not

“Not the arrangement of
the lenses, but rather the
bounding of the light beams
leads us to a deeper under-
standing of the microscope
and its resolving power”.

the arrangement of the lenses, but rather the bounding of the
light beams leads us to a deeper understanding of the microscope and
its resolving power. That is the essential content of this section.
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18.13 Telescope Systems

In our description of optical instruments up to now, there was no
place for a particularly simple telescope with a modest magnification
and an upright image, known under the name terrestrial telescope or
Galilean telescope and indispensable for mariners. For this reason,
we add here a second description of telescope designs, applicable to
all types.

In the usual applications of the KEPLER telescope, the object distance
is very large compared to the focal length of the objective. Then the
image of a distant object point lies in the focal plane of the objec-
tive. The object-side focal plane of the ocular is coplanar with it
(cf. Fig. 18.26). In this manner, an optical path is obtained which is
termed telescopic or “afocal”: From an object point, a parallel, col-
limated light beam passes to the objective, and a parallel beam again
emerges from the ocular, however with a smaller diameter. This is
shown in the demonstration experiment illustrated by Fig. 18.30a for
an object point lying far away on the optical axis.

To continue this demonstration experiment, we let the object point
oscillate from above to below the optical axis (Fig. 18.30b). This
motion allows us to discern the position of the exit pupil with great
clarity, i.e. the common intersection of all the light beams on the
image side. The beams maintain their parallel boundaries before
and after passing through the telescope, but – and this is the deci-
sive point – their angles of inclination relative to the optical axis are
different before and after passing through the telescope. As before,
in Fig. 18.26, we refer to these angles of inclination as the angles

Entrance pupils Exit pupilsReal images
of the object point

fI fII

φw/o φwi

a

b

Figure 18.30 A demonstration experiment showing the ‘telescopic’ optical path
in the KEPLER telescope for distant object points (in Part a, on the optical axis;
in Part b, below it). (Threefold magnification of the angle of vision, cylindrical
lenses). The vertices of the principal-ray angles of inclination 'w=o and 'wi lie at
the centers of the entrance and exit pupils. The image is inverted. The optical
setup is similar to that in Fig. 18.10. It permits us to periodically vary the angle of
inclination 'w=o of the parallel light beam incident from the left. The position and
the formation of the exit pupil can be clearly seen. To mark the boundary rays, it
is advisable to place a red filter in front of the upper rim of the entrance pupil, and
a green filter in front of its lower rim.
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s = D · φw/o s' = D' · φwi

Figure 18.31 The derivation of the relation between the angular magnifica-
tion and the change in the diameter D;D0 of the light beam

of vision 'wi and 'w=o (with and without the telescope), and obtain
a quantitative expression for the magnification:

Magnification x D 'wi

'w=o
D Beam diameter before the telescope

Beam diameter after the telescope

D fI
fII
: (18.6)

The fact which we have obtained experimentally here can be readily under-
stood: Fig. 18.31 repeats schematically the demonstration of Fig. 18.30b,
but now only the beam boundary rays before and after the telescope are
drawn in. Lines a and b, perpendicular to the rays, have been added
to mark the wavefronts. Then we can imagine the incident beam to be
tipped by a small angle into the position shown by dashed lines. a is con-
verted to a0 and b to b0. In this process, the optical paths s and s0 must
remain equal (sine condition (18.2), see also Fig. 18.16). Then we have
D0 � 'wi D D � 'w=o. From this, as can readily be seen in Figs. 18.30 and
18.32, we obtain 'wi='w=o D fI=fII.

According to this analysis, in order to construct a telescope, we need
only set up a telescopic optical path. This can be accomplished
with other optical arrangements, also, for example with one con-
verging lens and one diverging lens. We thus can build a terres-
trial telescope, also called the GALILEAN telescope (1609, GALILEO

GALILEI, 1564–1642). The demonstration experiment in Fig. 18.32
shows the path of a light beam for one distant object point on the
optical axis and one point below the axis.

Knowledge of the telescopic optical path leads us to a simple proce-
dure for measuring the telescopic magnification or “power”; we need
only measure the diameter of a collimated light beam before and after
it passes through the telescope and then we can apply Eq. (18.6).

The diameters of the light beams are the same as those of the entrance and
the exit pupils. With a properly-constructed telescope, the entrance pupil
is practically always the bezel of the objective lens. The exit pupil, the
image of the objective bezel as projected by the ocular, is accessible only
in the KEPLER telescope and its variants (e.g. prism binoculars). For the
terrestrial telescope, it is a virtual image located inside the telescope tube,
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Entrance pupils Exit pupils

fI fII

φw/o

φwi

Figure 18.32 A demonstration experiment showing the ‘telescopic’ optical
path in the GALILEAN telescope for one distant object point on the optical
axis and one point below the axis (magnification of the angle of vision 2.2x).
The exit pupil is a virtual image of the objective-lens bezel, projected by the
ocular. Between the objective and the ocular, there is, unlike the KEPLER

telescope, no image of the object point. The terrestrial telescope is con-
structed to give only moderate magnification (around 2� 6 x, upright image).
Its main advantage is the limited number of glass surfaces and the resulting
small losses in light intensity. This type of telescope is today still unmatched
as a “night glass”.C18.8C18.8. However, among the

modern “night glasses” there
are also binoculars and tele-
scopes with so-called residual
light amplifiers, which make
use of the infrared radiation
present even on the darkest
night.

between the objective and the ocular (cf. Fig. 18.32). We hold a KEPLER

telescope with its objective pointed to the sky or to a bright window, and
look into the ocular from a distance of around 30 cm. Then we see the exit
pupil as a small, bright disk, seemingly suspended in front of the ocular.
Its diameter can be measured with a millimeter ruler. The diameter of the
objective lens, divided by this exit pupil diameter, yields the magnification
of the telescope. With a terrestrial telescope, we must instead carry out
the demonstration experiment as shown in Fig. 18.32 and determine the
diameters of the beams.

18.14 The Field of View of Optical
Instruments

Preliminary remark: When the unaided eye is used, often the field
of view is limited by some sort of obstacles, for example the frame
of a window. We view very small fields of view with steady eyes,
but when the field of view encompasses several degrees or more, our
eyes are moving: the eyes glance, they carry out (unconscious) jerky
rotations in their sockets and fix individual regions within the field of
view during brief pauses. These motions can be assisted by rotations
and shifts of the entire head, but in that case, we see the separate
regions within the field of view one after the other. That makes it dif-
ficult to maintain an overview. Looking through a keyhole is a good
example.

In optical instruments, the objective and the ocular are without doubt
the essential lenses. For practical construction of the instruments,
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however, they are not sufficient. Without additional lenses, the field
of view is too restricted. The required auxiliary lenses are called con-
densers or field lenses. Examples “Examples are more in-

structive than verbose
explanations of the general
kind”.

are more instructive than verbose
explanations of the general kind.

First of all, the projector, with which slides, transparencies, or film,
that is typical “secondary light sources”, are imaged on a (usually
large) screen1:

Figure 18.33, top part, shows an incorrectly constructed projector
with a light source (arc-lamp crater), slide and the objective which
forms the image. On the screen, we see only a small section from
the center of the slide. The field of view is much too small (and its
boundaries are not focussed). The reason: Here, the bezel of the ob-
jective acts as a field of view aperture. It allows only the light from
a limited angular range ˛ to pass from the lamp to the screen. The
ray r has no physical significance, since no light beam is propagating
in its direction. Therefore, the outer parts of the slide cannot be im-
aged on the screen. This can be easily corrected (Fig. 18.33, bottom):
We place a large lens immediately in front of the slide, a condenser,
and use it to image the light source onto the opening defined by the
objective. Then all the light which passes through the slide will also
pass through the objective.C18.9 C18.9. The essential char-

acteristic of a slide or trans-
parency, which was presup-
posed here, is that it allows
light to pass through without
deflecting (“scattering”) it.
For an image which is ap-
plied to a plate of matte glass,
the field of view is not lim-
ited by incorrect illumination,
since the light is scattered in
all directions. It is simply less
bright. See the footnote in
this section.

The slide thus appears in its entirety
on the screen; its edges are sharply focussed. Now, the mounting
frame of the slide acts as the field of view aperture. Its image limits
the field of view as an “exit window” and has the correct orientation,
i.e. in the plane of the image on the screen.

In general: Just as the aperture (or its image) limits the opening an-
gles ! and ! 0 as a pupil, so do field-of-view diaphragms (or their
images) limit the angles of inclination of the principal rays ' and ' 0
as exit windows.

The condenser must be matched to the distance between the objective
and the slide. For projection with varying image sizes and distances
to the screen, one requires objectives of different focal lengths. For
each one of them, a matching condenser must be available.

In a precisely corresponding manner, we can use condenser lenses in
a microscope and in a KEPLER telescope. As a rule, they are com-
bined within a short tubus with the eyepiece lens. This combination
is also referred to as an ocular.

In contrast to the usual descriptions, one seldom observes the image
of a microscope or a telescope with a steady eye. Frequently, turning
of the eyeball and shifts of the entire head are necessary. The rea-
son is that the angular region of greatest visual acuity includes only
a few degrees of arc. It is symmetric around the “fovea centralis”, the

1 For demonstration purposes, among other reasons, one can approximate a slide
to a primary light source by putting it onto a surface which is emitting light in all
directions. This could be e.g. a glass plate which is either itself fluorescent (pri-
mary light source) or a scatterer in the form of ‘frosted’ or ‘matte’ glass (secondary
light source).
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Arc-lamp
crater as

entrance pupil

Image of the
crater as entrance

and exit pupils

Image of the
arc-lamp crater

Arc lamps Slides Objectives
Screens

Condenser

Exit pupil

r
α

α

Figure 18.33 Top: An incorrectly constructed slide projector. The objective
bezel as aperture limits the angle of vision ˛ D 2'max, i.e. the largest usable
angle between two principal rays on the object side. The apex of this angle
lies as always at the center of the entrance pupil (compare Fig. 18.12). – Bot-
tom: A correctly constructed slide projector. The condenser forms an image
of the light source (arc-lamp crater) at the objective (the path of a partial beam
which forms the image, and its opening angle !, can be seen in Fig. 18.12).
The mount of the slide is the limiting aperture for the field of view. From
its edges, principal rays with a large field-of-view angle ˛ D 2'max lead to
the center of the entrance pupil which plays a decisive role in the image for-
mation. In the example drawn, this entrance pupil covers only a small central
spot on the objective lens which projects the image. In lecture rooms for up to
500 students, a 5-ampere arc lamp is quite sufficient. Using incandescent (fil-
ament) lamps, one can in fact use the entire diameter of the objective, but they
add an unnecessary complication when projecting physical demonstrations;
the same applies to condensers whose front surface is not freely accessible.

Lens bezel as aperture
for the field of view

Entrance
pupil

α = 2φmax

Figure 18.34 At low magnifications, the exit pupil of a terrestrial telescope
(Fig. 18.32) has a larger diameter than the entrance pupil of a human eye. The
telescope and eye together make use of an entrance pupil which lies within
the skull of the observer. Its center is, as always, the point of intersection of
the object-side principal rays. The largest usable angle of inclination of the
principal rays determines the angle of the field of view ˛ D 2'max. The bezel
of the objective acts as diaphragm for the field of view. When ˛ is exceeded,
the cross-section of the beam takes on the shape of a lune (a figure bounded
by two circular segments of different radii). The image fades away towards
its edges (vignetting).
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central region of the retina with the highest density of receptors. The
visual acuity decreases within ˙ 2ı to half its maximum value and
within ˙ 10ı to only one-fifth of its maximum value. These motions
of the eye and the head have to be considered when determining the
field of view.

In using a KEPLER telescope, one usually moves the eye in front
of the exit pupil of the telescope as if looking through a keyhole
(Figs. 18.26, 18.30). With a terrestrial telescope, the eye makes use of
only a portion of the objective surface for each “instantaneous obser-
vation” (action or moment of time!). This is illustrated by Fig. 18.34
for two extreme positions of the eye.

18.15 Imaging of Three-Dimensional
Objects and Depth of Field

In our description of the process of image formation up to now, an
image point was identified with the point where the light beam has
its smallest cross-section (the ‘waist’). This corresponds to the usual
practice, but is by no means always generally correct. Think for ex-
ample of the pinhole camera, known to every child (Fig. 18.35). It
makes use of narrow light beams without any constriction on the im-
age side. Nevertheless, it yields good images (which are completely
free of distortion and are planar). This is rather surprising. The image
points, i.e. the diffraction pattern of the opening, is under similar cir-
cumstances 20 times larger in a pinhole camera with a 1mm opening
than with an objective lens of 20mm diameter (Eq. (16.23)). But
an artist can also paint very satisfying pictures using broad brush
strokes. This is due to psychological processes and does not be-
long in this section (see also Sect. 15.2). For us at this point, the
often-repeated experience suffices: High-quality images which are
satisfactory for our eyes are by no means identical to images of the
highest resolution.

Even the most technically perfect lenses can form only an image of
an object plane on an image plane. These two planes must be per-
pendicular to the optical axis. Nevertheless, in practice one often
wants to image three-dimensional objects onto an image plane. As
is well known, usually the resulting images are quite adequate: The
eye, binoculars and cameras in general have a considerable depth of
focus or “depth of field”. That is however due only to a peculiarity of
our eyes as mentioned above; the eye does not always treat just the
narrowest constriction of a light beam as an image point.

Figure 18.35 A pin-
hole camera Object 2y Object 2y'

Matte glass plate
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a b

P P'B
F D

f b–f

Figure 18.36 The calculation of the near-point distance amin of an objective
which is corrected to “infinity” (an “infinitely long” object distance). We have

D

B
D b � f

b
;

1

b
D 1

f
� 1

a
:

The combination yields the general form of Eq. (18.7).C18.11

C18.11. The first equation,
D
B D b�f

b , can be derived di-
rectly by comparing the two
similar triangles on the right
of the lens (with a common
baseline P � P0, altitudes B=2
and D=2, and widths b and
.b � f /); set the ratios of their
altitudes and of their widths
equal.
The second equation,
1
b D 1

f � 1
a , is the “imaging

formula” which also holds
generally for thin lenses. It
was derived in Sect. 16.7 (as
Eq. (16.13)).
Multiplying this second equa-
tion by fb and reordering the
terms gives fb=a D b � f .
Inserting this into the first
equation yields the general
form of Eq. (18.7).

The objective lenses of photographic apparatus and telescopes are cor-
rected for an “infinitely” distant object plane. Thus, object points “at
infinity” are imaged as points on the image plane (in this case the focal
plane; Fig. 18.36). At the same time, all the object points which are closer
to the lens appear in the image plane not as points, but rather as small
“disks”. Their diameterD increases as the distance a from the object point
to the lens becomes smaller. Finally, at the near point distance amin, it
reaches a limiting value Dmax which is no longer acceptable to the eye. It
is given by

amin D fB

Dmax
D f 2

NfDmax
: (18.7)

(NfDŒfocal length f=lens diameter B] is the focal ratio of the lens.C18.10

C18.10. The focal ratio Nf D
f=B or relative aperture of
a lens is also called the “f-
stop”, e.g. of a camera lens.
Equation (18.7) is a spe-
cial case (for the near-point
distance amin) of a general
equation which applies
to thin lenses. Compare
Fig. 18.36 and Comment
C18.11.

The
derivation is shown in Fig. 18.36; see also Comment C18.11.)
The near-point distance amin is thus proportional to the square of the focal
length at a given focal ratio Nf.
Numerical example: For an image size of 24mm�36mm, the empirically-
determined limiting value is Dmax D 50�m. At a focal ratio of Nf D 5
and a focal length of f D 2 cm, we find amin D 1:6m. This means that all
the object points which are more than 1.6m from the lens will be imaged
simultaneously with an acuity which is satisfactory for the eye. Or put
differently: The “depth of focus” in this example extends from a minimum
distance of 1.6m to infinity.
Equation (18.7) gives the physical rationale for two well-known facts:
1. Nature has evolved the eyes of the largest mammals (elephants and
whales) to be not much larger than those of humans.
2. The development of photographic technology led to the production of
35mm cameras.

18.16 Perspective

Planar images of three-dimensional objects always have a certain ge-
ometrical perspective; that is, they exhibit a certain ratio between
the size and the distance of objects which are behind one another. An
artist may reproduce such a perspective by using a central projection.
This is done as shown in Fig. 18.37: The artist places a transparent
screen W between the objects and one eye, and notes the points of
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W

B

Figure 18.37 A central projection for representing three-dimensional objects
on a flat image plane W (B is the eye of the artist)

intersection of the lines of sight to various objects. The artist thus
employs the pivotal point of the eye as the center of projection.

For image formation using a lens, the lens is placed between the ob-
jects and the screen. This is also a central projection, but with two
centers of projection. They lie at the centers of the entrance and the
exit pupils. Therefore, the boundaries of the light beams are deci-
sive for perspective, also. We will document this with an impressive
demonstration experiment.

In Fig. 18.38, two brightly gleaming matte-glass windows of the
same size are placed at different distances from the lens. One of
these windows is in fact somewhat in front, the other somewhat be-
hind the plane of the drawing. The back window is marked with H,
the front window with V. The lens has a large diameter, but a narrow
aperture and a thin light beam are used. As a result, both windows
appear equally sharp on the screen, adjacent to each other. During
the experiment, the setup remains unchanged (Fig. 18.38a); only the
aperture is moved along the optical axis. The experiment is carried
out in three steps:

1. The aperture is set up immediately in front of the lens (Fig. 18.38b).
Both pupils are practically contiguous with the center of the lens;
it serves as the center of projection. The more distant window H
appears smaller on the screen than the closer window V.

2. The aperture is shifted to the image-side focal pointF0 (Fig. 18.38c).
This moves the object-side center of projection (the center of the en-
trance pupil) to the left towards ‘infinity’: The two images of H and
V have now become the same size on the screen.

Figure 18.38c shows the limiting case of an object-side telecentric optical
path. This is often used; it is for example indispensable in a measuring
microscope.

3. In Fig. 18.38d, the aperture is shifted on the image side to beyond
the focal point F0. Then the object-side center of projection (the cen-
ter of the entrance pupil) moves closer to the window H than to the
window V. The result is that the image of H becomes larger (!) on
the screen than the image of V; the perspective is inverted.

We can thus vary the geometrical perspective of an image over a large
range simply by shifting an aperture which limits the boundaries of
a light beam. So much for the demonstration experiment.

Pictures painted by an artist are supposed to be viewed from the same
center of projection as that used by the artist. One should use only
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Figure 18.38 The influence of the light-beam boundaries on perspective. Part a: The experimental setup. One
of the windows (V) is to be thought of as being some distance in front of the plane of the page, the other
(H) somewhat behind it. Parts b–d: The size ratio between H and V is changed by shifting the aperture which
limits the light beam boundaries. On the object side, the center of the entrance pupil always serves as the center
of projection. The lens “looks at” the objects H and V from this point. In Part c, for clarity only the beams
coming from the top of V and from the bottom of H are drawn. At intermediate positions between b and c,
the entrance pupil lies as a virtual image to the right of the aperture (Video 18.4).

Video 18.4:
“Perspective”
http://tiny.cc/5eggoy
The two letters H and V
are somewhat fuzzy due
to the limited depth of fo-
cus (Sect. 18.15)! Note also
the ‘free-hand experiment’
described in the caption of
Fig. 18.38.

– A good free-hand attempt
at the inverted perspective in Part d: Hold a lens of around 10 cm diameter and 20 cm focal length (a reading
glass) about 30 cm in front of your eye and observe a box of matches. You will see the more distant edge of the
box larger than the closer edge.

one eye and place it at the position B in Fig. 18.37. Then, with high-
quality paintings, one has the impression of seeing a natural three-
dimensional view.

In a photographic camera, the principal rays propagate from the
center of the exit pupil to the film or detector. The center of the exit
pupil serves as the image-side center of projection. Therefore, when
looking at a photo, the pivot point of the eye should be placed at this
center of projection. This presents no difficulties: In the objective

http://tiny.cc/5eggoy
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W
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B
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Figure 18.39 Objects of the same size at different depths are projected from
the centers A, B, and C onto the same image plane W. The points of inter-
section of the lines of sight with the image plane are the same for all three
examples shown here. – With these figures, we indicate the distortion of per-
spective which results when a picture is viewed from the incorrect distance:
An image cast from the center B appears foreshortened when seen from C,
and stretched out when viewed from A.

lenses common today, the entrance and the exit pupils nearly coin-
cide with the center of the lens. One thus needs only one center of
projection, as in the schematic of Fig. 18.38b. Furthermore, the film
is always placed near the focal plane of the objective. Then we find
the following rule:C18.12 C18.12. We make special

mention of the rule described
here for viewing photos. As
POHL says further on, we
have forgotten how to see the
three-dimensional structure
of photos, and treat them
as if they were only two-
dimensional images.

One should always view a photograph with
one eye and at a distance between the pivot point of the eyeball and
the photo which is equal to the focal length of the camera lens that
was used to take it. For focal lengths of around 25 cm and upwards,
this can be readily done. However, the usual 35mm cameras have
considerably shorter focal lengths (not to mention the electronic cam-
eras in smartphones, tablet computers etc.), at most a few centimeter.
In this case, one has to use a magnifying lens between the photo and
the eye; then the correct distance can be maintained. When this rule
is observed, every photo shows a surprisingly good sculptural effect
and lifelike perspective.

Good-quality magnifying lenses should be designed for the gazing eye,
and the distance between the pivot point of the eyeball and the lens should
be fixed by a suitable shape of the lens mount (bezel). For an x-fold linear
magnification of the photographic print relative to the negative, the eye-to-
photo distance should be equal to xf . Unfortunately, this condition can be
fulfilled for only a few members of the audience in a large motion-picture
theater, and the seats where it is met vary with the magnification of the
film.

All pictures when seen with one eye, both those painted by artists and
those taken by a camera, should give a three-dimensional impression,
even when viewed from the incorrect distance, although the perspec-
tive may then be distorted. The depth of field appears too shallow
when the viewing distance is too short, and too deep when it is too
long (Fig. 18.39). But today, our visual senses have all been dulled
by the flood of images in magazines, television and digital media.
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We have given up on seeing pictures as three-dimensional and expe-
rience them only as flat surfaces. Only when the circumstances are
unusual does the true ability of our eyes again emerge. For example,
we see the two-dimensional images in the focal plane of a telescope
as viewed through the ocular lens as three-dimensional, but the depth
of field of all the objects is foreshortened. The long axis of a street
or boulevard is especially suitable for seeing this effect; the image is
projected by an objective with a long focal length f and should there-
fore be viewed with the correct depth of field from this same distance
f . An ocular lens with a focal length of f would however make the
magnification of the angle of vision equal to one, and thus would de-
feat the purpose of the telescope. Only with an ocular lens of short
focal length can the angles of vision be increased and the image thus
magnified. But then it makes the viewing distance unavoidably too
short, so that we see all depths in the image as foreshortened.

Still more impressive is a reversal of this experiment: We look
through the telescope ‘backwards’ and use its objective as an ocular.
Then we see the depth of field stretched out in a very comical manner.
The ocular, with its short focal length, projects a two-dimensional
image, and we view it through the objective from much too great
a distance.

More details on image formation, in particular the production of vis-
ible images of invisible objects, can be found in Sect. 21.11.

Exercises

18.1 Figure 18.1 shows the graphical construction of the image
point P0 which belongs to the object point P. Use this drawing to
derive the lens formula 1=a C 1=b D 1=f 0 (Eq. (16.13)) (a D the
object – lens distance, b D the image – lens distance). (Sect. 18.2;
see also Exercise 16.3).

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_18) contains supplementary material, which
is available to authorized users.

https://doi.org/10.1007/978-3-319-50269-4_18
https://doi.org/10.1007/978-3-319-50269-4_18


Pa
rt
II

Radiation Energy and
Beam Limitation 19
19.1 Preliminary Remark

In our whole discussion of image formation and optical instruments,
the details of lens fabrication and ray diagrams have not been empha-
sized; instead, we have used the limiting boundaries of light beams
as an explanatory principle. This decisive point will also lead us to
an understanding of energy transport by radiation, whether or not it
is accompanied by image formation.

19.2 Radiation and Opening Angle:
Definitions.C19.1 LAMBERT’s Cosine
Law

C19.1. Some of the quantities
discussed here, which are re-
lated to energy transport by
radiation, were already intro-
duced in Chap. 15. A detailed
treatment of the analogous
quantities which are defined
especially for light, taking the
perception of brightness by
the human eye into account,
will be given in Chap. 29.

Up to now, we have always treated the “image points” in an op-
tical image as small regions or surface elements, corresponding to
experimental fact; but we have presumed the object points without
comment to be mathematical points. That has caused us no problems
thus far, but we should be careful to correct it. In reality, radiation
of non-zero energy is always emitted from a finite surface element
dA.C19.2

C19.2. The infinitesimal
quantities d PW# , dA, dA0 and
d˝ in this chapter represent
small but nonzero values.
The surface elements dA and
dA0 are chosen to be so small
that the overall shape of the
surface plays no role. The
radiant flux d PW� propagates
along the # direction for ex-
ample from the emitter area
dA to the receiver area dA0.
In some cases (e.g. the def-
inition of the radiance Le),
a true differential quotient
is meant (second derivative
of d PW� w.r.t. dA and d˝).
For a general exposition of
radiometric quantities, see
e.g. the article by Ian Ash-
down, www.helios32.com/
Measuring%20Light.pdf

In Fig. 19.1, at the left, we show dA as a small glowing piece of
metal with a matte black surface. It acts as an emitter. Its front
surface emits radiation in all directions within a hemisphere, so that
within the time interval dt, it emits the energy dW . How is this energy
distributed in space? In order to answer this question, we detect the
radiation with a radiometer (Sect. 15.3). It serves as a small receiver.
Let its free surface area be dA0; this surface is oriented perpendicular
to the direction of propagation of the radiation (“normal incidence”).
Furthermore, both the dimensions of the emitter, dA, as well as those
of the receiver, dA0, are chosen to be small compared to their mutual
distance R.

The signal detected by the radiometer (i.e. its deflection) corresponds
to the radiant flux d PW which falls on the receiver, that is energy/time
with the unit 1 watt, also called the energy current. We now vary the
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Solid angle dΩ

dA

dA'
R

B M
ϑ

V

Figure 19.1 Measuring the radiant flux d PW which is emitted from a surface
element dA, for example from a tungsten-ribbon lamp (B), under different
angles of inclination # into the solid angle d˝ (dA0 is the surface area of
a radiometer, e.g. a thermopile (M)). At the left is a schematic of the emission
geometry, at the right the experimental arrangement. The angle # is varied
here only within the horizontal plane.

Figure 19.2 The angular
distribution of the radiant
flux reaching a detector
of area dA0 . (The points
were measured as shown in
Fig. 19.1, right). The large
circles are calculated from
Eq. (19.1) (LAMBERT’s co-
sine law).

dA

dẆϑ ~
 I ϑ

ϑ

size of dA, dA0, R and # , and find (where we denote the proportion-
ality factor by Le):C19.3C19.3. In general, # is the

angle between the surface
normal vector of dA and the
vector R, whereby R can
range over the whole hemi-
sphere in front of dA. In the
following examples, R is
however often allowed to
rotate only within the hori-
zontal plane, as in Fig. 19.1.

d PW# D Le � dA � cos# � dA
0

R2
: (19.1)

The influence of the quantities dA, dA0 and R is as expected from
simple geometrical considerations. The proportionality of the radi-
ant flux to cos# in the direction # , in contrast, can be derived only
from experiments. It is generally obeyed only approximately. (It is
called LAMBERT’s cosine law, described in 1760 by JOHANN HEIN-
RICH LAMBERT, 1728–1777). An example is shown in Fig. 19.2.
LAMBERT’s law is however exact for a small opening dA which is
the source of the emission through the wall of a cavity at a uniform
temperature, a “black body radiator” (Sect. 28.4).

In Eq. (19.1), which was found empirically, the ratio dA0=R2 refers to
the solid angle1 d˝ . It is an open cone. Its apex is at the center of

1 The unit of a solid angle is, like the unit of every angle, simply the number 1.
It is often expedient to give the number 1 in this connection the name ‘steradian’
(sr). See also the footnote at the end of Chap. 17. More details are given in Vol. 1,
Sect. 1.5.
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Figure 19.3 The “projected emitter
area” dAp D R2d˝ 0. Here, d˝ 0 is the
solid angle under which an arbitrarily-
shaped emitter is seen from the position
of the receiver. In the special case of
a planar emitter dA as sketched here,
the projected emitter area is dAp D
R2d˝ 0 D dA cos # .

Solid angle dΩ'

dA

dA'

R ϑ

Projected emitter area
dAp = R2dΩ'

the surface element dA, and thus at the center of the emitting surface.
Its base is the irradiated surface element dA0, and thus the area of the
receiver. Furthermore, dA cos# D dAp D R2d˝ 0 can be seen from
Fig. 19.3 to be the projected or apparent emitter area, and d˝ 0 is the
solid angle under which the emitter is seen from the location of the
receiver.

The proportionality factor Le in Eq. (19.1) (in differential form) is
then

Le D d2 PW#

d˝ dAp
I

it characterizes the emitter. The quantity Le is called the radiance of
the emitter. Its unit is 1 watt/(steradian �m2) D 1watt=m2.

The experimental introduction of the radiance Le is by no means limited
to the special case of a planar emitter for which LAMBERT’s cosine law
holds. Imagine for example in Figs. 19.1 and 19.2 that the emitter is
a glowing cylinder which is perpendicular to the plane of the page. Then
the radiant flux d PW that it emits is independent of # . The angle # is var-
ied only within the horizontal plane (as in Fig. 19.1, right). Instead of
Fig. 19.2, we would then have a circle with the emitter at its center. We
would find d PW D Led˝dA, and thus the proportionality factor (the radi-
ance) would be Le D d2 PW=d˝dA.

The quantity

I# D d PW#

d˝
D Radiant flux in the direction #

Solid angle
(19.2)

or

I# D Le � dAp D Radiance times projected emitter area (19.3)

characterizes the radiation of the emitter in the direction # , and there-
fore, I# is called the radiant intensity in the direction # . Its unit is
1 watt/steradian (W/sr).

The same radiant intensity I# can be produced by emitters of very
different sizes. At white heat, a small surface area is sufficient; at
a dull red glow, a large area would be necessary.



Part
II

374 19 Radiation Energy and Beam Limitation

dA dA
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Figure 19.4 At the left: The calculation of the radiant flux d PW! emitted from
dA (emitter) and transmitted to A0 (receiver) according to Eq. (19.5). The
small emitter dA which is located at a distance R from the receiver A0 emits
radiation with the radiance Le. At the right: a spherical surface construction
to aid in the calculation.

The receiver, the small irradiated surface element dA0 D d˝R2, reg-
isters the radiant flux d PW arriving perpendicular to its area. The
quotient

Ee D d PW
dA0 D Incident radiant flux

Receiver area

D Radiant intensity I# of the emitter

(Distance R to the emitter)2
whichgoesfromtheemitter

(19.4)

is given the name irradiance or irradiation intensity. Its unit is
1 watt/m2.C19.4C19.4. The irradiance is

thus an energy flux density,
i.e. the energy per time inter-
val and surface area arriving
at a receiver. It is denoted in
the literature by the letter E
or Ee.

Thus far, we have assumed that the receiver dA0 is small compared to
the distance R; the surface element dA0 was supposed to be practically
perpendicular to the radiation direction. We now relax this limitation;
however, the emitter is initially still supposed to have a small area dA.
In Fig. 19.4, at the left, a large circular area A0 is irradiated with the
opening angle !, and, apart from its center, it receives the radiation
at an angle (i.e. not at normal incidence). Then this receiver A0, pre-
suming the validity of LAMBERT’s cosine law, receives the radiant
flux

d PW! D �LedA sin2 ! (19.5)

(or I! D d PW!=d˝ D Le � dA). It is sent out by the emitter, which has
an area dA and a radiance Le.

Derivation: To calculate the radiant flux which is received by the receiver
area A0, we use a construction as in Fig. 19.4 (right), a spherical surface
in front of the receiver A0. All of the radiation which reaches A0 must first
pass through this virtual sphere. We decompose its surface into a series
of narrow circular zones which are ring-shaped and concentric around the
direction vector R (i.e. the # D 0 axis, dashed in the figure). Each has an
area of

dA0
ring D 2�r � R d# D 2�R2 sin# � d# :
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Figure 19.5 A large emitter A which emits at
the radiance Le irradiates a small receiver dA0
(Eq. (19.8)). For this light beam, we cannot
draw any sort of simple wave picture.

A dA'
ω'

Each of these ring-shaped circular zones receives a radiant flux (from
Eq. (19.1)) equal to

d PW# D LedA cos#
dA0

ring

R2
D 2�LedA sin# cos# d# D 2�LedA sin# d.sin#/ :

Integration of this flux over angles between # D 0 and the full opening
angle # D ! yields the overall power d PW! which arrives at the circular
receiver area A0 (i.e. Eq. (19.5); cf. Fig. 19.4).

The radiant flux in Fig. 19.4 which is radiated out from the emitter
dA and is incident on the circular area A0 of the receiver attains its
maximum value d PWmax for the limiting case of ! D 90ı. This value
is used to define the radiant exitance of the emitter by the equation

Me D d PWmax

dA
D Radiant flux emitted to one side

Emitter area
: (19.6)

When LAMBERT’s cosine law holds, we find from Eq. (19.5) the ra-
diant exitance of the emitter to be:

Me D d PWmax

dA
D �Le : (19.7)

When emission to both sides is considered, a factor of 2 must be
included.

If we reverse the direction of light propagation (Fig. 19.5), the large
area A acts as emitter and the small area dA0 as receiver. We again
denote the radiance of the emitter as Le. Then the radiant flux arriving
at dA0 is

d PW!0 D �LedA
0 sin2 ! 0 (19.8)

.Derivation as above/ :

Equation (19.8), i.e. the dependence of the flux d PW!0 on the open-
ing angle ! 0, can be illustrated by a demonstration experiment. We
use a secondary source as emitter, e.g. a circular area on a high-
quality matte white projection screen which is irradiated by an arc
lamp (compare Sect. 26.10 and Fig. 26.14). Then, for varying open-
ing angles ! 0, we measure the flux d PW!0 . ! 0 can be varied in two
different ways, namely by changing the diameter of the circular area,
or by changing the distance between the emitter and the receiver. In
Sect. 19.3, an application of this important equation (19.8) will be
discussed.
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19.3 Radiation from the Surface
of the Sun

The sun irradiates the surface of the earth at perpendicular incidence
and (neglecting absorption losses in the atmosphere) with an irradi-
ance of

Ee D 1:367
kW

m2
:

(Astronomers call this irradiance the solar constant.)

The sun’s disk has an angular diameter of 32 minutes of arc as seen
from the earth. Therefore, the opening angle ! 0 in Fig. 19.5 is equal
to 16 minutes of arc, and we have sin! 0 D 4:7 �10�3. We insert these
values of the irradiance Ee D d PW=dA0 and of sin! 0 into Eq. (19.8)
and compute the radiant exitanceMe averaged over the surface of the
sun2:

�Le D 6:3 � 104 kW
m2

:

For comparison: 25m2 of the sun’s surface delivers about the same
power as a large AC turbogenerator with a rated power of 1:5�106 kW.

19.4 The Radiance Le and the
Irradiance Ee in Image Formation

In numerous cases, between the light source (the emitter) and the
irradiated surface (the receiver), there is a lens or a series of lenses.
With these lenses, or with any kind of imaging apparatus, one can
change only the irradiance Ee at the receiver, but never the available
radiance Le. The latter is a characteristic quantity which describes
the emitter. An image of the emitter can never radiate at a higher
radiance than the emitter itself. The usable value of the radiance can
in the most favorable case (absorption-free lenses or mirrors) only
be conserved in an imaging process. This result, which can also be
derived thermodynamically from the Second Law, will be discussed
in more detail in the following.

In Fig. 19.6, a lens projects an image dA0 of an emitter dA. The
power in this image is collected by a receiver of area dA0. From the
schematic in Fig. 19.4, we find the radiant flux

d PWwi D �LedA sin2 !wi (19.9)

.The index ‘wi’ means with a lens/

2 The radiationwhich is emitted by the sun comes from a layer about 200 km thick,
which is increasingly cooler towards the outside. Near the edges of the solar disk,
the paths of the radiation through the cooler regions of the layer become longer.
At the very edge, one therefore measures (of course depending on the wavelength)
around 60% lower values of the radiance than at the center of the solar disk.
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Figure 19.6 Ir-
radiation of the
receiver dA0
with and with-
out a lens. The
lens increases the
opening angle !0.

dA

dA

dA'
B

ωwi ω'wi

ω'w/o

which goes from the emitter dA to the lens, passes through it and
produces the image dA0. Here, the lens itself acts as an emitter with
a still-unknown radiance Le;x. Its exit pupil sends out the radiant
fluxC19.5 C19.5. Since the radiant

flux reaches the lens with
a distribution corresponding
to LAMBERT’s cosine law,
the lens surface on its other
side again radiates with this
same distribution, only that –
owing to refraction – the di-
rections are changed and the
radiation is again focussed.
The result is that the radia-
tion emitted from the lens can
be described by a constant
radiance Le;x.

d PWwi D �Le;xdA
0 sin2 ! 0

wi (19.10)

onto the image area dA0, as in the schematic in Fig. 19.5. Here, we
have implicitly idealized a limiting case: We have neglected radiation
losses by reflection at the lens surfaces and by absorption in the glass
of the lens, and have taken the radiant flux to be the same in front of
and behind the lens. In this limiting case, we can combine the two
equations (19.9) and (19.10) to obtain

LedA sin2 !wi D Le;xdA
0 sin2 ! 0

wi : (19.11)

We make use of light beams with a wide opening angle for the imag-
ing of dA onto dA0. Therefore, the sine condition (18.2) must be
fulfilled:

dA � sin2 !wi D dA0 sin2 ! 0
wi : (19.12)

Equations (19.11) and (19.12)C19.6, when combined, yield C19.6. Since dA and dA0

are areas, the sine functions
occur here as squares.

Le;x D Le,
an important result: For the image dA0, the disk of the lens radiates
with the same radiance Le as the surface of the emitter; both surfaces
appear to have the same “brightness” (see Sect. 29.7). This fact will
first be verified in a demonstration experiment (Fig. 19.7).

What, however, changes energetically as a result of image formation?
It is the irradiance Ee. In Fig. 19.6, top, the lens (with a sufficient di-
ameter) can irradiate the receiver with a larger opening angle ! 0

wi and
thus produce a higher radiant intensity at the position of the image
than would be possible for the emitter dA without a lens (think of
a “burning glass” !).

We use Eq. (19.8) to calculate the irradiance at the receiver in both
cases in Fig. 19.6, that is the quantity

Ee D d PW
dA0 D �Le sin2 ! 0 : (19.13)

With the lens, we have to set ! 0 D ! 0
wi; without the lens, !

0 D ! 0
w=o.

Then we obtain the ratio of the two irradiances with and without
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1

2

A

B

C dA

To a distant eye

Figure 19.7 A comparison of the radiance of a small emitter with the ra-
diance of the large area of a lens which forms its image (top and middle
figures): Two similar emitters A and B consist of two identical frosted-glass
disks which are illuminated from behind. After their similarity has been ver-
ified, we use two circular iris diaphragms 1 and 2 to limit the diameter of A
to 10 cm and of B to 5mm, and place B in the focal plane of a lens of 10 cm
diameter. We then observe the emitters from a great distance and see the large
lens area radiating with the same radiance as the emitter A (both appear to
be equally “bright” (see Sect. 29.7)). The focal length f of the lens is not
important. The longer f is, the smaller the angular region from which the ra-
diation that emerges from the lens surface originates (this indeed reduces the
radiant flux which passes through the lens, but the radiance (surface density)
at the lens surface remains constant). An analogous experiment with a mirror
instead of a lens is shown in the bottom figure. In order to make small glow-
ing surfaces dA, for example from phosphorescent materials, clearly visible
to a large audience, we put them at the focal point of an automobile headlight
reflector (C). Then the large opening of the parabolic headlight mirror radi-
ates with the same radiance as the small area dA. In spite of its triviality, this
experiment often surprises even professionals.

a lens3

Ee;wi

Ee;w=o
D sin2 ! 0

wi

sin2 ! 0
w/o

: (19.14)

The sun radiates with a radiant exitance of �Le D 6:3�104 kilowatt/m2

(Sect.19.3). Due to its great distance from the earth (R D 1:5�1011 m),
the earth is irradiated with the very small opening angle ! 0

w=o D
16 minutes of arc (that is sin! 0

w/o D 4:7 � 10�3). Therefore, for
a surface element dA0 on the surface of the earth, the irradiance is
only Ee;w=o D 1:37 kW/m2 (for normal incidence and neglecting the
losses of about 50% in the atmosphere). With lenses or concave
mirrors, we can produce opening angles ! 0

wi of up to about 50ı (that
is sin! 0

wi D 0:77). As a result, we find from Eq. (19.14) for the

3 Here, as always, we assume the same material in front of and behind the lens, for
example air.
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irradiance of the solar image:

Ee;wi D 1:37
kW

m2

�
0:77

4:7 � 10�3

�2

D 3:7 � 104 kW
m2

:

In order to attain a similar irradiance without a lens or a concave
mirror, we would have to approach the sun so closely that the solar
disk would reach from the horizon up to 10ı past the zenith!

With a focal length of 1m, we can project a solar image with an area of
0.6 cm2. With the opening angle ! 0

wi D 50ı, the radiant flux in the solar
image4 is thus 0:6 cm2 � 3:7 kW=cm2 � 2 kW. This power is the same as
the power of an electric arc lamp carrying a current of 40A at a voltage of
50V.

19.5 Emitters with Direction-
Independent Radiant Flux

LAMBERT’s cosine law (Eq. (19.1)) is, as we have emphasized, an
empirical limiting case. It holds exactly for a small opening into
a “black-body” radiator, as we mentioned above. Planar, matte black
surfaces with strong scattering or diffuse reflection are a good ap-
proximation to a black body, no matter whether their radiation is
excited thermally or by some other means, for example as fluores-
cence.

A black body and a planar, matte surface have a common property: For
both, the extinction constant, i.e. the ratio of the radiant flux that is not
reflected or re-emitted, to the incident radiant flux, is independent of the
angle of incidence.

A very different limiting-case law is found for the radiation from the
interior of a flat, transparent body. For the radiant flux in the #
direction, we obtain

d PW# D LedA
dA0

R2
D LedA � d˝ ;

i.e. the radiant intensity in the # direction,

I# D d PW#

d˝
D LedA ; (19.15)

is independent of the angle of emission # . A graph of the emit-
ted radiant flux (Fig. 19.8) shows one circle with the emitter dA
at its center and not, as in LAMBERT’s cosine law, two circles lo-
cated symmetrically to either side of the emitter (Fig. 19.2). This

4 E.W. TSCHIRNHAUS, 1651–1708, mathematician, owner of a farm at Kies-
lingswalde, near Görlitz, and member of the Paris Academy from 1682 on,
constructed a ‘burning mirror’ in 1686 with an opening diameter of 2m and a focal
length of 1.3m, made of polished copper, and used it to melt materials.
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Figure 19.8 Demonstration of a directionally-independent emission inten-
sity. The emitter is a sheet of uranium glass which is excited to fluorescence
in the visible range by strongly-absorbed ultraviolet light. (To prevent re-
flections at the surfaces of the sheet, it is immersed in a mixture of benzene
and carbon disulfide, whose index of refraction for the fluorescent light is the
same as that of the glass)

Figure 19.9 The production of a radiant intensity
which is independent of the emission direction # : In
the rectangle I and in the rhombus II, there are equal
numbers of fluorescent molecules

Aperture

Fluorescent layer

ϑI

II

limiting case of direction-independent radiant intensity can be im-
plemented in various ways for a planar emitter, most simply with
fluorescence radiation from a clear glass sheet. The right-hand image
in Fig. 19.8 shows a suitable arrangement which minimizes disturb-
ing reflections.

Figure 19.9 illustrates how, with this arrangement, the radiant inten-
sity becomes independent of # : Perpendicular to the emitter sheet
(# D 0), the volume I acts as emitter, and under the angle of in-
clination # , the volume II is the emitter. The two volumes are of
equal size, and thus contain an equal number of independently emit-
ting molecules, indicated as dots in the figure. Their emitted radiant
fluxes simply add, since the glass sheet is completely transparent to
the fluorescence radiation.

This independence of the direction of the radiant intensity I# has an
important consequence: The radiance of the planar emitter surface,
that is the quantity

Radiant intensity I#
Projected emitter area dA cos#

D Le ;

is not constant, as when LAMBERT’s cosine law holds; instead, Le in-
creases with increasing angle of emission # : If we look from a graz-
ing angle at the surface of the emitter sheet, we see the thin fluores-
cent layer with an almost dazzling luminous density.C19.7

C19.7. For the concept of
“luminous density” (now
called luminance LL), see
Sect. 29.3 (second footnote),
and also Eq. (29.12) and
Table 29.2.
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Figure 19.10 One of the many possible forms of
an X-ray source with a hot cathode. The cone C
concentrates the electrons onto a small spot on
the anticathode A. (M is a metal tube, and F is
a glass radiation window)

X-rays F

M M
C

K

A

A direction-independent radiant intensity can also be found at the
planar anticathode of X-ray tubes (Fig. 19.10). The reason: the
accelerated electrons can penetrate only into a thin surface layer of
the anticathode, while the X-rays themselves, in contrast, can pass
through the material almost unimpeded. A practical application: One
can use the X-rays which are emitted nearly parallel to the surface
of the anticathode to obtain a sharply-defined focal spot of high
radiance (a “streak focal line”) through perspective foreshortening
(W.C. RÖNTGEN, 1896).

19.6 Parallel Light Beams as an
Unattainable Limiting Case

According to all experimental evidence, “parallel light beams” or col-
limated beams can be only approximately obtained in practice. The
reasons for this are already well known:

1. Every light source has a finite extension, however small it may be.
Such a source can emit only beams with a nonzero opening angle !,
no matter which of all possible arrangements of pupils and lenses is
used.

2. Every light beam exceeds its geometrically-constructed bound-
aries due to diffraction.C19.8

C19.8. Even the light beams
from high-quality lasers have
a very small but finite open-
ing angle owing to diffraction
at their exit pupils. For ex-
ample, the laser beam which
was used in 1969 to measure
the distance from the earth
to the moon had a diame-
ter on the lunar surface of
around 1.6 km.

We can now add to this list: A light beamwith mathematically strictly
parallel boundaries would have an opening angle of ! D 0°. As
a result, its radiant flux as calculated from Eq. (19.5) would be zero.

For all these reasons, we should, strictly speaking, refer only to quasi-
parallel light beams when discussing experiments.
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Interference 20
20.1 Preliminary Remark

In Volume 1, interference is treated in detail within the framework
of the general topic of waves (Chap. 12). There, we considered two
conditions, which can usually be fulfilled to a good approximation:

1. Pointlike wave centers, i.e. their diameters must be small compared
to the wavelength of the radiation.

2. Wave trains of unlimited length and a single frequency. Only with
such wave trains can we produce interferences between two indepen-
dent emitters with the same frequency, e.g. two whistles.

If these two conditions are not sufficiently well fulfilled, we can
obtain clear-cut, spatially fixed interference patterns only by taking
special measures. This is the case for light, in particular; that is why
we have postponed the treatment of such measures to the section on
optics.

Wave trains of limited length are generically called wave groups.
They always have a corresponding frequency range; the term ‘fre-
quency’ then refers only to the midpoint of that range. Strictly
monochromatic wave trains1 cannot be produced in a finite experi-
ment.

20.2 The Interference of Wave Groups
from Pointlike Wave Centers

Figure 20.1 shows a model experiment (Vol. 1, Sect. 12.12). It il-
lustrates interference between wave groups which are emitted by two
centers I and II that oscillate at the same frequency; the groups con-
sist ofN “individual waves” or “wavelets”, each onewith a wave crest
and a trough. In this example, N D 5. The superposition of these two
wave groups gives a simple result: The interference vanishes when
the path difference2 m� of the wave groups becomes larger than the

1 They should preferably be called single-frequency. The term monochromatic,
that is with a single color, is an unhappy choice of wording: Monochromatic
light usually includes a broad range of light frequencies, up to half of the visible
spectrum! (Sect. 29.10).
2 If one measures �s, the difference in the lengths of two paths along which two
wave groups propagate to the point of observation, as multiples of their wavelength
�, then m� is called their path difference.
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Figure 20.1 The interference of two wave
groups: At the left (case a), the groups
were emitted simultaneously (phase differ-
ence �' D 0ı); at the right (case b), they
are shifted relative to each other by a half
wavelength (�' D 180ı). A mechan-
ical example: At the locations I and II,
individual water droplets fall onto a water
surface and produce short groups of cap-
illary waves, like those that everyone has
seen when watching raindrops fall onto
a puddle

I

II

00

a

b

Figure 20.2 Specular reflection by a semi-
transparent plate M (a “beam splitter”) can
be used to split one wave group into two
groups

B M

2ω

length N� of the wave groups themselves. Or, put differently, we can
observe interference fringes only up to an order m D N.

In general, wave groups follow each other without a fixed phase
relation. Then the direction of the interference fringes varies ran-
domly between the extremes sketched in Fig. 20.1: Along the line
of symmetry O � O, for case a the wave groups have a phase dif-
ference �' D 0ı; wave crests meet wave crests and troughs meet
troughs. In case b, the phase difference between the two wave groups
is �' D 180ı, so that wave crests from one group fall on wave
troughs from the other. Averaged over time, there are equal numbers
of maxima and minima along a given direction, so that we see on the
average no maxima and minima (i.e. no interference fringes).

In order to get around this problem, THOMAS YOUNG3 recognized as
early as 1807 that one should not superpose wave groups of the same
frequency from independent wave centers (emitters), but rather two
groups which were emitted as one group from the same wave center,
and were then split and redirected. To accomplish this redirection,
THOMAS YOUNG suggested that reflection by mirrors, diffraction,

3 THOMAS YOUNG, 1773–1829, studied in Göttingen and lived in London where
he had a medical practice. He was a natural scientist with unusually broad
interests, and he also made an important contribution to deciphering Egyptian hie-
roglyphic writing. In 1802, YOUNG was the first to determine the wavelengths of
individual spectral regions, by making use of interference fringes in thin wedge-
shaped glass plates (Sect. 20.7). He found for example the wavelengths at the
ends of the visible spectrum to be 0.7�m (red) and 0.4�m (violet). He also pho-
tographed the interference fringes from ultraviolet light as early as 1803 using
paper dipped into a silver nitrate solution! (See R.W. Pohl, Physikalische Blätter
5, 208 (1961)).
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and refraction, or some arbitrary combination of these, should all be
equally applicable. In Fig. 20.2, for example, a wave group which
is incident on a glass plate is “split up” into “transmitted” and “re-
flected” wave groups. When the reflection occurs at normal inci-
dence, the front and the back sections of the same wave group can
be superposed to give standing waves. This special case of interfer-
ence was demonstrated in Vol. 1, in Fig. 12.10 for transverse surface
waves on water, and in Fig. 12.47 for longitudinal sound waves in air.
A standing electromagnetic wave was demonstrated in this volume in
Fig. 12.28 (see also Video 12.1). Standing light waves are shown in
Fig. 20.25.

20.3 Replacing Pointlike Wave Centers
by Extended Centers.
The Coherence Condition

Arbitrary phase differences can always be rendered harmless by
using YOUNG’s method when the wave groups are emitted from
a pointlike wave center as a statistically distributed sequence over
time (Sect. 20.1!). Such a wave center can be either a single emit-
ter (Fig. 20.3, top), or many small, neighboring emitters which are
independent of each other (Fig. 20.3, bottom). In both cases, there
is no difference between the wave groups which propagate along the
directions 1, 2, or 3.

This lack of dependence of the wave groups on the direction of prop-
agation of the radiation is lost, however, when the diameter 2y of the
region over which the numerous emitters are distributed is no longer
small compared to the wavelength. Then, an extended wave center
of diameter 2y can replace a pointlike center only for the radiation
emitted within a limited angular range 2! (Fig. 20.4). Its size is de-
termined by the inequality called the coherence condition:

2y sin! � �=2 : (20.1)

Figure 20.3 Point-like wave centers,
i.e. 2y � �. The upper image shows
just one center, the lower image shows
a number of independent emitters of
the same frequency, e.g. the excited
atoms in a flame which emit light.

2y

2

1

3
2

1

3
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2y
ω

ω

Figure 20.4 The radiation from a light source of diameter 2y can be used
instead of the radiation from a single pointlike wave center (“point source”)
only if the opening angle of the light beam obeys the coherence condition
2y sin! � �=2. At this point, we should mention the connection between
the coherence condition and the resolving power of a microscope (Eq. (18.5)):
One can distinguish an object from its surroundings in a microscope image
only if it (when made in somemanner to act as a primary light source) projects
incoherent light through the objective and into the eye of the observer.

It plays an important role, in particular in interference experiments.
If the radiation obeys Eq. (20.1), then it is called ‘coherent radiation’
within this angular range4 (Video 16.3)Video 16.3:

“Diffraction and coher-
ence” http://tiny.cc/xdggoy
The meaning of spatial co-
herence is demonstrated by
changing the effective width
of the slit which serves as
light source (of width 2y) by
rotating it around the optical
axis (5:20 minutes).

.

For the derivation of Eq. (20.1), Fig. 20.5 shows a radiating surface area
of width 2y (an optical emitter, e.g. a piece of glowing metal, the win-
dow of a gas-discharge lamp, or a slit which is irradiated from the left by
plane waves from a distant source). We imagine that this emitter surface
is divided into individual surface elements marked by dividing lines. Even
when there are irregular and unknown variations of the phases and the am-
plitudes among the surface elements, the resulting radiation will produce
plane waves at a distant point along the direction 1, with unknown time
variations in their phases and amplitudes. The same is true of an equally
distant point along the direction 2. But there, the resulting unknown phases
and amplitudes have different magnitudes than those at the point in direc-
tion 1: The paths traversed by the rays emitted by the different surface
elements in direction 2 depend on the locations of the individual surface
elements and are not the same as those in direction 1. The path of the ray
in Fig. 20.5 emitted by the bottommost surface element along direction 2 is

Figure 20.5 The
derivation of the co-
herence condition

2y

2y sin ω

2y sin ω

2

1

3

ω

ω

4 Some authors refer to Eq. (20.1) as the spatial coherence condition to distinguish
it from a temporal coherence condition,�
 ��t � 1. This second inequality, how-
ever, does not characterize a property of the radiation which is limited to a certain
angular range, as in Eq. (20.1). It simply limits the permissible path difference
for the occurrence of interference fringes between the wave groups that are to be
superposed. This path difference must be small compared to the lengths of the
wave groups, as shown in Sect. 20.2.

http://tiny.cc/xdggoy
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longer by 2y sin! than that of the ray emitted by the topmost surface ele-
ment. This path difference changes the phase ' of the waves in direction 2
by �' as compared to those emitted along direction 1. A phase difference
of�' between directions 2 and 1 can be neglected only if 2y sin! � �=2.
This is just Eq. (20.1), the coherence condition.

20.4 General Remarks on the
Interference of Light Waves

All of what we have discussed in Sects. 20.2 and 20.3 is purely for-
mal geometry; it holds for any kind of waves. With our knowledge
of these conditions, we can produce and understand the many forms
of interference phenomena with light waves. Although interference
phenomena in optics indeed offer nothing fundamentally new, we
must nevertheless treat them in detail for three reasons:

1. Interference effects involving light waves play an important role
in science and technology.

2. They give rise to long-known phenomena, for example the lively
coloration of soap bubbles and thin oil films on water.

3. Using the interference fields of light waves, we can obtain cross-
sections on a plane perpendicular to their propagation direction
(e.g. a projection screen, a frosted-glass plate, or the object plane of
a lens) and can recognize the form of such cross-sections immedi-
ately. It is expedient to distinguish among longitudinal, transverse,
and oblique observations. These terms are defined in Fig. 20.6.

Plane of view for longitudinal observation (L)

Oblique observation (O)
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Figure 20.6 Model experiments for the definition of longitudinal (L), transverse (T), and oblique (O) obser-
vations of the interference of two wave trains. Two wave trains drawn onto glass plates are projected together.
At the right, the spacing D of the two wave centers is an even multiple of �=2; at the left, it is an odd multiple
of �=2. The image at the right was first drawn by THOMAS YOUNG in 1801/02. The numbers on the axes are
the orders, for minima at the left, and for maxima at the right.
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0.25 mm

width
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Figure 20.7 THOMAS YOUNG’s interference experiment from 1807 (red
filter light, K D arc lamp; see the end of Sect. 20.4. 2y D 0:25mm).
The interference pattern is shown as a photograph in Fig. 20.9. Here,
sin! � 3:5 � 10�4, so that 2y sin! � 10�4 mm is still smaller than
�=2 � 3:5 � 10�4 mm. (Videos 16.3 and 20.1)

Video 16.3:
“Diffraction and coher-
ence” http://tiny.cc/xdggoy
The video shows THOMAS

YOUNG’s interference
demonstration (beginning
at 4.00 min.), using a slit illu-
minated by a halogen lamp as
light source and a CCD cam-
era for registering the image.
Both red and blue filter light
is used. At the beginning of
the video, the experimental
setup is explained.

Video 20.1:
“Interference”
http://tiny.cc/9eggoy
The first part of the video
also shows THOMAS

YOUNG’s interference exper-
iment, but now using a laser
as light source and projecting
the interference pattern onto
a wall for demonstration to
a large audience. Interference
is observed at the principal
maximum of a single slit.
(The fact that even with the
second slit covered, inter-
ference is still seen in one
of the secondary maxima, is
unavoidable with the sim-
ple experimental setup used
here.)

To conclude, we give one more important tip for the experimental demon-
stration of interference and diffraction phenomena: One must often make
use of irradiated openings (circular apertures or slits) as wave sources in-
stead of pointlike wave centers (Sect. 20.1). Such an opening may however
radiate like a point source only within a limited angular range 2! (which
fulfills the coherence condition of Eq. (20.1)!). When the opening is irra-
diated from all directions, the axes of these angular ranges may be inclined
by some angle ! relative to its surface normal (compare Fig. 20.5). Then
the surface of the opening perpendicular to the inclined axis ! can be con-
sidered to be the pointlike wave center or “point source”.

20.5 A Three-Dimensional Interference
FieldC20.1

C20.1. The concept “spa-
tial” in the characterization
of a three-dimensional in-
terference field is in fact
superfluous, since fields
are always spatial. POHL

wants to emphasize that
the interference occurs in
a three-dimensional region
and not only on the observa-
tion screen.

with Two Openings
as Wave Centers: Transverse
Observation

The classical interference experiments, described in 1807 by THO-
MAS YOUNG5 (Fig. 20.7), are not only of historical significance, but
are also still of practical importance today (Sect. 20.16). YOUNG

used two openings (circular holes or slits) to select two wave groups
from one original group. These openings, called S1 and S2 in
Fig. 20.7, serve as wave centers or point sources. They are illu-
minated from the left by approximately planar waves. These waves
are emitted by a light source which is at a distance of around 1m;
it is a lamp that emits light through a slit S0. One thus obtains two
separate beams of light. Using a strictly geometrically-drawn ray
construction (the beam axes in Fig. 20.7, dashed), these two beams
do not overlap, so that they cannot interfere. In reality, however, both
beams diverge as a result of diffraction (Sects. 16.9 and 17.2): Their
true distribution is illustrated by the model experiment in Fig. 20.8.
Thus, the two light beams overlap in Fig. 20.7 just a few meters
beyond the slits S1 and S2. From that point on, one can capture the
interference fringes on a screen from any point within the spatial

5 See the footnote at the end of Sect. 20.2, and also Comment C12.3 in Vol. 1.

http://tiny.cc/xdggoy
http://tiny.cc/9eggoy
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S1

S1

S2

Figure 20.8 Two model experiments illustrating YOUNG’s interference
demonstration. At the left: The divergent light beam coming from one slit; at
the right: The superposition of the two beams which emerge from two slits.
The left image was obtained in the same way as the one in Vol. 1, Fig. 12.29,
right side. In order to produce the image on the right, two glass plates, each
containing the left image, were placed one above the other with an appropri-
ate shift.

interference field.C20.1 The fringes shown in Fig. 20.9 (actual size)
were photographed at a distance of 5m in transverse observation.
For the angular spacing ˛m of the maximum of m-th order, we find:

sin˛m D m�

D
(20.2)

.D is the spacing of the two slits S1 and S2/:

There are numerous variations on this experiment: For example, in
Fig. 20.7 we could leave out slit S0 and replace slit S2 by a mirror image
of slit S1 (with a mirror in the dot-dashed plane of symmetry in Fig. 20.7.
(H. LLOYD, 1837)). Or we could deflect the waves emerging from the
slits S1 and S2 using flat prisms (“FRESNEL’s biprism”), so that they pass
along the line of symmetry, simplifying their superposition (A. FRESNEL,
ca. 1820). Examples will be described below.

Figure 20.9 A section of the inter-
ference pattern (from m D �6 to
m D C6) which is observed with
YOUNG’s experimental arrangement at
a distance of 5m on a screen at normal
incidence (actual size, red filter light,
a photographic positive)

–6 –4 –2 0 +2 +4 +6

–6 –4 –2 +2 +4 +6

Order m of the maxima

Order m of the minima
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20.6 The Spatial Interference Field
in Front of a Flat Plate with Two
Mirror Images as Wave Centers:
Longitudinal Observation

THOMAS YOUNG’s interference experiment has a disadvantage: The
visibility of the interference fringes is not sufficient to allow it to
be demonstrated to a large audience. The diameter 2y of the light
source must be kept small in order to fulfill the coherence condition.
If the width 2y of slit S0 is too large, the fringes disappear. A large-
diameter light source requires a very small opening angle !. This
can be obtained using two mirror images as wave centers. We pro-
duce them in a first experiment by using a flat plate with parallel
surfaces.

Figure 20.10 shows a plate (of thickness d) with planar, parallel sur-
faces at a distance A from an observation screen. K is a lamp which
is shielded on its sides and behind by the small box R. The light
beam is strongly divergent. It is reflected from both the front and the
back surfaces of the plate; therefore, two light beams propagate from
the plate to the screen. The two mirror images of the lamp serve as
wave centers I and II; circular interference fringes on the screen are
the result. The coherence condition need be fulfilled only for partial
beams, whose opening angle is denoted as 2! in Fig. 20.10. When
the plate is thin, we find

! � d sin 2ˇ

2A
: (20.3)

Derivation: For sufficiently thin plates and neglecting refraction, we find
from Fig. 20.10:

sin 2! D z

.A C C/= cosˇ
D 2d sinˇ cosˇ

A C C
D d sin 2ˇ

A C C
:

For small values of the angle !, we have sin 2! � 2!, and furthermore,
we can neglect C relative to A, thus obtaining Eq. (20.3).

For thin plates, e.g. a mica sheet about 40�m thick, sin! becomes
extremely small, of the order of 10�6. Then the light source can
have a diameter of several centimeter and still fulfill the coherence
condition (Eq. (20.1)); that is, it acts as a “point source” of light. We
could for example use a small Hg discharge lamp; this was the case
for the photograph of the interference pattern in Fig. 20.10. It covers
the whole wall of a large lecture hall. This impressive demonstration
requires no adjustments at all.

Of course, the experiment could also be carried out using a thin layer of air.
This has the advantage that d can be made still smaller than the thickness
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Figure 20.10 The interference experiment illustrated here produces a spa-
tial interference field by making use of a plate with planar, parallel surfaces
and divergent light beams. The picture shows a cross-section of the result-
ing interference field where it intersects the screen (the distance between the
lamp and the plate is a few centimeters, while the distance between the lamp
and the screen is several meters. Longitudinal observation as illustrated in
Fig. 20.6). One can capture “segments” of the interference rings with a matte
glass screen close to the surface of the plate if the diameter 2y of the lamp is
sufficiently smallC20.2

C20.2. This simple inter-
ference experiment, whose
pattern covers the whole wall
of a large lecture room, is
among the most impressive
demonstrations of the inter-
ference of light waves. POHL

published it for the first time
in 1940 in Die Naturwis-
senschaften 28, p. 585. The
artful inclusion of his assis-
tant in the picture makes the
impressive size of the inter-
ference pattern clear even
in a book illustration. Later,
other textbooks contained
references to this experiment,
often calling it “POHL’s inter-
ferometer”.
For clarity, the thickness
d D 40�m of the plate
is drawn much too large in
comparison to the diameter
of the lamp (� 1 cm). The
mirror images of the lamp
are in fact shifted by only
a very small distance relative
to one another. The diameter
2y of the lamp, which enters
into the coherence condition,
is nevertheless sufficiently
small so that one can observe
the interference rings quite
close to the surface of the
plate. The opening angle 2!
of two rays emerging from
the lamp becomes greater
when the screen or a matte
glass disk is brought closer to
the plate.(Video 20.2,

Video 20.2:
“POHL’s interference ex-
periment”
http://tiny.cc/kfggoy .

Exercise 20.1).

of a mica sheet. Then we can use even a carbon-arc lamp as light source
(incandescent light!) Furthermore, with the air layer, the minor disturbance
due to double refraction in the mica is absent. (It can be seen in Fig. 20.10
below the arrows at the top of the lower image).

The angular spacing ˇ which belongs to an interference ring of order
m, that is the path difference � D m�, is denoted by ˇm. Then for

http://tiny.cc/kfggoy


Part
II

392 20 Interference

an air layer of thickness d, to a sufficiently good approximation6 we
find:

cosˇm D m�

2d
: (20.4)

The number N of rings is limited. We obtain N D 2d=�. The inner-
most ring has the largest order, namely m D 2d=�.

One can observe interference not only with singly-reflected light beams,
but also with transmitted beams. Then the direct and the doubly-reflected
beams interfere.
The amplitudes of their wave groups are however rather unequal, and the
resulting minima are therefore not as dark as with reflected light. This
mode of observation can also be used in most of the experiments described
in the following sections.

20.7 The Spatial Interference Field in
Front of a Wedge Plate with Two
Mirror Images as Wave Centers:
Oblique Observation

The air layer (or “plate”) described above can be conveniently pro-
duced with a wedge shape (Fig. 20.11). The light source is at the
upper left. The interference pattern in Fig. 20.11 was produced and
photographed using this setup. Its area on the wall was around 1m2.
It is hardly necessary to darken the lecture room for this demonstra-
tion.

The air wedge can be replaced by a soap-bubble film. It forms a wedge due
to gravity, with its thicker base at the lower end.

In contrast to FRESNEL’s interference demonstration (see below), the
angular extension of the interference field is here independent of # .
It is determined by the diameter of the plates. As a result, with
the wedge arrangement, we can make the angle # � ! very small
and obtain large, widely visible interference patterns by using light
sources with a large diameter 2y.

Strangely enough, many textbooks still begin with an interference ex-
periment which was described by A. FRESNEL around 10 years after
TH. YOUNG. FRESNEL’s setup (Fig. 20.12) can be obtained from the
arrangement sketched in Fig. 20.11 by putting the two reflecting surfaces
beside each other rather than behind each other. This arrangement is

6 This approximation neglects small differences in the angles of inclination ˇ for
rays separated only by the angle 2!, and in addition refraction is neglected, as
also in the later Figs. 20.12, 20.13 and 20.32; and finally also the phase jump
of the waves upon reflection from an optically denser material, which is quite
unimportant in the above connection,C20.3.

C20.3. When a light wave
is reflected at the boundary
of an optically denser ma-
terial, i.e. at the boundary
of a material with a larger
index of refraction, it expe-
riences a phase jump of � or
180ı. This phase jump plays
a role in several places in
the quantitative treatment
of interference phenom-
ena involving reflections in
the following. The effect is
treated in detail in Chap. 25,
Sects. 25.7 and 25.8.
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Figure 20.11 An interference experiment with two glass plates placed one
behind the other (an air wedge). The wave centers I and II are represented
here by mirror images of a large light source K (e.g. the crater of an arc lamp
with a red filter). No adjustments whatever need be made. One places two
thick glass plates, for example squares 7 cm on a side (or the bases of two
right-angle prisms) on top of each other, with a thin metal-foil strip clamped
between them on one side to produce the wedge shape.

Figure 20.12 An interference ex-
periment with two adjacent glass
plates (FRESNEL’s mirror exper-
iment, 1816). The wave centers I
and II are represented by the mir-
ror images of a light source in the
form of a narrow slit S0. The adjust-
ment is difficult: The surfaces of the
two mirrors must not form a step
at their point of intersection. This
would give an additional path dif-
ference and would make the setup
usable only with long wave groups,
such as those from a sodium-vapor
discharge lamp, but not with incan-
descent light. A section along the
length of the image on the screen is
similar to the image shown actual
size in Fig. 20.9.
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however rather disadvantageous for FRESNEL’s experiment. The angular
range of its interference field is only � 2# . As a result, the wedge angle
# cannot be reduced too far; at the same time, the coherence condition
(20.1) must be obeyed for ! D # . This however sets an upper limit on the
diameter 2y of the light source S0, in turn reducing the visibility (intensity)
of the interference pattern.

20.8 Interference in the Image Plane
of a Pinhole Camera

In Fig. 20.10, the mirror images I and II of the lamp K act as “point
sources” of spherical waves. In the figure, on each side two radii of
these spherical waves are sketched in as rays (light-beam axes). The
direction of the light in the rays could be reversed. Then the large
screen, illuminated for example by Hg-vapor discharge lamps, would
act as the light source. Instead of the “pointlike” lamp K, we then use
an accessory which is indispensable for image formation, an aper-
ture B (Sect. 17.1). In Fig. 20.13, at the left, we see the opening of
a pinhole camera. The aperture B sorts the rays which are reflected by
the plate (the beam axes) according to their angles of inclination ˇ.
These in turn determine the path differences produced by the two re-
flections, which then give rise to interference maxima and minima in
the irradiation intensity Ee at the image plane.

An illuminated screen as light source

Mirror images of
the aperture

Mirror images of
the aperture

Plate with
plane-parallel
surfaces

Plate with
plane-parallel
surfaces

Pinhole
camera

Focal plane

An illuminated screen as light source

2ω

2ω 2ω2ω A

B

A

β

β

β

A

C C

d d

I

II

Figure 20.13 The production of circular interference fringes in the image plane behind an
aperture B. The shape and position of the extended light source are not important. It could
always be replaced by a plane-wave emitter for thought experiments. Here, it is an illumi-
nated screen which is set up parallel to the reflection plate. This setup allows us to clearly
recognize the connection with Fig. 20.10.
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20.9 Interference in the Focal Plane of
a Lens: Longitudinal Observation,
Curves of Equal Inclination

Behind the small aperture of a pinhole camera, the luminous den-
sity (see Comment C19.7.) of the circular interference fringes is
small. Therefore, we replace it by the large aperture of a lens and
use its focal plane as our image plane. In this type of arrangement,
the aperture (independently of the thickness of the plate) defines the
boundaries of two parallel light beams with the angle 2! D 0. In
Fig. 20.13, on the right, besides the axes of the two beams, we see
four wavefronts sketched in at two points along the beams.

By far the most convenient arrangement is to use the relaxed lens of
an eye.

The walls of the room, its furniture etc. are irradiated with the light
from several Hg-vapor discharge lamps and the observer looks at
a mica plate (e.g. about 0.15mm thick) from an arbitrary position.
The eye of the observer may approach the plate very closely. The in-
terference fringes are formed not on or in the plate, but rather on the
retina of the observer’s eye as the image of an infinitely distant plane.
They are completely absent without the observation instrument, in
this case the eye of the observer, in contrast to the three-dimensional
interference fields in Figs. 20.10 and 20.11.

An objective observer sees the dark interference fringes as a pattern
on a luminous surface, and they seem to be localized on the surface
of the reflecting plate. This phenomenon is not explicable in terms of
physics, similarly to e.g. the inverted vision in Fig. 15.3.

An analogous example: We see the sky within a small mirror at a distance
of ca. 1m as a bright area. If then for example a wire grid is held midway
between the mirror and the eye, we will see the grid as a dark pattern which
subdivides the bright area.

To conclude this section, we add a quantitative supplement: The path
difference � D m� D 2d cosˇm of each pair of rays is given for an
air layer by Eq. (20.4). For a layer with an index of refraction n ¤ 1,
we find

� D m� D 2d
q
n2 � sin2 ˇm (20.5)

(m D order of the interference maximum D integer. � D m� holds for
maxima,� D �

m � 1
2

�
� for minima; derivation in Fig. 20.14).

The path difference for a given layer (d D const) is determined only
by the angle of inclination ˇm. Therefore, we refer to interference
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Figure 20.14 The derivation of Eq. (20.5). If the
material in the layer or plate has a larger index
of refraction n than the material in front of the
reflecting surface, then the reflection produces an
additional path difference.C20.2 This is only rarely
of importance (e.g. in Fig. 21.12) and is thus not
taken into account in Eq. (20.5)

I II
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2d

 si
n

β 
ta

n
γ

curves of constant inclination (W. HAIDINGER, 1849, O. LUMMER,
1884).C20.4C20.4. See also the LUM-

MER-GEHRCKE plate in
Sect. 22.7.

These play an important role in research and technol-
ogy.

� D 2nl � a D 2nd

cos �
� 2d sinˇ tan � ; � D 2d

�
n � sinˇ sin �

cos �

�
:

Then we set

cos � D
q
1 � sin2 � and sin � D sinˇ

n

to obtain

� D 2d
n � sin2 ˇ

ns
1 � sin2 ˇ

n2

; � D 2d
q
n2 � sin2 ˇ :

When the incident and reflected monochromatic light is perpendicu-
lar to the plate, that is ˇ � 0, (and is therefore observed only with
a lens behind a small aperture!), we can consider the interference
fringes from layers whose surfaces are not plane-parallel to be lines
of equal layer thickness. We then refer to curves of constant thick-
ness.

With extremely thin layers, e.g. soap-bubble films, oil films on water
etc., the interference fringes become very wide. To observe them,
we must vary the angle ˇ by a considerable amount according to
Eq. (20.5), in order to change the path difference � by an amount
equal to � and thus pass from one interference fringe to its neigh-
boring fringe. For this reason, when observing with natural light, for
example daylight, we often see large surfaces in a single bright color.
We then refer to the colors of thin films.

The colors of thin films are included in every school physics text-
book. Their correct explanation is however more difficult than for
any other interference phenomenon. Often, NEWTON’s rings are de-
scribed. Imagine that in Fig. 20.11, the upper surface of the air wedge
were replaced by a weakly convex surface which just touches the
lower surface at its center. The explanation becomes simple only for
the case that the light falls on the plate or layer at normal incidence,
and the plate is viewed perpendicular to its surface.
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20.10 Sharpening the Interference
Fringes. Interference Microscopy,
MÜLLER’s Stripes

In Volume 1, we first discussed the interference of waves from two
wave centers (or “point sources”). Then we treated interference of
waves from three and more wave centers, and finally frommany wave
centers arranged on a lattice (Vol. 1, Sect. 12.15). In this process
of increasing the number of wave centers, we found that the inter-
ference fringes became sharper and sharper, without changing their
positions (Vol. 1, Fig. 12.40). Experimentally, this was demonstrated
using two setups (Vol. 1, Figs. 12.65 and 12.66). For light waves, we
initially show just one experiment. A detailed discussion will follow
in Chap. 22.

Figure 20.15 is an extension of Fig. 20.13. The two surfaces of the
plane-parallel plate are made into semi-transparentmirrors by adding
a layer of evaporated metal. Then, collimated light beams (that is,
2! D 0 from infinitely distant sources) can reach the aperture B
after not just two, but a greater number of reflections. Here also, this
aperture determines the diameters of the light beams and their angles
of incidence ˇ. The essential aspect of this setup is the lattice-like
series of images of the aperture, one behind the other.

In Fig. 20.15, we see the resulting dark fringes on a light background.
For practical applications, particularly for spectral apparatus, one car-
ries out the observations with transmitted light. This yields light
interference fringes on a dark background.

As usual, the interference patterns for incident and transmitted light
are complementary to each other, i.e. when they are superposed, the
fringes cancel each other to give a featureless illuminated areaC20.5

C20.5. To explain this com-
plementarity, remember
that looking from above,
one of two interfering light
waves experiences a phase
shift of 180ı (at the bound-
ary of the optically denser
material), while for the trans-
mitted light, there is no phase
shift (see Comment C20.2).
How such a phase shift can
exchange light and dark
within an interference pattern
can be very clearly seen in
YOUNG’s two-slit experiment
(Fig. 20.8, right): Imagine
that the waves emerging from
one of the slits are delayed
by a phase of 180ı; then the
light and dark regions are
exchanged.

(cf. Sect. 20.12).

How we can carry out the observation using transmitted light is de-
scribed in practical terms in the caption of Fig. 20.15.

Sharp interference curves of this kind are used for example for in-
terference microscopy (J.A. SIRKS, 1893). With this technique, one
can investigate samples in which the optical path (Sect. 16.3), that
is the product of the index of refraction n and the layer thickness d,
varies somewhat from one microscopic region to another. A simple
example (for the special case of n D const) is the measurement of the
thickness of thin films (Fig. 20.16). A shift of an interference fringe
by 1=100 of the fringe spacing corresponds to a height difference of
3 �10�9 m D 3 nm (using monochromatic illumination, � � 600 nm).

For the application of interference microscopy, an old technique
has again become interesting, namely the spectral decomposition
of interference fringes which were produced using incandescent
light and lie transverse to the long axis of the entrance slit of the
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Figure 20.15 The sharpening of the interference fringes through the use of
many collimated light beams with equal path differences between neighbor-
ing beams (for an air layer, this difference is 2d cosˇ). The sketch applies
to the observation of concentric circles (curves of constant inclination) with
reflected light. If transmitted light is used, one exchanges the lens for the
mirror image of the aperture closest to the plate. In this way, for the case
of a plate in the form of an air layer several centimeters thick, we arrive at
the scheme of the high-resolution spectral apparatus which was described in
1897 by CH. PÉROT and A. FABRY. The thick air layer is located between the
two mutually parallel, semi-transparent mirror surfaces of two glass plates
(which are slightly wedge-shaped to avoid disturbing reflections). The illu-
minated screen is usually replaced by a condenser lens with the light source
that is under investigation in its focal plane. More details can be found in
Sect. 22.7.

Figure 20.16 Interference mi-
croscopy. At left we see the stepped
profile of a thin air layer which pro-
duced the interference pattern seen
at the right. The thickness of the
evaporated layer is S D 0:1�m. For
clarity, the silvering on the plates is
not drawn. As in Fig. 20.13, these
are curves of constant inclination,
with a large angle of inclination ˇ,
observed with reflected light. The
dark interference fringes on a light
background are segments of large
circles (use a ruler to check this!).
(Exercise 20.2)
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Figure 20.17 On the right:
MÜLLER’s stripes in a con-
tinuous spectrum; left:
The profiles of the thin
air layers which produced
the interference patterns.
(First published in 1807 by
Th. YOUNG as hand-colored
drawings)

red violet

spectral apparatus. In this method, the continuous spectrum of these
“MÜLLER’s stripes” is scanned. These are colored curves of the same
fringe order m. Each profile transverse to the slit axis corresponds
to a particular shape of MÜLLER’s stripes. Figure 20.17 shows
two examples. Stepwise changes in the layer profile produce steps
in the stripes. When the surfaces are silvered, MÜLLER’s stripes
also become extremely sharp. Using these stripes, S. TOLANSKY

(1907–1973) was able to measure steps on single-crystal surfaces
of 1 nm, i.e. of molecular dimensions, with an incandescent light
source. He achieved the power of electron microscopy by using
simple interference microscopy.C20.6 C20.6. For measurements

of layer thickness in the
nanometer range, in addi-
tion to interference methods,
various other techniques
are used, among others the
quartz-oscillator balance
method and scanning tun-
nelling microscopy (STM).
Each of these techniques has
its specific advantages and
disadvantages, depending on
the application intended.

20.11 The Lengths of Wave Groups

Using red-filter light, we can observe interference fringes out to an
order of m D 10, i.e. with a path difference of � D 10�. From
Sect. 20.2, this allows us to draw conclusions about the lengths of
the wave groups: The wave groups of red-filter light must consist of
about N D 10 individual waves (i.e. wavelets, each with “one crest
and one trough”).

Interference fringes of much higher orders m, with path differences
� of up to many thousands, sometimes even more than 106�, can
be obtained with the radiation emitted by some metal vapors excited
electrically or thermally to light emission. This can be rather con-
veniently seen using the light from technical Na-vapor lamps (an
electric arc between electrodes made not of carbon, but rather of
sodium). We can attribute wave groups of considerably greater length
to such light sources; in the visible, they are in the range of 0.1mm
up to 1m. They consist of around 1:5 � 102 to 1:5 � 106 individual
wavelets. Light with long wave groups is called “monochromatic”.
Wave trains of practically unlimited length are emitted by the light
sources called “lasers”.C16.4

How should we imagine the wave groups of incandescent light, that
is the light from a glowing solid body (an arc lamp, an incandes-
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Interference minima in red-filter light

Figure 20.18 Interference fringes, produced using red-filter light with an air
wedge 28mm long, whose thickness increases up to 10�3 mm. Both plates
are rectangular and are ground to be flat wedges, in order to avoid disturbing
reflections. In addition, a linear facette is ground into the upper plate so that
the plates remain in “optical contact” at the thin edge of the wedge. The width
of the minima is reduced by multiple reflections.

Interference minima with incandescent light
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Figure 20.19 The same interference pattern as in Fig. 20.18, observed us-
ing incandescent light and a thermoelement (as a non-selective receiver or
radiometer) in the plane of the observation screen. Its width is indicated
by shading. At 0, the radiation passes without reflection through the plates,
which are in “optical contact” at this point. (sr means steradian, the unit of
a solid angle; see the footnote in Sect. 19.2 and Vol. 1, Sect. 1.5)

cent filament lamp, the tiny carbon particles in the hot flame gases
of a candle, etc.)? To answer this question, the simple interference
setup described in in Fig. 20.11 can be used; however, the plates are
now made not of glass, but rather of lithium fluoride. This material
is superficially similar to glass, but it transmits not only visible radi-
ation, but also the neighboring spectral regions, the infrared and the
ultraviolet7. At the sharp edge of the air wedge, the two plates are in
“optical contact”; there, no reflection occurs and there is no splitting
of the light into two partial beams.

To test the setup, we first employ red-filter light. Dark interference
fringes on a light background appear on the screen (Fig. 20.18).

For the observations, instead of the eye of an observer, we use a ther-
moelement which has been blackened with soot (Fig. 15.5), and is
thus a physical radiometer8. The results of the measurements are
shown graphically in Fig. 20.19. The zero point of the abscissa marks
the position of the “optical contact”. Starting there, the radiant inten-
sity I# (power/solid angle) of the radiation reflected from the two
wedge surfaces increases until it reaches an approximately constant
value: Instead of many interference fringes, we find in Fig. 20.19
only two flat maxima. The result: An interference field produced

7 Compare Fig. 27.1 for NaCl, the best-known of the alkali halides.
8 This radiometer is therefore not selective for radiations in different wavelength
regions like the human eye, which reacts to some regions in varying ways (chro-
matic hues! Sect. 29.9), and to some regions not at all.
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a b

Figure 20.20 Examples of two short, nearly aperiodic wave groups. An un-
structured series of such groups could be used to describe the behavior of
incandescent light in interference experiments.

with incandescent light shows only a weakly-developed structure.
Incandescent light behaves as though it could be described as an un-
structured series of short, nearly aperiodic wave groups, as shown for
example in Fig. 20.20. The true wave picture of incandescent light
can be imagined as being similar to a noise spectrum in acoustics.
More details will be given in Sect. 22.4.

20.12 Redirection of the Radiant Power
by Interference

Interference cannot create or destroy the radiant power (or energy
current), but instead just redirects it. What is lacking in the direction
of the interference minima is added in the directions of the interfer-
ence maxima. We offer two technically important examples of this:

1. Eliminating reflections, non-reflective coatings. A single glass sur-
face reflects about 4% of the normally-incident radiant power, while about
96% passes through the surface and into the glass. Imagine a thin, evap-
orated crystalline film on the glass block G in Fig. 20.21. Its material
is chosen so that the indices of refraction nair-film and nfilm-glass are ap-
proximately equal in some spectral region. Then the same fraction of
normally-incident radiant power is reflected at the boundaries 1 and 2.
In addition, the thickness d of the crystalline film is adjusted so that the
two wave trains which are reflected upwards have a path difference of
� D �m=2 for an average wavelength of �m within that spectral region.
Then they will cancel each other through interference. The surface is thus
strictly non-reflecting for �m, and all the radiant power which falls at nor-
mal incidence on the boundaries 1 and 2 passes without reflection losses
into the glass block G. For the neighboring spectral regions on each side
of �m, the thickness d is only approximately equal to �=2, so that the sup-
pression of reflection is incomplete, but still, for many practical purposes,
it is sufficient (compare Sect. 25.8).
2. Layered mirrors with nearly loss-free reflection; reflection filters. In-
stead of providing a non-reflective coating, we can redirect the large frac-
tion of light that penetrates into the glass block in spite of reflection losses,

Figure 20.21 Non-reflective coating 1

2

G
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Figure 20.22 The structure of a reflec-
tion filter

SiO2

G

TiO2
n = 2.66n =1.45

Figure 20.23 Top: A reflection filter
which allows only small portions of the
visible spectral region to pass, in the
violet and the red. Bottom: A reflec-
tion filter which passes around 80% of
the light in the visible, but no infrared
between � D 0:8�m and � D 1�m.
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that is roughly 96% of the radiant power can also be reflected. To achieve
this, we need a large number of reflecting ancillary surfaces. They can
be obtained by alternately evaporating two types of thin crystalline films
(Fig. 20.22). Each boundary surface, as an ancillary mirror surface, re-
flects the same fraction of the normally-incident radiant power. The layer
thicknesses are chosen so that the path difference � for the average wave-
length �m of the spectral region that is to be reflected is equal to �m9

With � D �m, the amplitudes of the reflected wave trains all add with
the same phase. In this manner, we can fabricate nearly loss-free mirrors
for selected, narrow spectral regions; in the visible region, these are vastly
superior to metallic mirrors. For broad spectral regions, by using around
20 to 30 layers we can obtain reflection filters which remove certain spec-
tral regions not through absorption, bur rather by reflection. There are
for example reflection filters which allow no visible light to pass through
(Fig. 20.23, top); or no infrared light from the spectral region adjacent to
the visible (Fig. 20.23, bottom).

20.13 Interference Filters

Like all spectral apparatus, plane-parallel plates (FABRY-PÉROT
étalons) can also be used to separate narrow spectral regions out of
incandescent or natural light. In this way, we arrive at “interference

9 Jumps of �=2 are included in the path differences �; these are due to reflection
by a more optically dense material.C20.2
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Figure 20.24 An interference fil-
ter. A shows the light from the
interference plate alone; in B, an
absorption filter (e.g. colored glass)
for short wavelengths dotted, and
a reflection filter for long wave-
lengths dashed. In part C, we see
the combination of A and B (the
half-width of the transmitted spec-
tral region around � D 600 nm is
H D 10 nm, so that the spectral
selectivity �=H is equal to 60). Tr
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filters” (usable only for light at normal incidence). Their princi-
ple: In Fig. 20.15, we replace the plane-parallel air layer by a very
thin (d < 10�3 mm), non-absorbing crystalline film, e.g. a film of
MgF2, partially silvered on both surfaces. For incandescent light at
normal incidence (ˇ D 0ı), it permits only narrow spectral regions
to pass through, whose wavelengths �1:�2:�3: : : : have the ratios
1: 12 :

1
3 : : : : They emerge as bright interference maxima on a dark

background, with the orders m D 1; 2; 3; : : : (Fig. 20.24 A). These
plane-parallel crystalline films can be combined with suitable filter
layers so that only one of the transmission regions remains, e.g. at
�3, as in Fig. 20.24 C.

20.14 Standing Light Waves

(OTTO HEINRICH WIENER,C20.7 1890). C20.7. See H. Jäger, Annalen
der Physik, 5th series, Vol. 34
(1939), p. 280.

The wavelengths of vis-
ible light are only some few 10�4 mm. Nevertheless, we can ob-
tain standing light waves – although not readily in simple demon-
stration experiments – by using the technique described in Vol. 1
(Sect. 12.5).

For example, one can press a liquid mercury mirror against an ex-
tremely fine-grained photographic plate. The light which arrives at
this mirror at normal incidence and is then reflected by the mercury
darkens the photographic emulsion in equidistant, separated layers,
with a spacing of �=2. Figure 20.25 shows a thin slice from such
an emulsion, cut perpendicular to the plane of the plate, at a high
magnification.
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Figure 20.25 The photographic detection of standing light waves (� D
546 nm). A magnified view of a section through a gelatine emulsion, allowed
to swell up to 10 times its original thickness by immersing in water. This is
a small section from an image produced by S. MAGUN in 1935; the image
makes several hundred wave crests and nodes visible (cf. Vol 1, Fig. 12.47).

20.15 Interference due to Particles
which Redirect the Light

In Figs. 20.10 and 20.13, each ray coming from the light source was redi-
rected at the two surfaces of a plane-parallel plate by reflection and thus
split into two partial rays. Instead of reflection, the rays can also be redi-
rected by diffraction or scattering. A redirection by small diffracting or
scattering particles can for example also be used, when these particles are
arranged directly in front of or on the surface of the plate.
One could, for example, take an ordinary household mirror (i.e. a glass
plate, by no means plane-parallel, which is silvered on its rear face) of
around 30 cm diameter. The glass surface is dusted or rubbed with mod-
elling clay. A small light source is set up about 2m in front of the mirror,
and the eye of the observer is at some arbitrary distance behind the light
source. In Fig. 20.26, we have allowed ourselves a certain luxury: The
arc lamp is placed at the side and sends its light via a small metal mir-
ror H onto the dusted surface of the large mirror. This allows us to place
our eyes practically “at the position of the light source”. Looking at the
mirror in a direction perpendicular to it, we can see concentric circular
interference rings on its surface. They are surprisingly clear. Behind their
common center, we see the image of the light source. The diameter of the
rings varies with the distance of the observer from the mirror. In red-filter

Dusty
mirror

Arc lamp

H

–
+

Figure 20.26 Subjective observation of the interference rings which are pro-
duced on the surface of a thick household mirror after dusting or clouding it.
They are often called “QUETELET’s rings” (but they were described already
in 1704 in NEWTON’s “Opticks” in great detail). H is a small planar mirror
which acts as light source.
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Figure 20.27 The occurrence of small path differences in thick mirror-glass
plates (refraction was neglected here), and the derivation of Eq. (20.6). The
decisive angle for the coherence condition, 2! (denoted here as � ), is quite
small. For clarity, the angles ˇ and � are exaggerated in the drawing. How-
ever, for the calculation, we assume (as in the actual experiment) that the
angles are small. We thus set sinˇ D tanˇ, etc.

light, we can easily count the usual 10–15 orders. When we view the mir-
ror obliquely, the center of the rings appears shifted. In incandescent light,
we see a bright, colorless ring of zeroth order; behind it is the image of
the lamp. The rings bordering this central maximum appear deep black
to the eye. They are followed by the usual series of higher-order rings, in
gradually fading colors.
Interference fringes of low order can be produced only by small path
differences. How can they occur here in spite of the thick mirror-glass
plate? Answer: As small differences between two large path differences
(THOMAS YOUNG, 1802). In Fig. 20.27, B is one of the large number of
particles which redirect the light rays reaching the mirror. Two paths lead
both from the light source to the particle B and also from the particle to
the eye of the observer. Along path 1, the light from the source arrives
at the particle B via a ‘detour’. From B, however, after being redirected
by diffraction or scattering, it reaches the eye directly along the path 1
.
Along path 2, the light from the source arrives directly at B, but from B,
after redirection by diffraction or scattering, it again takes a ‘detour’ along
path 2
 to arrive at the eye of the observer. The path difference � between
these two wave trains is thus rather small. We define the ratio

Distance r to the eye

Distance s to the lamp
D q :

Then, for small values of ˇ and � , and in the limiting cases q � 1 or
q � 1, we have

� D d

n

�
q2 � 1

�
sin2 ˇ (20.6)

.Derivation see below; nomenclature as in Fig. 20.27/:

At the m-th maximum, � D ˙m�; then for its angular spacing, we have

sin2 ˇ D ˙ m� � n
d .q2 � 1/

(20.7)

(ˇ is the angle of inclination as in Fig. 20.27, d the thickness, and n the
index of refraction of the mirror-glass plate. The minus sign holds for
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q < 1). The same angle ˇ therefore appears for two different values of q.
In one case, the eye is in front of the light source, in the other case, it is
behind the source (as in Fig. 20.26). The innermost ring has the smallest
order m, while in Fig. 20.10, it had the largest.
The difference in the optical paths (Sect. 16.3) determines the path differ-
ence between the two wave trains:

� D .l2 C nl4/� .l1 C nl3/; (20.8)

l2 D 2x sin �; x D d tan� 0 D d sin � 0 D d

n
sin �;

l2 D 2d

n
sin2 � and analogously, l1 D 2d

n
sin2 ˇ;

nl3 D 2dn

cos � 0 D 2dnp
1 � sin2 � 0

D 2dn

�
1 C 1

2
sin2 � 0

�
;

nl3 D 2dn

 
1 C 1

2

sin2 �

n2

!
and nl4 D 2dn

 
1 C 1

2

sin2 ˇ

n2

!
;

� D d

n
.sin2 � � sin2 ˇ/:

For small values of the angles ˇ and � , we find

sin�

sinˇ
D tan �

tanˇ
D r

s
D q; � D d

n
.q2 � 1/ sin2 ˇ : (20.9)

20.16 YOUNG’s Interference Experiment
in the FRAUNHOFER Limit

In YOUNG’s interference experiment (Fig. 20.7), the wave centers
are two openings (holes, or better, slits), S1 and S2. Their spacing D
can be chosen to be at most a few millimeter in the simplest setups;
otherwise, the two light beams will no longer overlap. This small
slit spacing is often annoying. However, we can free ourselves from
this limitation and use any values of the slit spacing D that we care
to: We need only set a lens L1 behind the slits S1 and S2. This is
illustrated in Fig. 20.28. The lens L1 redirects the two light beams
which emerge from the slits S1 and S2 as divergent beams; they now
converge towards the optical axis. They then intersect at the image

S0
S1

S2

L1

L

a ~ 20 m b ~ 1 m

L2

Width 2y Ocular
Image plane

2ω= D
a D

Figure 20.28 YOUNG’s interference setup with the FRAUNHOFER observa-
tion condition (L is a metal-vapor discharge lamp (Na or Hg)). The lengths
of the distances a and b permit readily-measurable widths 2y to be used for
the slit S0 (Videos 16.3 and 20.1).

In Video 16.3, “Diffraction
and coherence” http://tiny.
cc/xdggoy, after 4:00min.;
and in Video 20.1, “Interfer-
ence” tiny.cc/9eggoy, which
shows YOUNG’s interference
experiment in its first part,
however with FRESNEL’s ob-
servation condition (see also
Sect. 20.5).

http://tiny.cc/xdggoy
http://tiny.cc/xdggoy
tiny.cc/9eggoy
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Figure 20.29 A single-
slit diffraction pattern,
observed using
YOUNG’s setup

plane with practically planar wavefronts, but the wavefronts are more
strongly tilted relative to each other than without the lens. Therefore,
the resulting interference fringes are more closely spaced than they
were without the lens. We can observe the fringes either through
a magnifying lens L2 (ocular or TV camera), or else project them as
an enlarged image onto a frosted glass screen using an objective lens.
The lens L1 and the magnifying glass L2 (ocular) together form a tele-
scope. Indeed, one usually makes use of a telescope with two slits S1
and S2 in front of its objective. In this form, YOUNG’s experimental
arrangement is especially important. We will thus treat it in some
detail.

Initially, we set the slit S0 to a narrow width and cover either slit S1
or slit S2. In both cases, we obtain the diffraction pattern as pho-
tographed in Fig. 20.29, and it is at the same position in the image
plane, symmetric to the optical axis. It is the central maximum of
the diffraction pattern that we have seen in Figs. 17.6 and 17.7 (its
secondary maxima are too faint to see).

Next, both of the slits S1 and S2 are opened at the same time. The
wave trains coming from S1 and from S2 interfere with each other:
The diffraction pattern is sliced through by sharp interference fringes
(Fig. 20.30). Here, an important precondition was met: The slit S0
acted in spite of its finite width 2y like a “point” (or rather a line-
shaped) light source. The slit width 2y thus meets the coherence
condition

2y sin! � �=2 : (20.1)

Now we describe something new: the

Measurement of the diameter of a distant light source

.A.H.L. FIZEAU; 1868/:10

We gradually increase the width of slit S0 and thereby violate the co-
herence condition. Nevertheless, we still see the interference fringes,
however more faintly, i.e. with poor contrast between a maximum
and its neighboring minimum. This decrease in the contrast is easy
to understand: Imagine that the slit S0 were sliced up into small seg-
ments along its length. Each one gives rise to an interference pattern
as in Fig. 20.30, but the individual interference patterns are shifted
along the axis of the slit relative to each other. Their superposition
gives rise to washed-out fringes.

10 Comptes rendus, Paris, 66, 934 (1868), and J.M. Stephan, ibid., 78, 1008
(1873).
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Figure 20.30 The interference fringes observed within the diffraction pattern
from Fig. 20.29: Single-slit diffraction and two-slit interference are super-
posed

When

2y sin! D � ; (20.10)

the interference fringes have completely disappeared, but only tem-
porarily: As the slit width 2y is increased still further, they return,
even more washed-out or lacking in contrast than before. For sin! D
2�=2y, they again disappear, and so on through several repetitions
(that is for sin! D 3�=2y, etc.). This is termed partial coherence.

From Eq. (20.10), setting sin! D D=2a, we find

2y D 2a�

D
or

2�

D
D 2y

a
D 2' ; (20.11)

where 2' is the angle of vision subtended by an object of diameter
2y seen from the distance a. With this relation, we can refer the
unknown diameter 2y or angle 2' of a distant light source to known
quantities, and thus measure it.

A.A. MICHELSON made use of FIZEAU’s technique to determine the
angles of vision 2' of several nearby fixed stars at known distances
a from the earth, for example that of ˛ Tauri (Aldebaran), for which
he found 2' D 0:020 seconds of arc. To achieve this, the distance
D between the two slits S1 and S2 in Fig. 20.28 was varied in a mea-
surable way. Using mirrors, D could be made even greater than the
diameter of the telescope objective.

20.17 Optical Interferometers

Optical interferometers are used to accomplish two tasks:

1. For highly precise comparisons of lengths or distances (e.g. length
measurement standards) on the one hand, and the wavelength of the
light on the other (cf. Vol. 1, Sect. 1.3).

2. For comparisons of two coherent light beams with different histo-
ries, e.g. after they have passed through different materials.

The simplest but already quite serviceable interferometers make use
of transverse observation. They employ the basic experimental setup
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Figure 20.31 An interferometer for determining the index of refraction of gases at
various densities (schematic in Fig. 20.28; G is a rubber bulb for changing the gas
density %). The two slits D immediately behind the lens L1 (f D 2m) are 2mm wide.
Their spacing is 10mm. The distances S1L1 and L1L2 are about 4m. Both light beams
pass through the glass window K which closes off the end of the gas container and is
sufficiently wide to intercept the collimated reference beam in the air beside the gas
vessel at K.

Figure 20.32 An interferometer with two
collimated light beams which are shifted
sideways and parallel to each other. The
effective thickness x can be varied by tip-
ping the plates relative to each other. When
they are parallel, x and thus also the path
difference between the two beams 1 and 2
are equal to zero. All unnecessary reflec-
tions, which in reality are eliminated by
apertures, have been left out of the draw-
ing.
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of THOMAS YOUNG in the arrangement shown in Fig. 20.28. There,
the two light beams are separated transversally by several centimeter
just behind the lens. It is thus easy to allow one beam to pass through
the air and the other through some other gas, in order to compare the
wavelengths in the two gases. Experiments of this kind are discussed
below; Fig. 20.31 shows a practical example.

All of the other interferometer designs also make use of interference
fringes in the image plane of a lens (often the lens of the eye), but
they employ longitudinal observation (Fig. 20.6). They implement
a plane-parallel plate of thickness x as the difference between two
plates of unequal thicknesses (TH. YOUNG, 1817). This is illustrated
for example in Fig. 20.32, where the axes of two light beams which
are shifted parallel to each other are drawn. Often, one replaces
the plates completely or partially by mirrors (e.g. at ˛), or partially-
silvered mirrors (at ˇ). One thus arrives at the interferometer design
of ALBERT A. MICHELSON (Fig. 20.33), with two mutually perpen-
dicular light beams (cf. Vol. 1, Fig. 12.67). The path difference is
denoted by x. By tipping the mirror II, one can also produce a wedge
plate. The plate III is in fact not necessary in principle, but it allows
one to achieve equal path lengths through glass for both light beams.
That simplifies the observations.
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Figure 20.33 The interferometer of
MICHELSON (only the axes of the
light beams are drawn). In the largest
examples of this design, the mutu-
ally perpendicular light paths (“arm
lengths”) are 30m long.C20.8

C20.8. Today, similar inter-
ferometers with arm lengths
of up to several kilome-
ter are in use, for example
in the gravitational-wave
detector system LIGO-
Virgo. (See e.g. https://en.
wikipedia.org/wiki/LIGO).
Still much longer arm lengths
are planned for the space
version of the experiment,
“Cosmic Explorer”.

II
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III
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20.18 Coherence and Fluctuations
in the Wave Field

In Fig. 20.34, A represents an aperture which radiates in all directions
and has a diameter of 2y. The whole solid angle from its center to the
screen S can be subdivided into small solid-angle elements, within each
of which the coherence condition (Eq. (20.1)) is fulfilled. Some of them,
chosen randomly, are marked in the figure as 1, 2, . . . The radiation which
propagates within these solid-angle elements strikes the screen in the re-
gions I; II; : : : The phase distribution in the emitting aperture A can initially
be thought of as arbitrary, but constant over time. Fulfilling the coherence
condition means that the aperture acts as a point wave source within each
of the individual angular elements 1, 2, . . . As a result, sections of the
regions I; II; : : : cannot be irradiated with different intensities; rather, the
irradiation of each individual surface element I; II; : : : must be uniform.
Phase changes of the individual emitting elements within A can change the
radiant intensity in each of the surface elements I; II; : : : only in a unified
manner. Such changes may be of different strengths for the different sur-
face elements I; II; : : :. Within each of these elements, the radiant intensity
can vary between zero and a maximum value. Statistical phase changes
within the emitting area therefore produce fluctuations on the screen S.
In the wave field of the light, these fluctuations occur much too quickly
to be observable with simple techniques. But they can be simulated quite
successfully in model experiments, in the simplest case using subjective
observation: We look through a red filter and a moving piece of frosted
glass at a single, distant light source (W. Martienssen and E. Spiller, Amer-
ican Journal of Physics 32, 919 (1964))11

Suppose that the emitting surface A is a sheet of white paper which is
illuminated with the extremely monochromatic light beam from a laser.
Then transverse variations of the phase distribution are absent, and with
them the fluctuations: Their spots on the screen are “frozen in”; instead
of a fluctuation, the screen shows a granulation. This must be taken into
account in making photographic images (e.g. for holography).
Our understanding of fluctuations and granulation can be increased by
considering Fig. 12.49 in Vol. 1. There, a hand at rest in the wave field
produces a granulation, while a hand which is changing its shape randomly
produces fluctuations. Both are made visible in the figure by using the ar-
tifice of the acoustic replica method (Vol. 1, Sect. 12.18).

11 To show this demonstration to a large audience, the surface of a glass plate is
covered with a layer of glued-on glass powder and then moved back and forth
perpendicular to the beam axis of a beam of light which is projected onto a wall
screen.

https://en.wikipedia.org/wiki/LIGO
https://en.wikipedia.org/wiki/LIGO
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Figure 20.34 The origin of fluctua-
tions in the wave field
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Exercises

20.1 The interference experiment shown in Fig. 20.10 is carried
out with an air layer of thickness d D 40�m. The wavelength of the
light used is � D 600 nm. a) What is the value of the largest order
mmax, and how large is the radius x of the corresponding interference
ring, when the distance of the plate from the wall of the lecture room
is A D 3m?
b) Given this distance, how large is the radius of the tenth interference
ring x10 (counting from inside to outside)? (Sect. 20.6)

20.2 The application of interference microscopy to the determina-
tion of the thickness S of an evaporated metal film gives a shift in the
interference fringes of 1/3 of the spacing between two fringes whose
orders m differ by 1 (Fig. 20.16). The wavelength of the light used is
� D 600 nm. How can we calculate the film thickness S from this,
and what is its value? (Sect. 20.10)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_20) contains supplementary material, which
is available to authorized users.

https://doi.org/10.1007/978-3-319-50269-4_20
https://doi.org/10.1007/978-3-319-50269-4_20
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Diffraction 21
21.1 Casting Shadows

The diffraction of light as an extension and softening of the geomet-
rical shadow boundaries has been treated already in Sects. 16.9 and
17.3. In this chapter, we will investigate the phenomenon of diffrac-
tion in some more detail.

Diffraction of mechanical waves was treated in depth in Vol. 1
(Chap. 12). Some of the observations discussed there will first be
briefly repeated here. Both behind an opaque disk, and behind an
opening, the wave field has a complicated structure. There are for
example always waves along the axis of the shadow cone behind an
opaque circular disk (Vol. 1, Fig. 12.13). Behind a circular opening,
zones containing waves and wave-free zones alternate along the axis
of the blocked-out cone. This was shown by a model experiment,
which is reproduced here again in Fig. 21.1. It was explained in
Vol. 1, Sect. 12.14 in terms of FRESNEL’s zone construction.

We briefly repeat: In Fig. 21.1, the arrows show the observation points P1

to P3 which we imagine to lie on the symmetry axis of the wave field. At
the point P2, the opening leaves an even number of zones free, namely the
two innermost (m D 1 andm D 2). The elementary waves which they emit
cancel each other to a great extent at the point P2. At point P3, however, the

B

P3 P2 P1

Figure 21.1 A model experiment showing the shadow cast by an opening
(Fig. 12.29 in Vol. 1). Suppose that plane waves with a broad wavefront are
incident from the left on the opening B. The “cut-out” wave beam extends
beyond its parallel geometric shadow boundaries as a result of diffraction.
Near the opening, the wave field exhibits a complex structure. Looking along
the direction of the beam, we can see this structure best. The structure along
the beam axis is explained in the text using FRESNEL zones.

413© Springer International Publishing AG 2018
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Figure 21.2 A comparison of the shadow of a circular disk M with that of
a circular opening of the same size at the same position

opening leaves an odd number of zones free, namely the three innermost
zones (m D 1 to m D 3). The elementary waves emitted to point P3 are
conserved. Beyond point P1, there is no longer any such structure.

With light waves, the situation is similar. Assume that L in Fig. 21.2
is an opening which radiates light waves. It replaces a pointlike wave
center as described at the end of Sect. 20.4. The obstacle M which
casts a shadow, or a circular openingwhich limits the beam, is located
between L and the observation point. Then for the radius rm of the
m-th zone, we find from Eq. (12.21) in Vol. 1:

r2m D m�
ab

a C b
; (21.1)

that is, for a D b; r2m D m�b=2I and for a D 1; r2m D m�b :

If the zone radii rm for light waves in Fig. 21.2 are of the same or-
der of magnitude as those for the waves in the model experiment,
then the product �b must take the same values for the light waves
as for the waves in the model experiment (Fig. 21.1). However, the
wavelength of visible light is more than 1000 times smaller than the
wavelength of the waves in the model experiment. As a result, the
observation points for the innermost zones (m D 1, 2, 3 . . . ) are
not, as in Fig. 21.1, only a few centimeters away from the obsta-
cle; instead, they are at distances of many meters. Therefore, in
Fig. 21.2, the lengths a and b have values of nearly 20m. The shadow
or diffraction photos made with this setup (Fig. 21.3, a to f) exhibit
rather complex diffraction patterns instead of sharp boundaries. They
change continually as the distances a and b are varied. In every case,
however, they show noticeable differences for circular disks and for
circular openings of the same size. Behind the openings, we always
see only a few rings. At the center of the picture, we can see alter-
nating maxima and minima when the distances a and b are varied.
Behind opaque disks, the number of rings increases when a and b
are decreased, but the center of the pattern always remains brightly
illuminated (CHRISTIAN HUYGENS). In the shadow of the disk, the
bright spot at the center persists; it is called POISSON’s spot. It is
a point in the shadow of a circular disk, a straight line in the shadow
of a rectangular obstacle, etc. POISSON’s spot could readily be ob-
served using water waves (Vol. 1, Figs. 12.13 and 12.15. Its origin is
discussed there in Sect. 12.14, point 4).
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Figure 21.3 The shadows of circular disks and circular openings of the same
diameter exhibit very different diffraction patterns. For demonstration ex-
periments, we employ red-filter light. For the photographs (positives), green
light with a wavelength of 546 nm was used. The distances a and b were each
17.5m. The images in the lower series show the distribution of the radiant
intensity along a diameter of the patterns in the middle series. Images e and
h correspond in Fig. 21.1 to a cross-section perpendicular to the beam axis at
the observation point P2 (Video 16.3).

Video 16.3:
“Diffraction and coher-
ence” http://tiny.cc/xdggoy.
The diffraction patterns
shown in the images a–c from
circular disks are demon-
strated using thin wires of
different diameters (1.7,
1.0, and 0.2mm) (from
14:30min.). FRESNEL’s
observation mode is em-
ployed, and both red- and
blue-filter light is used. An
explanation of the experimen-
tal arrangement is given at
the beginning of the video.

At a distance of a D b D 11 km, for red-filter light (� � 650 nm),
the diameter of the central zone is 2r1 D 12 cm. That is the size of
a small saucer. Such a saucer would thus block out only the central
zone from the free wave field. As a result, the shadow pattern of the
saucer would look like that in Fig. 21.3a, but its brightest ring would
have a diameter of around 50 cm.

For a D 1 and b D 1m, with red-filter light, the diameter of the first zone
is 2r1 D 0:6mm. It is thus rather simple (e.g. as in Fig. 16.29) to block out
fractions of the first zone with apertures or slits.

http://tiny.cc/xdggoy
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Figure 21.4 The
diffraction stripes at
the boundary of the
shadow of a semi-plane
(a D b D 18m,
photographic posi-
tive, red-filter light)
(Video 16.3)Video 16.3:

“Diffraction and coher-
ence” http://tiny.cc/xdggoy.
Beginning at 12:20min., the
diffraction stripes behind
a semi-plane are shown in
both red- and blue-filter light.
An explanation of the exper-
imental arrangement is given
at the beginning of the video.

Semi-plane

As the diameter increases, both circular disks and circular openings
lead to the same limiting case, that of a semi-plane which blocks all
the light on one side. The diffraction pattern is shown as a photograph
in Fig. 21.4. Every linear shadow boundary looks like this, if the
diameter of the light source is sufficiently small.

21.2 BABINET’s Theorem

BABINET’s theorem is useful for the treatment of diffraction phenom-
ena. A relevant thought experiment is illustrated in Fig. 21.5: From
the left, a weakly divergent light beam is incident upon an aperture
AB which is several centimeters wide. A light beam emerges to the
right. Its boundaries are somewhat fuzzy as a result of diffraction, as
is indicated by the shading at the edges of the beam.

Now we draw in a small line segment x. It can represent either
a small, opaque obstacle or a small opening of exactly the same size
and shape as the obstacle, in an opaque screen (not shown) that covers
the aperture AB.

When x is sufficiently small, the angular deflections of the diffracted
waves are large, and the light can penetrate into the regions DD0
which were previously dark, and illuminate the observation screen
there. The diffraction pattern should have the same form for x as an
obstacle and for x as an opening. The reason for this is the follow-
ing: When the free aperture AB is used without x, both diffraction
patterns occur simultaneously. Therefore, the wave amplitudes of

Figure 21.5 BABINET’s the-
orem. Above: FRESNEL’s
observation mode. Below:
FRAUNHOFER’s observation
mode. If x represents an opaque
obstacle, only the free surface
area outside it radiates light
waves
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http://tiny.cc/xdggoy
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Figure 21.6 a: The diffraction pattern from a wire (obstacle) of 0.5mm
diameter; and b: The diffraction pattern from an equal-sized slit
(FRAUNHOFER’s observation mode, as in Fig. 21.5b; photographic negative.
The center of the image is overexposed in spite of the blocking. The distance
to the screen was about 5m).

the two diffraction patterns must cancel each other exactly at every
point in the dark regions DD0 at every time. The amplitudes must be
equally strong for the obstacle and the opening, and they must have
opposite phases (ı D 180ı).
This thought experiment leads us to BABINET’s theorem. It states
that if we insert one after the other an obstacle and an opening of the
same size and shape into a wide light beam, and limit our observa-
tions to the regions which were completely dark with only the free
light beam (that is, outside the fuzzy, diffraction-broadened edges of
the beam), then in these regions, we will find the same diffraction
pattern for the obstacle and for the opening.

BABINET’s theorem holds both with FRESNEL’s and with FRAUN-
HOFER’s observation modes (Vol. 1, Sect. 12.12). With FRESNEL’s
mode, the diameter of x must usually be made smaller than 0.01mm.
Only then does the diffracted light have a sufficiently large angular
deflection, only then can it penetrate into the previously dark regions1

DD0. One single such small obstacle or opening however gives rise
only to an extremely faint diffraction pattern. It requires several thou-
sand of these obstacles or openings x to produce a clearly-visible
pattern.

With FRAUNHOFER’s observation mode, we consider Fig. 21.5b in-
stead of Fig. 21.5a; then, the free light rays from the aperture AB at
an “image point” are concentrated into a narrow band. The dark re-
gions DD0 occur on both sides of this band, rather close to the dashed
optical axis. As a result, even the few diffraction stripes from large
obstacles or openings x will fall in the dark regions DD0. Then even
just one opening will produce a readily-visible diffraction pattern.

Figure 21.6a shows, as an example for the validity of BABINET’s
theorem, the FRAUNHOFER diffraction pattern from a wire. It is the
same as that from a slit of the same width, as seen in Fig. 21.6b. For
these observations, the center of the diffraction pattern is blocked out
by a small screen.

1 In Fig. 21.3a–c, all the diffraction processes took place within the initially-
present free light beam. As a result, the decisive precondition for BABINET’s
theorem was not met, and thus the diffraction patterns from the disk and the open-
ing were quite different.
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21.3 Diffraction by Many Equal-Sized
and Randomly-Arranged Openings
or Particles

With FRAUNHOFER’s observation mode (e.g. as in Fig. 21.5b), we
make use of a small light source at a large distance on the optical
axis. The diffracting opening is placed directly in front of the lens,
fulfilling the coherence condition (Eq. (20.1)) for the angle 2!. The
diffraction pattern appears in the focal plane of the lens. We already
know from Fig. 17.8 how it will look for a small, circular opening
(e.g. of 1.5mm diameter). The position of the diffraction pattern is
independent of sideways shifts in the position of the opening. The
different segments of the lens always produce a diffraction pattern
symmetric to the optical axis. This leads to a conclusion which is of
practical importance:

We replace the single circular opening by a large number (around
2000) of similar openings of the same size (0.3mm diameter) in
a random arrangement. Then, as seen in Fig. 21.7, we obtain prac-
tically the same diffraction pattern as before with only one small
opening, but it is now visible from a considerable distance and for
a large audience. The diffraction patterns of all the openings add with
nearly nomutual disturbances. The reason: The light beams from two
or more openings can indeed mutually interfere and form additional
interference fringes, if they lie within a coherence angle, but the path
differences are different for all such combinations. Therefore, the
maxima and minima of the additional fringes superpose and cancel,
so that on the average, everything remains unchanged, apart from

Figure 21.7 The diffraction pattern from a large number of equal-sized,
randomly-distributed circular openings (about 2000 distributed over a circu-
lar area of 5 cm diameter; the diameter of the individual openings is 0.3mm.
FRAUNHOFER’s observation mode, photographic negative image). A small
image of the pointlike light source at the center was lost in reproduction. It
occurs when the incident radiation is not coherent within the entire angle 2!
subtended by the lens surface (Video 17.1).

Video 17.1:
“Resolving power”
http://tiny.cc/9dggoy.
In this video, a mask con-
taining a large number of
equal-sized and randomly-
arranged holes is placed
in front of the lens. See
Sect. 17.3.

http://tiny.cc/9dggoy
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Figure 21.8 Demonstration of the diffraction pattern from many randomly
distributed spheres of uniform size using FRESNEL’s observation mode. With
the dimensions used here, this gives the same result as FRAUNHOFER’s ob-
servation mode using a lens and convergent beams: The light-wave beams
which are deflected to the sides by diffraction are clearly separated from the
original beam (the zeroth order diffraction maximum) even without a lens
(Sect. 16.8).

a weak granulation structure (which is radial in non-monochromatic
light). This results from the random arrangement of the openings.

Granulation always occurs in diffraction patterns when coherently-
illuminated diffracting objects are arranged randomly. Generally,
one observes such granulation subjectively in the diffraction patterns
from semi-transparent structures (Sects. 21.4 ff.), for example look-
ing through a frosted glass plate or a “cloudy” windowpane at a small,
distant light source. (In both cases, the disordered particles do not
have a uniform shape and size. Therefore, the rings are missing.)

In the range of validity of BABINET’s theorem, small disks give the
same diffraction patterns as openings of the same size. Therefore,
we can replace the randomly-distributed openings by randomly-
distributed circular disks, and the latter by small spheres of the
same diameter: We dust a glass plate with lycopodium seeds, tiny
spheres of around 30�m diameter. With light of wavelength 650 nm
(red-filter light), the first diffraction maximum has an angular spac-
ing of about 1.3ı from the normal to the plate (the optical axis;
cf. Eq. (16.23)). We could thus use FRESNEL’s observation mode
and project the diffraction rings onto a wall screen. Figure 21.8
shows a suitable experimental arrangement.

21.4 The Rainbow

The little spheres of lycopodium seeds mentioned in the previous
section were randomly distributed on a glass plate. Instead of this
two-dimensional object, we could use a three-dimensional, random
distribution of diffraction centers (spheres). Nature provides such
a distribution in the form of the fine water droplets in fog and clouds
or in a rainstorm. Artificial fog can be readily prepared: We put a lit-
tle water into a glass bulb and reduce the pressure in the bulb rapidly
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Figure 21.9 Schematic of the
primary and the secondary rain-
bow

From the Sun Water droplets

Secondary
rainbow

SR PR
42°

42°

51°

51°

Primary

with an air pump. This leads to cooling of the air in the bulb, super-
saturation of the water vapor and formation of floating droplets. We
put a glass bulb filled with artificial fog in place of the dusted glass
plate in Fig. 21.8; the diameter of the rings varies with the diameter
of the droplets, and the latter increases in the course of time. This
can be easily tracked by the decrease in diameter of the diffraction
rings.C21.1C21.1. For more details on

the role of diffraction in rain-
bows, see for example the
article by H.M. Nussenzveig,
Scientific American (1977)
(available online at http://
www.phys.uwosh.edu/rioux/
genphysII/pdf/rainbows.pdf).
See also http://www.ams.org/
samplings/feature-column/
fcarc-rainbows and https://
en.m.wikipedia.org/wiki/
Rainbow

In a quantitative treatment of this phenomenon, we of course cannot
consider the droplets as opaque disks; we must also take into account
the waves which pass through the spheres. We thus arrive at our first
example of diffraction phenomena from transparent structures. We
start with the facts that are relevant to rainbows (Fig. 21.9):

1. The primary rainbow (PR) occurs only when the sun is not too
high in the sky, at most 42ı above the horizon.

2. The central axis of the rainbow lies on a straight line which
passes from the sun through the eye of the observer (bottom arrow in
Fig. 21.9).

3. Around this axis of symmetry, an arc with an opening angle of
ca. 42ı is seen; as a rule, it is red on its outer edge, then tinted yellow,
green and blue on going inwards. Inside the main arc are several dis-
tinct rings which gradually become fainter (“supernumerary” arcs).
The sequence of colors in the rainbow reminds us of a spectrum.

4. A second system of rings (arcs), the secondary rainbow (SR), has
an opening angle of 51ı around the axis of symmetry. It exhibits the
same colors as the primary rainbow (although it is usually fainter),
but in the reverse order: red is at its inside edge, then yellow, green
etc. going outwards.

The elucidation of these phenomena is found in the combined effects
of diffraction, interference, refraction, dispersion and reflection from
and within the randomly-distributed spherical water droplets. The
essential features can most readily be seen with the aid of a model
experiment (Fig. 21.10). Here, the water droplets are represented
by a thin jet of water, about 1mm in diameter, which flows from
a funnel. Instead of the sun, a line-shaped light source is used (an
illuminated slit with a red filter). The screen S takes the place of the
eye of the observer. On this screen, we see two typical diffraction
patterns, i.e. two bands, PR and SR. With incandescent light, the

http://www.phys.uwosh.edu/rioux/genphysII/pdf/rainbows.pdf
http://www.phys.uwosh.edu/rioux/genphysII/pdf/rainbows.pdf
http://www.phys.uwosh.edu/rioux/genphysII/pdf/rainbows.pdf
http://www.ams.org/samplings/feature-column/fcarc-rainbows
http://www.ams.org/samplings/feature-column/fcarc-rainbows
http://www.ams.org/samplings/feature-column/fcarc-rainbows
https://en.m.wikipedia.org/wiki/Rainbow
https://en.m.wikipedia.org/wiki/Rainbow
https://en.m.wikipedia.org/wiki/Rainbow
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Figure 21.10 A model experiment demonstrating the formation of the rain-
bow (red-filter light). The jet of water flows downwards through the plane
of the page. The screen S is set up perpendicular to the plane of the page. It
shows the two diffraction patterns, PR and SR. For subjective observation, we
would need a whole “cloud” of parallel jets of water; only then can the inter-
ference fringes of various orders from both “rainbows” pass simultaneously
into the pupils of the eyes of the observer.

Figure 21.11 Changes in the
wavefront by reflection and refrac-
tion in a water droplet (calculated
for monochromatic light; xx be-
fore, yy0 after passing through the
droplet). The beam marked with
‘R’ is reflected back onto itself.
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well-known superposition of a series of colors is seen. By varying
the diameter of the water jet, we can produce many different color
series. We can simulate all of the optical phenomena observed in the
atmosphere, including the nearly colorless rainbow from extremely
fine fog droplets.

We can complement this model experiment, starting with the primary
rainbow PR, by an elementary calculation. In Fig. 21.11, we consider
a parallel light beam which is incident on a water droplet. We first
draw several parallel rays 1–7 within this beam, and then, perpen-
dicular to them, a planar wavefront xx. We then calculate the paths
of the individual rays through the water droplet, applying the law of
refraction twice and the law of reflection once. Now comes the essen-
tial point: The emerging rays are concentrated near a certain angle
(the angle of minimum deflection, see Sect. 16.6) at the edge of the
diffraction pattern. This results in an overall angle of deflection ı
between the incident and the emerging rays of 42ı for red light.

We calculate the optical path length for one of the rays between the
points x and y (Sect. 16.3). That is, we decompose the segment xy
of the beam into individual path elements SW which pass through
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water and elements SA which pass through the air, multiplying the
former by the refractive index of water, n D 1:33 (for red light;
see Table 16.1), and then take the sum to be nSW CSA D L. Then we
choose points y along the other rays so that between the points x and
y, the optical path lengths of the other rays are also equal to L. Con-
necting the points y determined in this way gives the new wavefront
after passing through the water droplet. Instead of one planar wave-
front, we now have two wavefronts, intersecting at y0 and curved.
Some of the downstream wavefronts are also drawn in at J, to the left
of the calculated wavefronts .yy0/. Their lines of intersection yield
the diffraction patterns with interference fringes observed at PR in
Fig. 21.10. The patterns observed in the secondary rainbow (at SR)
are obtained in a corresponding manner with waves (rays) which are
reflected twice in the interior of the droplets. The point y0 lies on
the ray with an angle of deflection ı. This angle is 42ı for a single
reflection and 51ı for two reflections.C21.2C21.2. Larger numbers of

reflections can also occur,
but the resulting “rainbows”
are increasingly faint or lo-
cated towards the direction
of the sun, making them
mostly unobservable in the
sky. The concentration of
scattering paths near a certain
angle (“rainbow scattering”)
is also of great importance
in modern nuclear, atomic
and molecular physics; see
the first reference in Com-
ment C21.1.

21.5 Diffraction by a Step

The first diffraction pattern which we observed was that of a simple
slit of width B (Sect. 16.9). Now, we cover half of the slit parallel
to its long axis by a transparent glass plate, for example a micro-
scope cover glass (of thickness d and refractive index n). Then the
covered and the free halves together form a step. Its diffraction pat-
tern with monochromatic light is in general asymmetric. It changes
periodically when the wavelength is varied continuously, due to dis-
persion in the glass of the step. We find two symmetric limiting
cases: Fig. 21.12, upper left: The path difference � D d.n � 1/
is an even multiple of �=2; this is the order-one position, giving the
same pattern as without a step; and Fig. 21.12, lower left: � is an
odd multiple of �=2; this is the order-two position. We can change
� most conveniently by a slight tipping of the step. When the max-
ima approach the central axis more closely, they become stronger;
when they move away from it, they become weaker. These diffrac-
tion patterns are explained on the right-hand side of Fig. 21.12 (see
also Vol. 1, Sect. 12.13).

21.6 Diffracting Objects with
an Amplitude Structure

Both for the case of mechanical waves (Vol. 1) as well as in optics as
treated here, we began the discussion of diffraction phenomena with
a limiting case: The diffracting objects consisted partly of completely
transparent sections and partly of completely opaque sections. A par-
ticularly clear example can be found in Vol. 1 (Sects. 12.15 and 12.20,
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Figure 21.12 Left: The two symmetrical diffraction patterns from a step;
that is, a slit, half of which is covered by a transparent sheet. Comparison
with Fig. 12.33 in Vol. 1 shows that the diffraction pattern for� D N� (N D
0; 1; 2; : : :) is unchanged by adding the step to the slit. For� D .NC 1

2 /�, in
contrast, there is a minimum at the center of the pattern instead of the primary
maximum, and maxima appear near where the first minima were seen before.
(B is the slit width, ˛ the angular spacing from the center of the slit; see Vol. 1,
Sect. 12.13). Right: These results of model experiments are a continuation of
Fig. 21.1. The wave centers of the glass images were moved along the step
as sketched (Exercises 21.1 and 21.2).

Figure 21.13 A line grating magnified 20-fold.
The grating lines are furrows in the surface of
a glass plate, filled with an opaque material

point 7): A line grating. In such a grating, transparent “slits” alter-
nate with opaque “beams” or “rods”. Figure 21.13 shows an example
of a line grating. Immediately behind the grating, the amplitudes of
the transmitted waves are modulated along a direction transverse to
their direction of propagation in a “square-wave” form: The ampli-
tudes alternate sharply between a maximum and a minimum value
(Fig. 21.14a). The latter is equal to zero for the special case of com-
pletely opaque beams.

More important, however, is a different limiting case: An amplitude
modulation as shown in Fig. 21.14b. Immediately behind the grating,
the amplitude varies sinusoidally around an average value along a di-
rection transverse to the propagation direction of the waves. Gratings
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Figure 21.14 Two examples of modulation of the wave amplitude transverse
to the propagation direction of the waves, directly behind a line grating. In
the upper curve, the constant average value C is equal to A when the curve
represents a line grating with completely opaque beams and completely trans-
parent slits. D is the grating constant (length period of the modulation).

which produce this kind of modulation are called sine-wave grat-
ings. They can be readily prepared by a photographic method: We
generate an interference field with two monochromatic plane-wave
light beams which are tilted by a small angle relative to each other
(Fig. 21.15). A photographic plate or film is positioned perpendic-
ular to their midline and exposed to the interference pattern. After
being developed, it shows the image in the upper part of Fig. 21.14.

Sine-wave gratings have an important property which can readily be
shown in demonstration experiments: Symmetrically to the beam
which is not deflected (the zeroth diffraction maximum, m D 0),
they exhibit only two secondary beams of first order (m D 1); beams
of higher order do not occur.

The method used for fabricating sine-wave gratings – a combination
of interference and photography – can be experimentally varied in
many ways. It can also be used to fabricate line gratings which mod-
ulate the amplitudes of transmitted waves as shown in Fig. 21.16 c.
This curve can be represented as the superposition of the three am-
plitude curves sketched below it in the figure. This superposition is
not simply formal: The grating acts physically just like three individ-
ual sine-wave gratings as shown in the curves d through f. Each of
these gratings produces only its two secondary beams of first order

Figure 21.15 Top: A sine-wave
line grating (enlarged). Bottom:
The procedure for photographically
producing the grating shown above,
using the interference field of two
plane waves which intersect at an
angle

Photographic plate Z



21.7 Gratings with a Phase Structure 425

Pa
rt
II

M
od

ul
at

ed
 a

m
pl

itu
de

s c

d

e

f

x

Figure 21.16 The continuation of Fig. 21.14. Curve c shows an additional
example of amplitudes modulated along a direction transverse to the direction
of propagation of the waves, immediately behind a line grating. Curves d, e,
and f are the three FOURIER components of curve c.

(m D 1) in addition to the incident, practically monochromatic, col-
limated light beam (m D 0) which passes through without deflection
(cf. FOURIER analysis). This has a number of applications.

An example:
The grating shown in Fig. 21.13 (a raster grating) modulates the amplitudes
of the transmitted waves in a square-wave pattern (Fig. 21.14 a). It acts like
a very large number of sine-wave gratings. The grating constants of these
“sine-wave gratings” are in the ratios 1: 13 :

1
5 : : : (see Vol. 1, Sect. 11.3 and

Fig. 11.13). As a result, this grating structure produces a long series of
light-wave beams with the orders m D 1, 3, 5 . . . Each of these beams
belongs with its order m D 1 to one of the individual “sine-wave gratings”
(Exercise 21.3).

21.7 Gratings with a Phase Structure

We can carry out a continuous transition from grating beams which
attenuate the light (Fig. 21.13) to completely transparent beams.
They need only be distinguished from the “gaps” by their different
refractive index (G. QUINCKE, 1867). Such transparent structures
change only the phase of the light which passes through them. In
the regions of larger refractive index, the phase changes more than in
the regions of smaller refractive index. Thus, we call them for short
phase gratings or in general phase structures.

The diffraction pattern of a phase structure is geometrically no differ-
ent from that of an amplitude structure of the same form. Differences
are seen only in the ratios of the amplitudes and phases between the
higher-order and the zeroth-order maxima; the zeroth order may even
be completely lacking. An example is given in Fig. 21.17.
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Figure 21.17 The diffraction spectra from a line grating
with phase structure, in which the thickness of the “beams”
increases in the direction of the arrow. At ˛, practically
only the central zeroth order maximum is present; at ˇ,
only the first odd order to the right and the left. In the
diffraction pattern from a step (Fig. 21.12), the case at ˛
is the order-one position, and the case at ˇ is the order-
two position. To fabricate this grating, a wedge-shaped
silver film is deposited onto glass in high vacuum. After
the “gaps” have been inscribed, e.g. 5 per millimeter, the
silver film is converted by exposure to iodine vapor into
transparent AgI.C21.3C21.3. When several emit-

ting areas of width B/2 are
arranged side by side to form
a grating, as for Fig. 21.17,
and they emit alternately in
phase and with a phase dif-
ference of 180ı (that is in the
order-two position), then the
maxima appear unchanged at
the same angles and strengths
as in Fig. 21.12, below left.
Additional maxima are much
fainter, and are not shown in
Fig. 21.17 (Exercises 21.4,
21.5).

α

α

β

Quartz oscillator
P

v ≈ 1 MHz

Figure 21.18 DEBYE-SEARS experiment. Top: High-frequency sound
waves in a flat liquid-containing basin are used as an optical phase grating.
The sound waves produce a 3-dimensional layered grating through which the
light passes parallel to the layers. It is observed using the FRAUNHOFER

observation mode: The propagating sound waves are represented here as an
instantaneous image. They are generated by a quartz crystal which oscillates
in the direction of the double arrow; it is excited piezoelectrically to oscilla-
tions by an electrical oscillator circuit. Below: A diffraction spectrum of this
phase grating,C21.4

C21.4. In this layered grat-
ing, the density, and with it
the refractive index, is sinu-
soidally varied. The result is
thus a sine-wave phase grat-
ing, whose grating constant
is equal to the wavelength of
the sound waves. This pro-
duces a diffraction pattern
which is similar to that from
a line grating with ampli-
tude modulation, if the latter
has the same grating con-
stant and narrow gaps in the
grating. See L. Bergmann,
“Der Ultraschall”, VDI-
Verlag Berlin (1942), 3rd
edition, Chap. 2, and espe-
cially p. 118. English: see
e.g. https://en.wikipedia.
org/wiki/Ultrasonic_grating
(Exercise 21.6).

photographed in red-filter light.

Differences in the refractive index can result from changes in the density.
Sound waves consist of a periodic sequence of regions of increased and of
decreased density. Using electrical components, one can readily generate
sound waves with wavelengths of order of 1/10 millimeter in liquids, and
a narrow basin in which such sound waves are propagating can serve as
an optical phase grating (DEBYE-SEARS, 1932, Fig. 21.18). Observations
are carried out using the FRAUNHOFER mode. With it, the diffracting
structure can be placed in front of the aperture of the lens used to form an
image without changing the position of the diffraction pattern. As a result,
it plays no role that the acoustically-produced phase grating is moving past
the lens aperture at the velocity of sound. A diffraction spectrum obtained
in this manner can be seen in the lower part of Fig. 21.18.

https://en.wikipedia.org/wiki/Ultrasonic_grating
https://en.wikipedia.org/wiki/Ultrasonic_grating
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21.8 The Pinhole Camera and the Ring
Grating

We can now continue the discussion begun in Sect. 17.2. The central
bright spot seen in Fig. 21.3 d as a small white disk and represented
graphically in Fig. 21.3 g can serve as the image point of a pinhole
camera. It uses a circular opening as aperture, which admits only
waves from the first FRESNEL zone, the central zone.

The image point of a pinhole camera is however sharpest when the pinhole
allows a region with only 4=5 of the diameter of the central FRESNEL zone
to pass through (Fig. 21.19).

The bright spot within the shadow of all circular disks (e.g. in
Fig. 21.3 a – c) can be used for image formation. Here, we are not
limited in our choice of diameter for the disk (POISSON’s spot). Fig-
ure 21.20 shows an example. There, the disk was replaced by a steel
sphere of 4 cm(!) diameter.

More intense images than with only one disk or sphere can be ob-
tained by using a large number of concentric, narrow, circularly-
symmetric transparent rings which surround a central opaque disk.
When the radii of the rings are chosen randomly, only the radiant
power of the diffracted waves adds at every point along the symmetry
axis. The phase relations which would give a large resulting ampli-
tude are lacking, and thus the radiant power, which is proportional
to the square of the total amplitude, is lower. Fixed image positions
are also lacking. Both can be obtained only if the radii of the rings
are chosen to be proportional to the square roots of whole numbers,
and only light beams with a small opening angle are used. Then the
path lengths which lead through two neighboring rings from an object
point to the corresponding image point differ only by integral multi-
ples m of the wavelength �. The only path differences are � D m�,

Figure 21.19 The distribution of the radiant
intensity in the shadow of a circular hole that
allows only 4=5 of the central FRESNEL zone to
pass through (the diameter of the hole and the
distances are the same as in Fig. 17.9)
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Figure 21.20 An image (actual size) formed
using a steel sphere as the imaging system (the
setup was as shown in Fig. 21.2; the diameter
of the sphere is 4 cm, a D 12m, b D 18m).
The object is a metal stencil about 7mm high,
in place of the aperture L in the figure.
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Magnified
1.85 x

Ring grating

Fresnel
zone plate

Virtual
focal point

actual
size

Circular ring
grating

Real
focal point

fmax fmax

∆ = λ

rm = √m·const.

Figure 21.21 Top left: A ring grating which is suitable for use as an imaging system (fmax � 90 cm
for red light). At the right: The simultaneous formation of a real and a virtual focal point. Bottom
left: A FRESNEL zone plate with an opaque central disk. It forms ca. 5 real and virtual focal points
which can be observed with red light (fmax � 2:7m).

i.e. all the waves that reach a given image point have the same phase.
This is sketched in Fig. 21.21 for the formation of a focal point. Here,
the object point is to the left at infinity, and the plane waves coming
from it are incident on the ring grating in the direction of the two
arrows. The waves which emerge from the rings give rise to both
virtual and real focal points. For � D �, the longest focal length
fmax is found. A simple geometric construction (with a ! 1) yields
fmax D r21=�. Shorter focal lengths occur at � D 2�, 3� : : : They
obey the relation fm D fmax=m. This type of ring grating produces
quite intense images as an imaging system (an example is shown at
the right in Fig. 21.22).

In a ring grating, the width of the transparent rings can be increased,
at the same time reducing the width of the opaque rings, thus keeping
the overall areas of the individual rings roughly the same. In this
way, one arrives at a FRESNEL zone plate (Vol. 1, Sect. 12.14) with
an opaque central disk. It acts in the same manner as its “negative”
with a transparent disk at its center. Both distribute the radiant power
over many real and virtual images and focal points (this is a result of
the sudden transitions between transparent and opaque rings). They
are thus inferior to lenses as imaging systems. Only the radial order
obtainable with a lens shape allows minimal losses of radiant power
in image formation.

In order to demonstrate ring gratings and zone plates as imaging sys-
tems with fixed image positions, we can use the arrangement sketched in
Fig. 21.22. With it, for example the image shown as a photograph on the
right in Fig. 21.22 was obtained. Virtual images can be observed subjec-
tively (with the eye directly behind the grating); but see also the caption of
Fig. 21.22.
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Object
Ring grating Screen

K
C

A

a b

FL

Figure 21.22 The demonstration of ring gratings and zone plates as imaging systems. At
the right is the real image of a small stencil, photographed actual size. It was produced by
the ring grating shown at the upper left in Fig. 21.21 (a D b � 1:8 or 0.9 or 0.6 or 0.45m; K
is the crater of an arc lamp, C is the condenser lens for stencils up to ca. 10 cm in diameter).
For the subjective observation of virtual images or virtual focal points, it is difficult for the
eye not to accommodate to the bright light source. Therefore, it is expedient to replace the
lens of the eye by a convex lens, for example at A, with its focal point at FL. Then we can
observe the virtual image on the screen at the right as a real image, while the corresponding
real image can be made visible on a screen to the left of FL. (The justification of these
statements can be seen in Fig. 21.21: Imagine that there, directly behind the ring grating,
we insert a large convex lens, which encompasses the whole surface of the grating).

21.9 A Ring Grating with Only One
Focal Length

Besides the linear line grating with straight-line slits and beams, we
have also treated ring gratings in Sect. 21.8. The most well-known
of these is a limiting case, the FRESNEL zone plate, with its abrupt
transitions between completely transparent and completely opaque
rings.

An especially important form of the ring grating can be fabricated
photographically using interference. We again use two coherent,
monochromatic wave trains of light which intersect, but this time,
one has spherical symmetry and the other is a plane wave. A pho-
tographic plate is placed in the resulting interference field2. Fig-
ure 21.23 shows an example.

Ring gratings which are fabricated in this manner by photographing
an interference field are called sine-wave ring gratings, since two of
their characteristics are similar to those of sinusoidally-modulating
line gratings (sine-wave gratings; see Sect. 21.6):

1. In a sine-wave line grating, aside from the central collimated light
beam which is not deflected (zeroth order), only the two sub-maxima
of order m D 1 remain. In a sine-wave ring grating, aside from the
central maximum, only the two focal or image points belonging to
the order m D 1 remain (this can be demonstrated with the setup
from Fig. 21.22).

2 If the general clarity of the experimental setup is not important, we can make use
of a more modest arrangement: We pass a collimated light beam through a filter
practically perpendicular to the planar side of the lens used for the demonstration
of NEWTON’s rings (see the end of Sect. 20.9), and then we project an image of
this surface onto the photographic plate, using a lens with a long focal length.



Part
II

430 21 Diffraction

Figure 21.23 Top: A ring grat-
ing (magnified 3.4 x) with only
one focal length (f � 1:5m for
red light). Bottom (on a different
scale): Its photographic fabrication
in an interference field. In order to
demonstrate this grating as an imag-
ing system and to show the position
of its focal point, we use the experi-
mental setup described in Fig. 21.22. Photographic plate Z

2. Several sine-wave line gratings with different grating constants
can be superposed without losing their individual character. The
analogous behavior is found on superposing several sine-wave ring
gratings, using long wave trains of monochromatic light.

This important fact can be readily demonstrated today, since mono-
chromatic radiation has become available using lasersC16.4 as light
sources. The setup sketched at the upper left in Fig. 21.24 suf-
fices. There, a nearly perfectly-collimated monochromatic light
beam (i.e. a plane-wave beam) is incident on a photographic plate Z.
On the way there, it is scattered by four small particles (of Al2O3

or ‘alumina’). These particles, carried by a slightly wedge-shaped
glass plate, serve as four object points P. The spherical waves which
are emitted by the scatterers interfere both with each other and with
the primary collimated light beam. The photographic plate records
a section through the resulting interference field. It can be seen on

Monochromatic
plane waves

Object points P
as centers of

spherical waves

Photo-
graphic
plate Z

MirrorTelescope

≈ 3°

b

Figure 21.24 At the right: Four sine-wave ring gratings which overlap each other (photographic
positives, magnified 2x). Upper left: Their photographic production in an interference field (b �
1:3m). Lower left: A technically-important variant: The small particles which serve as four object
points P or as four sources of spherical secondary waves are illuminated with incident light. In order to
make room for the mirror, the cross-section of the monochromatic light beam (laser beam) is enlarged
using a telescopic optical system (Sect. 18.13). In both sketches, the four object points lie in a single
plane. This is not necessary, but it is experimentally convenient.
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the right in Fig. 21.24: It shows the superposition of the four sine-
wave ring gratings belonging to the four object points. These, as
claimed above, should not have lost their individual character if we
use long wave trains of monochromatic light for the experiment. The
empirical proof: If we remove the four object points and illuminate
the developed photographic plate with a monochromatic, collimated
light beam, then at a distance b to the right of Z on a screen (not
shown in Fig. 21.24), we find real images of the no-longer-present
object points! These are the real focal points of the individual
sine-wave ring gratings.

The corresponding virtual images of the no-longer-present object
points can be observed subjectively: We look through Z as if looking
through a window. It is usually more convenient to observe the vir-
tual images also as real images projected onto a screen; for this, we
proceed as shown in Fig. 21.22.

21.10 Holography

Compact disks and magnetic tape can record sound waves (as a lin-
ear sequence) with the correct amplitudes and phases, and reproduce
them on demand in the same form as the original, no longer extant
sound waves. The experiment described in Sect. 21.9 does the same
for light waves (as a two-dimensional recording). That experiment
demonstrated the principle of “holography”. The image on the plate
Z shown at the right in Fig. 21.24 was the hologram of an object
which consisted of only four object points.

Imagine that these four object points are replaced by the set of all
points which make up the monochromatically-illuminated surfaces of
some arbitrary objects. Then on plate Z, we will see no recognizable
interference patterns from individual sinusoidal ring gratings. To the
uninformed eye, the hologram appears to consist of a nearly unstruc-
tured grey surface. It is all the more surprising that it can produce
a virtual image, for example when we look through the hologram,
illuminated with monochromatic light, as if through a window.

A normal photograph shows an impeccably lifelike perspective when
viewed with one eye from the correct distance (Sect. 18.16). A holo-
gram is however superior: It permits us to
– see an object as if we were gazing at the original itself, and
– see other, previously hidden objects appear when we change our
viewing angle! The origin of this superiority is easily understood:

Normal photography makes use of only the first of the two charac-
teristics of a light wave in the recording process on a film or plate,
namely its amplitude. The square of the amplitude is proportional to
the radiant power which arrives at a given “image point”. Hologra-
phy uses in addition the second characteristic of the waves, i.e. their
phases. It thus increases the amount of “information” stored in the
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photograph. The frame of reference for these phases in the simplest
case is a plane wave which is incident on the photographic film or
plate at the same time as the spherical waves that emerge from the
object points.

The technical development of holography3 has undergone rapid
progress.C21.5C21.5. Holography is to-

day very widespread and
finds a variety of applica-
tions, e.g. on bank notes
and identification cards, in
data storage devices and
even in archeology. See
for example B.K. Buse and
E. Soergel, Physik Journal
2 (2003), No. 3, p. 37. En-
glish: See e.g. https://spie.
org/Documents/Publications/
00%20STEP%20Module
%2010.pdf.

We can expect many more applications of holography
to come. One point is particularly important and deserves men-
tion: Holography does not require monochromatic light of the same
wavelength for the production of holograms and/or for viewing them
(analogously to the last paragraph of Sect. 21.9).

21.11 Visible Imaging of Invisible
Objects. The Schlieren Methods

Some objects have neither visible outlines nor visible internal struc-
tures. A jet of CO2 gas streaming from a nozzle into the room air
is invisible. A smoothly-polished sheet of glass shows no structure
in its interior. These things are not too small or too distant for us to
see; the reason for their invisibility is quite different: They modify
the visible radiation which passes through them in ways which our
eyes cannot register. They do not reduce the intensity of the radia-
tion, but rather they change only its phase, or at most its direction
very slightly.

Such invisible objects can be made visible by using a simple trick.
We bring them, like an object which can cast a shadow, into the op-
tical axis of a nearly pointlike light source (e.g. the crater of an arc
lamp). This “simple schlieren method”C21.6C21.6. “Schlieren” refers to

the regions which influence
incident light due to inho-
mogeneities in an otherwise
homogeneous material.

is used in Fig. 21.25, left
side, to show a jet of CO2 gas, and on the right side, the internal struc-
ture of a sheet of glass. Explanation: Normally, the screen would be
illuminated uniformly. However, a light beam which passes through
the jet of gas or through the interior of a sheet of glass (its inho-
mogeneities) is deflected slightly to the sides, in part by refraction, in
part by diffraction. On the screen, therefore, at certain positions some
of the light is missing, and these points seem darker. Other positions
receive additional radiation, and therefore seem brighter.

With this simple schlieren method, we have already seen the essen-
tials: Two groups of light beams are distinguished by their different
directions, one without deflection and the other deflected in part by
refraction, in part by diffraction.

3 The principle was discussed nearly a century ago. Its experimental realization
took place, as usual, in a series of steps, first by H. BOERSCH (1938), then by
D. GABOR (from 1948). Among the numerous later works, especially those of
E.N. LEITH and I. UPANIEKS (1962) deserve mention. These authors no longer
used simply a beam of plane waves as reference frame for the phases, but instead
many such beams, which are formed by scattering of a monochromatic, collimated
beam of light by a frosted-glass disk (cf. 16.8).

https://spie.org/Documents/Publications/00%20STEP%20Module%2010.pdf
https://spie.org/Documents/Publications/00%20STEP%20Module%2010.pdf
https://spie.org/Documents/Publications/00%20STEP%20Module%2010.pdf
https://spie.org/Documents/Publications/00%20STEP%20Module%2010.pdf
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Figure 21.25 Two images, photographed
with the simple schlieren method: At left,
a jet of CO2 gas, moving downwards in
a laminar flow. At the right: a section of
a sheet of glass (a rinsed negative, 9�12 cm).
(The distance between the light points to the
object and from the object to the screen is
several meters in each case; the image is
about 1=3 actual size).

a b c

E

E

L1 L2

α

S

Image of light
source as pupil Aperture

+

Figure 21.26 TOEPLER’s schlieren method. The object plane EE corre-
sponds to the slide in a slide projector. Only a single partial beam belonging
to the object point ˛ in the object plane is sketched with its two bounding
rays (imagine that there is a small opening at ˛). The diameter of the lens
L2 used for imaging must be larger than the entrance pupil. The “aperture”
can be either an opaque disk (dark field) or an opening in an opaque screen
(bright field). The lens can be tinted in zones outside the pupil, e.g. from in-
side to outside red, green, etc. Then we see weak schlieren, which deflect the
light only slightly, as red, while stronger deflections are seen as green, etc.
A numerical example for a demonstration experiment: Lens L1: f1 D 1m,
diameter 12 cm; a D 1:5m, b D c D 2f2 D 4m.

A second step leads to a more refined method, the TOEPLER

schlieren method: This method makes use of either only the de-
flected beam or only the non-deflected beam. The experimental
arrangement (Fig. 21.26) is the same as for the usual projection
system (Fig. 18.33), but with one of the following small additional
modifications: Either we use a disk to block off the image of the
light source (i.e. the entrance pupil at the lens used for image for-
mation, an aperture illuminated from behind), or we block the whole
surface of the lens with the exception of the entrance pupil. In the
first case, the field of view is in general dark. It is illuminated only
where light beams that have been deflected to the side can reach the
lens outside the entrance pupil. The structures appear bright against
a dark background on the screen: this is called dark field illumination
(Fig. 21.27). In the second case, no deflected radiation can reach the
lens; the structures appear dark against a light background: bright
field illumination.
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Figure 21.27 Two images photographed with TOEPLER’s schlieren method
using dark-field illumination; at left: a turbulent jet of CO2, flowing down-
wards. At right: A section of a sheet of glass (around 1=3 actual size)

21.12 ERNST ABBE’s Description of
Microscopic Image Formation

When the objects are very small, deflection of light beams by diffrac-
tion predominates. This holds both for invisible as well as for visi-
ble structures. ERNST ABBE treated visible structures in 1873, and
his considerations on the role of diffraction in the microscope have
proved to be very fruitful.

An experimental setup which we have found to be suitable for
demonstrations to a small audience is illustrated in Fig. 21.28. It
is analogous to Fig. 21.26. The more important dimensions are
indicated, and experimental details can be seen in the caption of
Fig. 21.28. The light source should have a small cross-section,
drawn in the sketch as a square.

In the figure Part B, the object is a large, empty frame ˇ. In the
plane Z (position IV, corresponding to the column labelled ‘IV’ in
the tabular lower part of the figure), there is a sharply-focussed image
of the light source (shown as a photographic negative), produced by
the whole open area of lens L1 (Sect. 17.2). The light rays which
propagate from plane Z to plane S come exclusively from this image
of the light source. At plane S, they produce an empty, uniformly
illuminated field of view, i.e. the image ˇ0 of the empty frame ˇ.

In Part C, the object has an amplitude structure: It contains a small,
opaque circular disk � in otherwise open surroundings. In plane Z, in
addition to the sharp image of the light source, the diffraction pattern
from the small disk appears (both shown as photographic negatives).
This time, not only light rays from the image of the light source in
plane Z arrive at the image plane S, but also the radiation from this
diffraction pattern. In the image plane S, both groups of light rays act
together and produce the sharp image � 0 of the disk, black on a light
background (shown as a photographic positive).
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Figure 21.28 Imaging of objects which themselves do not emit light, with
amplitude structure and with phase structure. The structure consists of many
randomly-arranged circular disks (about 2000 in each case). Their production
is described in Fig. 21.29. In the figure, only one of these disks in the object
(� ) and one in the image (� 0) are drawn. The diameter of the diffraction pat-
terns in position IV (ABBE’s intermediate-image plane) is in reality smaller
than the diameter of the imaging lens L2.

The requirement that both of the groups of light rays from plane Z
are necessary to produce the image in the plane S can now be demon-
strated by convincing experiments:

1. We place an iris diaphragm in the intermediate-image plane Z, then
gradually reduce its diameter, and thus, beginning from the outer rim,
we block off the diffraction pattern. The result is that the image of
the disk � gradually becomes fainter and fuzzier.

2. In the limiting case, the iris diaphragm allows only the direct light
from the light source to pass through. The result is that the image � 0
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can no longer be seen; the field of view on the screen S in the image
plane is just uniformly illuminated, as in the figure Part B.

3. We now remove the iris diaphragm and block the sharp image
of the light source in plane Z with a small disk. The result is that
the field of view on the screen S becomes dark. The image � 0 of
the disk � appears somewhat fuzzy and bright on a dark background;
i.e. we see the amplitude structure of the object imaged with dark-
field illumination (see the conclusion of Sect. 21.11).

With the aid of these and similar experiments, and referring to the
figure, Part C, we describe image formation of an amplitude struc-
ture in the following way: After they have passed through the object,
we mark the phases of the remaining light rays by vector arrows at
position II. The parallel directions of the vectors represent the fact
that the rays from individual points reach the image plane S with the
same phases. At position III, we decompose the rays formally into
two groups:

1. One group of rays from the whole surface of lens L1, represented
by the arrows pointing upwards at 1 (position III). These rays alone
produce the sharp image of the light source in plane Z and the uni-
form illumination of the field of view in plane S. (In Part C, there
are also arrows pointing upwards at positions IV and V; these give
an arbitrary reference point for the phases of those rays which pass
from the small square image of the light source to an image point in
plane S).

2. Another group of rays emerging from the object � , represented by
an arrow pointing downwards at 2 (position III). These rays produce
the diffraction pattern in plane Z and interfere with the rays from the
whole surface of the lens in the image plane S, at the image points � 0.

Between these two groups of rays, there is a phase difference of 180ı
according to BABINET’s theorem (Sect. 21.2), represented here by
the oppositely-directed arrows at positions IV and V. As a result, the
rays cancel each other, leaving a dark disk on a light background in
position V.

Every change in the groups of rays 1 or 2 will change the interference
in the image plane Swhich is essential for image formation. A correct
reproduction of the amplitude structure in the image plane S is thus
possible only when both the group 1 of rays from the light source and
the group 2 of rays from the diffraction pattern in plane Z can arrive
without hindrance at the image plane S.

21.13 Making Invisible Structures
Visible Under the Microscope

Most thin sections of organic materials for microscopic examinations
in biology and in medicine are transparent and colorless; their chem-
ically distinct structural elements differ in terms of visible light only
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in their somewhat different refractive indices. Often, important struc-
tures are just as invisible as the inhomogeneities in a sheet of glass.
Most such sections, stated briefly, have practically only phase struc-
tures. In order to make these structures visible, one has to convert
them into amplitude structures, i.e. the small differences in their re-
fractive indices must be converted into large differences in their light
absorption. To this end, the sections are colored or “stained” with
dyes, which are taken up selectively by the different structures.

This staining is a chemical intervention and causes considerable
deviations from the original state of the living tissues. For this
reason, several procedures have been developed for microscopy
which can make the phase structures visible without the use of dyes.
These procedures are best explained using the terminology of ABBE

(Sect. 21.12). We continue the series of images from Fig. 21.28
and show as Part D an object ı with phase structure: The opaque
disk � in the figure Part C has been replaced by a transparent disk ı.
It differs from its surroundings only by having a somewhat larger
refractive index. The light which passes through this disk arrives at
the image plane S with a phase delay. This is represented in posi-
tions II and V by a rotation of the vectors in a counter-clockwise
direction. In the intermediate-image plane Z, the image of the light
source is surrounded by the diffraction pattern of the disk, just as in
the figure Part C. Light from both propagates to the image plane S.
Its superposition there leaves the illumination of the image ı0 just
as strong as in its surroundings, so that the phase structure remains
invisible. In order to make it visible, some sort of intervention in
one of the two groups of light waves leaving plane Z is necessary,
e.g. a partial blocking of the diffraction pattern, or blocking of the
image of the light source. In either case, the disk will become visible
at the location of the image ı0.

A partial blocking of the diffraction pattern in the intermediate-image
plane Z can be obtained in a particularly simple manner by using an
oblique illumination. We shift the light source to one side and thus at
the same time, the diffraction pattern shifts (in the opposite direction).
Then we can use the lens mount of the objective lens L2 to cut off an
outer portion of the diffraction pattern.

Such a procedure is however a rather rough intervention. A finer
method, which produces much better results, is that published by
F. ZERNIKEC21.7 C21.7. FRITS ZERNIKE,

1888–1966, Dutch physi-
cist. For his invention of the
phase-contrast microscope,
he was awarded the Nobel
prize in 1953.

in 1932, the phase-contrast method. We describe
it in terms of its most important application, to small differences in
the refractive indices. Parts D and E of Fig. 21.28 serve to illus-
trate the method. In these figures, as mentioned above, the phase
vector behind the disk ı (position II) was rotated slightly in a counter-
clockwise sense. In position III, the phase vectors are again de-
composed formally into two components. The components denoted
as 1 produce the image of the light source in the intermediate-image
plane Z (position IV, vertical arrow). The component denoted as 2
produces the diffraction pattern in plane Z (position IV, nearly hor-
izontal arrow). At position IV, when there is a phase structure, the
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Figure 21.29 A section of a phase structure (magnified about 3x) which is
invisible to the eye without making use of some special trick. The small
circular disks are made of LiF, embedded in Canada balsam. The LiF was
evaporated in high vacuum. As stencil for the evaporation, the same mask was
used with which the diffraction pattern in Fig. 21.7 was obtained; it contains
around 2000 randomly-arranged holes of 0.3mm diameter.

two arrows 1 and 2 form an angle of only about 90ı, while for the
amplitude structure, their mutual angle is 180ı, i.e. they are directed
oppositely to each other. We can, however, retroactively increase the
phase angle of around 90ı to an angle of around 180ı. To do this, in
the figure Part E, the image of the light source is blocked by a small
transparent disk (the white circle in position IV), which delays the
light by 90ı (a “quarter-wave plate”). With their path difference now
increased to around 180ı, the two vectors 1 and 2 act in the image
plane as their difference, and this produces a good contrast relative
to the surroundings (Fig. 21.29). It can be improved still further by
making the quarter-wave plate weakly absorbing, and thereby adjust-
ing the lengths of vectors 1 and 2 to be more nearly equal. As the
absorption is increased, we follow a continuous transition to a nor-
mal microscope with dark-field illumination.

21.14 X-ray Diffraction

The wavelengths of X-rays lie in the range from about 10�13 m to
5 � 10�8 m. The fundamental experiments on diffraction and interfer-
ence can be carried out just as well with X-rays as with visible light.
We mention for example diffraction by a single slit (slit width 5 to
10�m),C21.8C21.8. As an historical

note, we mention here the
following relevant publica-
tion by the author: Robert
Pohl, “Die Physik der Rönt-
genstrahlen”, Vieweg and
Son, Braunschweig (1912),
Chaps. 2 and 9.

and, in particular, the recording of diffraction spectra
using typical optical reflection gratings made of metal or glass. These
are employed with nearly grazing incidence, since the ruling on the
gratings is sufficiently fine only when it is strongly foreshortened by
a very flat incidence angle (see Sect. 22.6).

For short-wavelength X-rays (� < 2 � 10�9 m), mechanically-ruled
gratings play only a limited role. Instead, one makes use of the
3-dimensional gratings provided by nature in the form of crystal lat-
tices, as first suggested by M. v. LAUE in 1912. Such gratings consist
of a three-dimensional series of lattice points or lattice planes, a struc-
ture with three (in general different) grating constants (spacings of
the lattice planes), D0;D00, and D000. Starting from the condition for
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Figure 21.30 A LAUE dia-
gram obtained from an NaCl
crystal. The number triplets
refer to the orders m0;m00
and m000 in Eq. (21.2), cor-
responding to the three spatial
directions.

031 131 221 311 301

constructive interference by waves reflected from a simple layered
structure (see Sect. 22.7, and also Vol. 1, Sect. 12.15 and Fig. 12.41c):

sin �m D m�

2D
(21.2)

.m is the order, and � is the “grazing angle”/;

it can be seen that this condition must be met in a three-dimensional
grating for all three spatial directions in order to observe interference
maxima.C21.9

C21.9. A further histori-
cal note: Up to the 10th
edition of “Optik und Atom-
physik” (1958), a discussion
of diffraction from layers
and from three-dimensional
point gratings was given. For
a detailed treatment in En-
glish, see e.g. A. Khavasi,
K. Mehrany, and B. Rashid-
ian, “Three-dimensional
diffraction analysis of grat-
ings based on Legendre
expansion of electromag-
netic fields”, Journal of the
Optical Society of America
B24 (2007), pp. 2676–2685
(online at
https://www.osapublishing.
org/josab/abstract.cfm?
uri=josab-24-10-2676 )

One obtains a pattern of spots, as shown for example
in the LAUE diagram in Fig. 21.30. Figure 21.31 shows an historical
experimental setup.

X-ray diffraction has attained its primary importance today in the
field of crystallography. It is the most important method for investi-
gating crystal structures, currently in particular those of large molec-
ular crystals such as proteins. One uses X-rays of knownwavelengths
and determines not only the positions of the interference maxima, but
also the distribution of the radiant power over spectra of different or-

R
B S

Figure 21.31 A convenient setup for the individual observation of LAUE

diagrams.C21.10

C21.10. Experimenting in
this manner with X-rays in
the lecture room is certainly
no longer permitted today!
The observer at the right in
the picture is H.U. HARTEN

(Dr. rer. nat. 1949). A de-
tailed description of this
experiment by W. MAR-
TIENSSEN can be found
in the video “Simplicity
is the mark of truth” (at
ca. 16min.).

R is the X-ray source, with a tungsten anticathode at a volt-
age of 6 � 104 V; B is a lead shield with the crystal under investigation at its
center, in front of an aperture of 2.5mm diameter; S is a fluorescent screen
with a metal disk at its center to block the direct X-ray beam.

https://www.osapublishing.org/josab/abstract.cfm?uri=josab-24-10-2676
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-24-10-2676
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-24-10-2676
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X-rays

Crystalline
powder

Film
Film

Opening

Diffraction
lines

Figure 21.32 The experimental setup of P. DEBYE and P. SCHERRER

ders. From this distribution, one can compute backwards to obtain
the detailed structures of the elementary lattice components.

This important method of crystallographic investigation is by no
means limited to large single crystal samples. Arbitrarily fine crys-
talline powder can also be used (P. DEBYE and P. SCHERRER, 1916).
As shown in Fig. 21.32, a narrow, collimated beam of X-rays (cross-
sectional area around 1mm2) is passed through the powder sample
and the resulting diffraction pattern is captured by photographic film
bent into a circular form (or by a digital-electronic position-sensitive
detector). The diffraction pattern consists of a system of concentric

Figure 21.33 A supplement to Fig. 21.32: The K˛ radi-
ation from copper (� D 1:539 � 10�10 m D 0:1539 nm)
is reflected by three different families of lattice planes
in a microcrystalline, well-tempered nickel wire (sub-
stituted for Ni powder). The radius of curvature r of the
film was 121mm and its length was �r. (Grating constant
D D 0:3518 nm; the numbers in parentheses are the in-
dices of the reflecting lattice planes. A circular hole for
the primary beam is at the center of the film.)

(220)

(200)

(111)
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rings (Fig. 21.33). Their interpretation is simple: In a powder sample,
the orientation of the crystallites is random. All of the lattice planes
on which the X-rays are incident at a grazing angle (Eq. (21.2))
reflect this incident radiation. With large-grained powder, one can
clearly see that the rings are composed of a series of individual spots.

Exercises

21.1 How does the diffraction pattern of a slit change
a) if it is completely covered by a transparent glass plate (a micro-
scope cover glass d D 175�m thick, with a refractive index of
n D 1:50);
b) if only one half of the slit is covered with the glass, parallel to its
long axis?
c) By what angle ˛ must the glass be tipped to pass from an order-
one position to an order-two position? (The wavelength of the light is
� D 600 nm and the influence of refraction in the glass on the phase
difference is negligible.) (Sect. 21.5)

21.2 Derive the diffraction pattern in the order-two position in
Fig. 21.12, below left, making use of the graphic construction in
Fig. 12.34 of Vol 1.
(Sect. 21.5)

21.3 Why must the slit width B of a high-resolution grating spec-
trometer be small in comparison to the grating constantD? To answer
this question, consider up to which order m one can observe the in-
terference maxima in the intense primary maximum of the diffraction
pattern from the entrance slit,
a) for D D 2B (Fig. 21.13), and
b) for D D 20B, i.e. (B � D).
(Sect. 21.6, 22.2)

21.4 From the line grating with an amplitude structure as shown in
Fig. 21.13 (grating constant D D 2B, where B is the slit width), we
can construct a phase grating if the opaque lines ruled on the grating
are made of transparent material. At which angles do the principal
interference maxima lie (cf. Fig. 22.6), if the transparent lines delay
the phase of the light waves by
a) 360° (order-one position) and b) 180° (order-two position)?
(Sect. 21.7)

21.5 From the diffraction pattern shown in Fig. 21.17, determine
the ratio of the width L of the ruled lines on the grating to the grating
constant D. (Sect. 21.7)
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21.6 In the DEBYE-SEARS experiment (Fig. 21.18), with a sound
wave of frequency 
 D 106 Hz in xylol, and employing red-filter light
(� D 700 nm), one observes diffraction maxima of m-th order at the
angles ˛m D m �8 �10�4. The grating constant of the sinusoidal phase
grating is equal to the wavelength of the sound waves. Determine the
velocity of sound c in the liquid. (Sect. 21.7)
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Optical Spectrometers 22
22.1 Prism Spectrometers and Their

Resolving Power

Optical spectroscopy apparatus are currently technically highly de-
veloped and are commercially available, mainly as very convenient
recording instruments for a wide range of wavelength ranges1. Mod-
ern physics needs to consider only the basic questions of the design
and operation of spectroscopy apparatus.

Elementary treatments begin with prism spectrometers. This name
is unfortunate; the prism shape is not essential, but rather the disper-
sion of the material, that is the dependence of the refractive index n
for monochromatic (single-frequency) waves on their wavelengths �.
For this reason, we produced the first demonstration of a continu-
ous light spectrum in Sect. 16.10 not with a prism, but instead using
a thick glass block with plane-parallel surfaces. We also used this
same glass block to photograph the line spectrum shown in Fig. 22.1,
which consists of the spectral lines from a low-pressure Hg-arc lamp.

A prism spectrometer based on dispersion is sketched in Fig. 22.2. If
its entrance slit S0 is illuminated with monochromatic light, the slit
will be imaged on the observation screen. The narrower the slit S0,
the sharper will be its image. But there is a limit to this; if it is ex-
ceeded, we no longer obtain an image of the slit on the screen, but in-
stead the diffraction pattern of a light beam which has been restricted

λ = 365 405 436 546 578
·10–9 m

Figure 22.1 A line spectrum, obtained not with a prism, but instead us-
ing a glass block with plane-parallel surfaces. It shows the spectrum from
a low-pressure mercury-arc lamp, photographed at position b in Fig. 16.30.
Compare it with the photographic spectrum reproduced in Fig. 27.3.

1 Recording spectrometers often register spectra not as a function of the wave-
length �, but rather as a function of its reciprocal 1=� D 
=c, proportional to the
light frequency or energy. This quantity is often (erroneously) called the wave
number. The reciprocal of a length is not a number!

443© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_22

https://doi.org/10.1007/978-3-319-50269-4_22
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Figure 22.2 Schematic of a prism spectrometer which makes use of disper-
sion. Light of wavelength � has a refractive index n. Light of wavelength
(� C d�), which is refracted by a smaller angle, has a smaller refractive in-
dex n C dn (dn is thus negative). (For individual observations with the eye,
a transparent wavelength scale is used instead of the screen, and it is ob-
served from the right using a magnifying lens (ocular).) The whole surface of
the prism at K must be illuminated. (K;X; and Y denote points along the path
of the upper light beam in the figure). In determining the irradiation intensity
on the screen (W/m2, Eq. (19.4)), the only decisive factor is the numerical
aperture of the light beam to the right of lens II (that is, the sine of the open-
ing angle of the beam). Therefore, for the observation of line spectra, it is not
necessary that the lens I have a short focal length, nor does the slit S0 need to
be set at an inconveniently narrow width. When combined in a tube, S0 and I
are called a collimator.

to the width B. This pattern lies in the focal plane of the lens II,
and is thus observed in the FRAUNHOFER mode. The formation of
such diffraction patterns was described quantitatively in Sects. 12.12
and 12.13 of Vol. 1, and experimentally demonstrated there using
undamped, i.e. monochromatic sound waves with a wavelength of
ca. 1 cm. For light, a similar experiment is shown in Fig. 16.29. We
imagine that the slit S0 in Fig. 22.2 is illuminated with two wave-
lengths, � and .� C d�/,C22.1C22.1. The quantities pre-

ceded by the letter d in this
chapter are not differentials,
but rather small differences
in the corresponding quantity,
in this case the wavelength �.
The notation �� will be in-
troduced later for the “usable
wavelength range”.

and is closed down to such a narrow
width that instead of two images on the wavelength scale, we see two
diffraction patterns. This is sketched in Fig. 22.3 for a limiting case:
The halfwidthsH of the two diffraction patterns just touch each other,
so that the central maximum of the one pattern falls in the first mini-
mum of the other. With this spacing, the eye is just able to distinguish
the two patterns as separate; they are barely resolved. (This condition
is known as the RAYLEIGH criterion).

In Fig. 22.2, both light beams, the one drawn with solid lines and
the one with dashed lines, have practically the same widths B. For
light of wavelength �, the optical path passes through the base of the
prism S: KY D S � n, where KY is the length of the line segment
between the points K and Y . For light of wavelength .� C d�/, it
is KX D S � .n C dn/. To a good approximation, KX � KY D S � dn,
so that the wavefronts of the two light beams are tilted by different
angles. The difference d� between these two angles is d� D S �
dn=B. On the screen, two diffraction patterns appear, belonging to
the two light beams as sketched in Fig. 22.3. We observe d� < 0,
that is, dn < 0. A dispersion n.�/ (Sect. 16.10) with dn=d� < 0 is
called normal dispersion. For the solid-line diffraction pattern, the
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Figure 22.3 The resolving power of
a prism spectrometer. The observer looks
from the right, that is into the direc-
tion of the oncoming light, towards the
screen sketched in Fig. 22.2. The width
of a diffraction pattern line at the points
where its ordinate values on both sides
have decreased to half of their maximum
value is called its halfwidth H.
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first minima on both sides of the center line are marked. As seen
from the midpoint of lens II, they are separated from the center line
by the small angle ˛ D �=B (according to Eq. (16.23)). The dashed
diffraction pattern, which belongs to .� C d�/, has practically the
same shape, and it is clearly separated from the solid-line pattern
when d� D �˛, or S � dn=B D ��=B (RAYLEIGH criterion). This
leads us to the resolving power of the prism:

�

d�
D �S

dn

d�
: (22.1)

In words: The resolving power of a completely illuminated prism is
determined solely by its base length S and by the dispersion dn=d�
of the prism material (as shown in Fig. 22.2). (In the case of anoma-
lous dispersion, that is when dn=d� > 0, the minus sign should be
removed).

Numerical example: Assume that a prism with a base length of S D 1 cm
is made of flint glass, with a dispersion in the “yellow” spectral range of
jdn=d�j D 103/cm. Its resolving power is then �=d� D S � jdn=d�j D
1 cm � 103=cm D 103. The prism can just separate the two sodium D
lines. Their wavelengths are �D1 D 589:0 nm and �D2 D 589:6 nm. Their
spectral separation thus requires

�

d�
D 589 nm

0:6 nm
� 103 :

Using three prisms one after the other, made of the same material, each
with a base length of 10 cm, we could attain a resolving power of �=d� D
3 � 104.

22.2 Grating Spectrometers and Their
Resolving Power

Grating spectrometers can be used in all wavelength ranges, at least
from the region of X-rays out to electromagnetic waves of several
centimeter wavelength. For visible light, the prism in Fig. 22.2 is re-
placed by a line grating (Fig. 22.4). Line gratings (Fig. 21.13) were
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Figure 22.4 A grating spectrometer (J. FRAUNHOFER, 1821). m is the order
of the diffraction maximum or minimum. For demonstration experiments, the
right-hand lens II is usually left off and the screen is placed at a distance of
several meters (cf. Fig. 16.26). The boundaries of the light beams are drawn
in for the central maximum (m D 0) and a spectral line of first order (m D 1).
For subjective observation, we replace lens II by the objective and the screen
by the focal plane of a telescope (Exercise 22.1).

treated in detail in Vol. 1 (Sect. 12.15 and Fig. 12.65), based on ex-
tensions of YOUNG’s interference experiment. Gratings sort spectral
lines of the same wavelength � according to their orders m.

For the angular spacing ˛ of a spectral line of mth order to the sym-
metry plane perpendicular to the plane of the grating, we have found:

sin˛m D m�

D
(22.2)

(D is the spacing of two neighboring openings or wave sources, the length
period or “grating constant”; m� is the path difference of the wave trains
from two neighboring openings).

In making the transition from YOUNG’s interference experiment,
which makes use of two light beams, to a grating with N light-wave
beams, the interference maxima become sharper while retaining their
positions. In this process, between each two neighboring maxima,
(N � 2) submaxima appear (Vol. 1, Fig. 12.40). This is demonstrated
in Fig. 22.5 for light waves. In the bottom image, with N � 250, the
submaxima have practically disappeared and the principal maxima
have become very narrow diffraction patterns (when the width of the
slit S0 is sufficiently small).

With N grating lines, a spectral line of mth order is separated from
the neighboring order .m C 1/ by (N � 2) submaxima, and thus by
(N � 1) minima (Fig. 22.6). The spectral line of mth order occurs for
a path difference ofm� between two neighboring wave trains. For the
next following spectral line of order .mC 1/, this path difference has
increased by a whole wavelength �. It follows that it has increased
for the next minimum (� ), which follows the line of mth order, by
only a fraction of �, namely from m� to (m�C �=N). Now, we want
to be able to distinguish a spectral line of order m and wavelength
.� C d�/ from the spectral line of order m and wavelength �. For
that purpose, the line of wavelength .� C d�/ must fall at least in
(or outside) the first minimum (� ) adjacent to the spectral line of
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Figure 22.5 The inter-
ference pattern of a line
grating, showing its depen-
dence on the number of
interfering light beams (the
number N of grating lines).
m is the order. For the fig-
ure Parts a-e, red filter light
suffices; for f , the light from
a sodium-vapor lamp was
used (photographic nega-
tive).
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Figure 22.6 The resolving power and the usable wavelength range �� (see
Sect. 22.5) of a grating spectrometer. In the interest of clarity, the spectral
lines (solid and dashed lines) are not drawn beside each other, as in Fig. 22.3,
but rather one above the other. The observer is looking at the image plane
of the lens II in Fig. 22.4 along the direction of the light propagation. If N,
i.e. the number of grating lines, is increased in this figure, then the submax-
ima already present move together on both sides of the neighboring principal
maxima; the ratio of their heights to that of the principal maximum remains
unchanged. At the center between two principal maxima, new submaxima are
formed, and they become smaller and smaller in height. Compare Sect. 12.15
in Vol. 1 (Video 20.1).

Video 20.1:
“Interference”
http://tiny.cc/9eggoy.
The second part of the video
shows interference patterns
from different gratings
(Grating constants: 20 and
10�m) using light from
a laser (� D 633 nm, beam
diameter 3mm) and the
lecture-room wall as observa-
tion screen.

wavelength � (RAYLEIGH criterion). With this condition, we obtain

m.�C d�/ D m�C �

N
or

�

d�
D Nm : (22.3)

In words: The resolving power �=d� D 
=d
 of a grating in the first-
order spectrum is equal to the number N of grating lines. For spectral

http://tiny.cc/9eggoy
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lines of higher orders m, it increases proportionally to m. Numerical
examples for the resolving power of commonly-used gratings will be
given later in Sect. 22.6.

22.3 The Line Shapes and Halfwidths
of Spectral Lines

An almost uncountable number of articles have been written on the
experimental investigation of line spectra. In many cases, the results
obtained with spectrometers are presented graphically and the inten-
sities of the radiation are indicated by the width of the lines drawn.
For some aspects of the investigations, this method of representation
is not adequate. The frequency and the wavelength alone are not suf-
ficient. An additional quantity that must be determined is the shape
of the spectral lines, characterized by their halfwidths.

A spectral line thus has two characteristic parameters; first, its center
frequency 
0, and second, its halfwidth H. The latter is the difference
�
 between the two frequencies at which the ordinate (line strength
or amplitude) has decreased to half its maximum value. When the
spectrum is plotted against the wavelength �, sometimes the corre-
spondingwavelength difference�� D H� is defined as the halfwidth
of the line.

As an example, Fig. 22.7 shows the line spectrum of a high-pressure
mercury-vapor lamp, registered with a prism spectrometer. In this
spectrum, for example, the “blue” spectral line (at � D 436 nm) has
a large halfwidth, H� D �=60.
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Figure 22.7 The spectral distribution of the radiant intensity from a high-
pressure mercury-vapor lamp (line spectrum), with very broad spectral lines,
registered using a prism spectrometer. This instrument has a resolving power
of �=d� D 6000, and thus has no measurable influence on the shapes of the
spectral lines (see also Fig. 27.3).
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22.4 Spectrometers and Incandescent
Light

Incandescent or “natural” light does not consist of monochromatic
waves from a wide frequency region, but by using spectrometers2,
we can produce quasi-monochromatic waves from incandescent
light. (For this application, the apparatus is often referred to as a
“monochromator”). Its function can be seen qualitatively directly
by considering prism spectrometers which employ dispersion: Every
dispersion converts non-periodic processes into periodic processes.
Such a reforming of wave groups can be seen on the water surface
of a pond into which a large stone has been dropped: At first, we see
a non-periodic disturbance of the water surface, then groups of sur-
face gravity waves emerge and become longer and longer (see Vol. 1,
Fig. 12.79). Those groups consisting of long waves reach the bank
sooner than those consisting of shorter waves, thanks to their higher
group velocities.

Quantitatively, we can understand most simply the modulation of
weakly or not-at-all periodic, transient processes in quasi-mono-
chromatic wave groups, that is wave trains of limited lengths and
finite spectral widths, by considering a spectrometer which is based
on a line grating. We thus want to treat the observation of a continu-
ous spectrum of first order in such a spectrometer.

Figure 22.8 shows a grating with N lines or openings. A collimated
light beam from an incandescent light source is incident on this grat-
ing, perpendicular to its surface. The line A in this case does not
indicate a wave crest, but rather the limiting case of a non-periodic,
transient pulse with the profile a as shown in Fig. 22.9. This type
of process is shown especially clearly in Fig. 22.9; for that reason,
we have chosen it as an example. A second pulse, which precedes
the first, has already passed through the grating and has been split
there into N pulses, each with the same profile. These pulses prop-
agate in Fig. 22.8 in the form of eccentric circles to the lower right;
however, only a segment of the circles is drawn in the figure. Along
the direction of an arrow r (or v), the series of these pulses forms
a wave group whose form is not sinusoidal, or more concisely, a non-
sinusoidal wave group. It is sketched as curve b in Fig. 22.9, but only
for N D 6. The spacing of the two pulses is large in the r direction
and smaller in the v direction. Along the r direction, it could for
example be 0.75�m, and along the v direction only 0.4�m.

Every such non-sinusoidal wave group b can be represented as a su-
perposition of groups of sinusoidal waves of equal lengths (FOURIER

decomposition), with the wavelengths �, �=2, �=3, etc. This is
shown in Parts c, d, e, f of the figure (compare Vol. 1, Sect. 11.3).

Now we come to an essential point: We want to observe visually,
by eye; but the eye acts selectively, i.e. it chooses what it sees. It re-

2 They can employ dispersion, absorption, or reflection in “filters”.
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Figure 22.8 The production of wave groups by a grating. The line A indi-
cates a non-periodic process (pulse) which is incident on the grating from
the left, perpendicular to its surface, as can be demonstrated for example by
a ground swell in shallow water or by an ultrasonic boom in the air. Its profile
is sketched in Part a of Fig. 22.9, at the upper left.

a b

c

d
e
f

Figure 22.9 The periodic but not sinusoidal wave group b can be thought of
as a series of 6 pulse-shaped groups a emitted by 6 openings or lines of a grat-
ing. In Parts c to f , the periodic group b is decomposed into four sinusoidal,
monochromatic wave groups (FOURIER components).

sponds only to wavelengths between 750 nm and 400 nm. As a result,
in the r direction, we see only one sinusoidal wave group (curve c)
at � D 750 nm (red), and in the v direction, at � D 400 nm (violet).
Thus, we can say concisely but unmistakeably that continuous spec-
tra consist of groups of sinusoidal waves produced by the grating.

We often experience the corresponding acoustic experiment (TH. YOUNG,
1801; J.J. OPPEL, 1855) on the street. If we walk on a hard stone surface
alongside a garden fence, we can hear with each step a whistling chirp of
noticeable length. The fence acts as a reflection grating. Each slat reflects
the air pulses from our footsteps, and thus the grating converts the non-
periodic impulses into a non-sinusoidal wave group. Our ears are much
less selective than our eyes; the ear responds to roughly 10 octaves. It thus
responds not only to the longest wavelength �, but also to �=2, �=3, etc.
We therefore hear the non-sinusoidal wave groups as a chirp, and not as
a tone or a note, which we would hear with a sinusoidal profile (Vol. 1,
Sect. 12.28).
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The number of individual wavelets (i.e. a wave crest C trough) in the
group produced by the grating is, in the first-order spectrum, equal to
the number of openings or lines N in the grating. N however, from
Eq. (22.3), is equal to the resolving power �=d� in the first-order
spectrum. Then the resolving power acquires a simple meaning: It is
the number of individual wavelets which are produced by the grating
from a non-periodic process and can be combined into a group. This
holds not only for gratings, but also for spectrometers of all kinds.
This statement can be verified with the help of all those interference
experiments in which light from a narrow region out of a continuous
spectrum is employed.

22.5 Comparison of Prisms
and Gratings

According to the numerical example given at the conclusion of
Sect. 22.1, with one prism of 10 cm base length, we can obtain
a resolving power of �=d� � 104. Connecting several prisms in
series, e.g. 3, we can obtain three times that resolving power, that is
around 3 � 104. With gratings, or in general with interference spec-
trometers, around ten times higher resolving powers are attainable,
that is a resolving power of several 105.

In a comparison between gratings and prisms, however, we must not
consider the resolving power alone. Another very important charac-
teristic is the usable wavelength range��. A prism always produces
only a single spectrum. In it, each direction corresponds to only one
wavelength. A grating, in contrast, produces a whole series of spectra
of different orders m, and all of these spectra overlap. Each direction
corresponds to several wavelengths, namely � for m D 1, �=2 for
m D 2, �=3 for m D 3, etc. A unique correspondence between wave-
length and direction is obtained only within a certain limited range
��.

Let us look at Fig. 22.6. A spectral line of wavelength .�C��/ and
order m must be spaced at least in the minimum ˇ just adjacent to
the spectral line of order .m C 1/ and wavelength �; otherwise, the
unique assignment of the spectral lines to deflection angles would be
lost. We thus find

m.�C��/ D .m C 1/�� �

N
;

or, when �=N can be neglected relative to �, for the usable wave-
length range, we obtain:

�� D �

m
: (22.4)

The most favorable case is found for m D 1; then, we find �� D �.
This means that a spectrum of first order has a unique assignment
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between wavelengths and angular deflection over a range from � to
2�, that is a full octave. If there are wavelengths outside this octave
range, they must be sorted out individually in some manner.

For observations by eye (in contrast to photographic registration or an
electronic detector), we need no special auxiliary apparatus for this
sorting process. Our eyes themselves act selectively; they respond
only to waves in the range of about one octave (ca. 400 to 750 nm).
As a result, the eye can capture a whole first-order spectrum without
hindrance.

The situation is however quite different for spectra of higher order,
e.g. m D 3: Here, the usable wavelength range �� is equal to only
�=3. Therefore, even the eye requires a preselection by some sort of
additional apparatus, which must sort out the undesired waves. Often,
a filter suffices for this task. For m D 3, it must transmit for example
only waves between 450 and 600 nm, or between 600 and 800 nm,
etc. (cf. Sects. 20.12 and 20.13).

22.6 Various Forms of Line Gratings

The line grating was developed in 1821 by J. FRAUNHOFER into the
indispensable scientific instrument that it remains today. A FRAUN-
HOFER grating makes use of small ordersm, usually between 1 and 5,
and has a large number of grating openings or lines. Modern gratings
have up to N � 1:5 �105. This allows us to achieve a resolving power
of 3 � 105 (Eq. (22.3)) even in the second order. This means that
the grating is able to separate two light signals with a wavelength
difference of only about 3 millionths of their average wavelength.
The usable wavelength range �� remains rather large; in the second
order, �� D 0:5 �. We can for example observe a spectrum in the
visible light range from 750 to 400 nm in a single measurement. The
structure of complex line spectra, such as those from atoms, are best
investigated using large FRAUNHOFER gratings (see Fig. 22.4).

All of the lines or openings of the grating must be encompassed by
the surface of a lens or concave mirror. Lenses and concave mirrors
are only seldom available in the laboratory with diameters of more
than 15 cm. For this (financial) reason alone, the openings of the
FRAUNHOFER grating must be placed very close together, and all
1:5 � 105 openings must be next to each other on a surface area of
ca. 15 cm diameter. This cannot be accomplished as in the construc-
tion of a garden fence using slats and spaces. Instead, the ruling of
the grating is carried out in the form of parallel grooves on a highly-
polished metal surface. This is achieved with a ruling engine using
a diamond stylus. In this way, H.A. ROWLAND achieved 800 grooves
per millimeter in 1882, an astonishing accomplishment for grooves
10 cm long! The ruled grating (e.g. with up to 1200 grooves per mm)
is best employed as a reflection grating. Often, it is also used as a ma-
trix for pressing transparent gratings in plastic. Gratings are often
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Figure 22.10 A piece of this rough millimeter
scale, etched into glass, about 15 cm long is
sufficient at grazing incidence of the light
beam to cleanly separate the lines in a mercury
spectrum (actual size)

ruled onto a concave metallic mirror; with such a “concave grating”,
one avoids the need for a lens in front of the grating.

For X-rays, the usual optical gratings made of glass or metal can
be employed, as long as the wavelength � is greater than 2 nm
( OD 620 eV).C22.2 C22.2. The unit eV (electron

volt) is a unit of energy. It is
equal to the product of the
magnitude of the elementary
electric charge e0 and the unit
of potential difference, volt:
1 eV D 1:6 � 10�19 A s � V
D 1:6 � 10�19 W s. Its relation
to the wavelength is found
from

E D h
 D hc=�

(h is PLANCK’s constant, c is
the vacuum velocity of light).

They are used as reflection gratings at grazing incidence, since the
ruling of the grating is fine enough for X-rays only if it is strongly
foreshortened as seen in perspective at grazing incidence.

Perspective foreshortening of the ruling of a grating can be demon-
strated by a simple experiment. We use the millimeter divisions on
a common ruler as a diffraction grating for visible light (Fig. 22.10).
At grazing incidence, the lines of a mercury spectrum can be cleanly
separated.

In using mirrors and gratings for X-rays, another point must be kept in
mind: The refractive indices of all materials are close to 1 for X-rays,
and therefore their reflectivities are vanishingly small. But a favorable
circumstance comes to our aid here: The refractive index of all materials
for X-rays is somewhat smaller than 1 (Sect. 27.9). As a result, at nearly
grazing incidence, we obtain total reflection of the X-rays.
We mention only one of the many possible variations on line gratings:
The mirror surface grating (blazed grating):
In a highly reflective metal surface, grooves are cut with a one-sided trian-
gular profile (“blazing”), for example as shown in Fig. 22.11. A collimated
light beam 1 is incident along the normal to the grating. The greater por-
tion of its energy is reflected along direction 2, according to the law of
specular reflection. With a suitable choice of the grating constant d, the
first-order spectrum can be adjusted to fall around this direction. It then
contains a much larger portion of the radiant power than the spectra of all
the other orders on both sides of the normal to the grating; this grating has
practically only one spectrum. Such mirror-surface or blazed gratings can
be fabricated especially successfully for the long waves of infrared light
(� D ca. 10 to 300�m), but they can also be made for the visible spectral
range.

Figure 22.11 A mirror surface grating (also
called a “blazed grating” or an “echelette”)

2
1

d
λ
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22.7 Interference Spectrometers

Many spectral lines do not have the simple shape treated in Sect. 22.3.
Instead, they consist of a number of components, which often over-
lap with each other. Frequently, a strong spectral line is also flanked
by weaker “satellites”. Briefly put: Many spectral lines have a com-
plex structure. The experimental investigation of line structures re-
quires on the one hand the resolving power �=d� of a large grating
(Eq. (22.3)), but on the other hand, a small usable wavelength range
�� suffices (Eq. (22.4)). Therefore, at low orders m, it is not nec-
essary to make the number N of interfering wave trains very large.
A smaller N and a higher m are sufficient; i.e. a large path differ-
ence m� between two neighboring wave trains. This is experimen-
tally much simpler: We first limit the wavelength range under inves-
tigation by preselection. This means that we separate out the spectral
region to be investigated from the rest of the spectrum, usually with
a prism instrument; sometimes a filter is sufficient. The remain-
ing light is passed through a thick, plane-parallel air plate (FABRY-
PÉROT étalon), as described in Sect. 20.10 and Fig. 20.15. By multi-
ple reflections between two plates (with mirror surfaces), we generate
a large numberN of interfering light beams. The observations are car-
ried out at nearly normal incidence (ˇ � 0) with transmitted light,
and yield bright spectral lines on a dark background (spectrometers
of this design are named for CH. FABRY and A. PÉROT). The path
difference of neighboring wave trains is, depending on the thickness
of the air plate used, generally some ten-thousands of wavelengths
(plate spacing several cm). This means that the spectral lines are
formed via interferences of orders m between 104 and 105. There-
fore, the usable wavelength range �� D �=m is less than 10�4�.

A variation on this spectrometer design is named after LUMMER and
GEHRCKE. The light leaves a plane-parallel glass plate under a large
angle, i.e. at a grazing angle. Within the plate, it is reflected at nearly the
critical angle for total reflection. This makes it possible to obtain multi-
ple reflections without applying a reflective coating to the glass surfaces
(Fig. 22.12).

Mirror images as grating arrangements of wave centers (sources) are
of eminent importance for X-ray spectroscopy at wavelengths of less
than ca. 2 nm. In Vol. 1, we showed how a grating pattern of mirror
images could be produced by plane-parallel plates whose surfaces
consist of lattice planes. We refer to Fig. 12.66 there, and repeat

Extended
light source

f

Figure 22.12 A LUMMER-GEHRCKE interference plate as a spectrometer
(schematic). The rays of a collimated light beam are sketched.
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4 mirror images as wave centers
(virtual sources)
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Figure 22.13 A BRAGG spectrograph for X-rays. S is the line focus of an
X-ray source which is perpendicular to the plane of the page (Sect. 19.5 and
Fig. 19.10). H is a narrow beam of radiation, usually selected by a series
of slits Sl, and not just its central ray. The receiver is a photographic plate
or one of the radiation detectors mentioned in Sect. 15.4. The spacing D
of two lattice mirror planes (only 4 are drawn here) is of the order of 3 �
10�7 mm. As a result, the beams reflected from many lattice planes overlap.
All together, they have an overall diameter Br which is hardly greater than
that of the incident beam. Therefore, even without imaging, we obtain sharp
but very weak spectral lines. For a demonstration with visible light, the series
of reflecting surfaces shown in Fig. 20.22 are suitable, or also a sequence
of reflecting layers produced within photographic plates by standing waves
(see Fig. 20.25).

the schematic here in Fig. 22.13 with a larger angle of incidence ˇ.
Lattice planes are provided by nature in crystals with a high degree
of perfection. Their mirror planes occur with a large number N of
layers, one above the other. This series of mirror planes yields a large
number of mirror images which are arranged as a grating and can
serve as wave centers (virtual sources).

For X-rays, there are no lenses, and we therefore cannot use the
FRAUNHOFER observation mode. This means that we cannot separate
broad light beamswhich have only small angles of inclination relative
to each other in the focal plane of a lens (Sect. 16.8). As a result, we
cannot readily use extended sources of X-rays together with plane-
parallel plates. A narrow, line-shaped source must be employed, and
the angles ˇ, under which the individual wave trains are reflected
from the same position on the crystal, must be scanned successively
by rocking the crystal plate (Fig. 22.13). Generally, one quotes the
grazing angle � D 90ı � ˇ instead of ˇ itself. We find3:

cosˇ D sin � D m�

2D
: (21.2)

3 D is the spacing between two neighboring lattice planes (the optical grating con-
stant, here also a lattice constant of the crystal); e.g. D D 0:28 nm in a NaCl
crystal. The crystallographic lattice constant a, by contrast, is the spacing be-
tween two similar lattice units in homologous positions. In a NaCl crystal lattice,
this is the spacing of two neighboring NaC ions or Cl� ions. a D 2D is 0.56 nm
in the NaCl lattice. A cube of edge length a forms the unit cell of the NaCl lattice.
This means that we can construct the entire crystal lattice simply by translating
the unit cell parallel to the edges of the crystal.
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Figure 22.14 The line
spectrum of L-shell
radiation from tung-
sten, photographed with
a vacuum spectrograph
(using a calcite crystal
with D D 0:3029 nm;
photographic negative,
1XU (X-ray unit) D
1:00302 � 10�13 m)
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For demonstration experiments, it is best to use a fluorescent crystal
as detector, e.g. Tl-doped NaI. Its fluorescence radiation is measured
with a sensitive photocell or a photomultiplier tube (Sect. 15.4). Fig-
ure 22.14 shows an example of a line spectrum in the X-ray region
(See also the DEBYE-SCHERRER method, Sect. 21.14).

Exercises

22.1 The grating in Fig. 22.4 is assumed to have a grating constant
of D D 40�m. On a screen 2m away, the first-order maximum
(m D 1) appears at a spacing of 3 cm from the central maximum
(m D 0).
a) What is the wavelength � of the light used?
b) After the whole apparatus is immersed into a liquid, the spacing of
the first-order maximum is only 2.25 cm. What is the refractive index
of the liquid?
(Sect. 22.2)



Pa
rt
II

The Velocity of Light, and
Light in Moving Frames
of Reference

23

23.1 Preliminary Remark

In 1676, OLAF RÖMER, a Dane, at that time tutor to the royal princes
at the court of Louis XIV in Paris, discovered the finite propagation
velocity of light. Based on astronomical observations, he obtained
a value which is of the correct order of magnitude, namely c D 2:3 �
108 m/s. He used light signals from one of the moons of Jupiter at the
moment when it emerged from the shadow of the planet. The delay
between successive signals was found to be 42.5 h, i.e. equal to the
time required for one orbital passage of the Jupiter moon. He carried
out the measurements when Jupiter was at its closest approach to the
earth and when it was furthest away, that is at opposite points along
the earth’s orbit around the sun, separated by the diameter of the orbit
(the diameter of earth’s orbit is 3 � 1011 m). At the most distant point
on the orbit, the signal showed an additional delay of 1320 s. From
this, he was able to calculate the above value of the velocity of light.

RÖMER’s achievement is worthy of admiration even today. We now
know that light is an electromagnetic wave. Modern communications
technology sends electromagnetic waves around the circumference
of the earth, passing along a great circle of length l D 40 000 km in
a time t D 0:133 s. It follows that c D l=t D 3 � 108 m/s.

Measurements today within the electromagnetic spectrum encompass
a frequency range from around 1022 Hz (� rays) down to about 105 Hz
(long radio waves, employed by communications technology). Ac-
cording to various types of precision measurements, the current best
value for the phase velocity of electromagnetic waves, and thus also
for the velocity of light in vacuum,C23.1

C23.1. The currently ac-
cepted precise value is c D
2:99792458 � 108 m/s.
In 1983, in the framework of
the new definition of the unit
of length, the meter, the ve-
locity of light in vacuum was
fixed at this value (see Com-
ment C1.5 in Vol. 1). Fixing
this value however does not
mean that methods for de-
termining c have become
superfluous in textbooks; af-
ter all, the quoted value was
found from the correspond-
ing precision measurements.
The fixed value means only
that for the meter, there is
currently no more precise
definition available through
other methods of measure-
ment.
Another consequence is that
due to the relation c2 D "0�0

(see Eq. (8.7)), and resulting
from the fixing of the mag-
netic field constant �0, the
value of the electric field
constant "0 is also fixed
(cf. Sects. 5.3 and 2.13).

is c D 2:998 � 108 m/s.
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23.2 Example of a Measurement
of the Velocity of Light

The phase velocity c of light in vacuum has in the course of time ac-
quired a fundamental importance for all of the physical constants.
For this reason alone, a description of its measurement should not
be lacking in an introductory course on physics. We describe here
a method which was introduced by the physician L. FOUCAULT in
1850. In this method, a light beam passes along a path of known
length in both directions and the corresponding transit time is mea-
sured directly using a uniform rotation of known rotational frequency.
Figure 23.1 shows the experimental setup. It makes use of a telecen-
tric light path with a clearly-defined position of the pupil.

S0 is the light source, an illuminated slit. The axle of a small rotatable
mirror is at the focal point of the lens L. With (initially slow) rotation,
the mirror emits N light signals in a time t into the opening of the
lens L. Each signal produces an image S0 of the slit on the planar
mirror P. Following reflection there, the light beam takes the same
path in the reverse direction and at its end, it projects an image S00 of
the first slit image S0. This second image S00 lies within the slit S0,
and is thus not visible. But with the aid of a half-silvered mirror H
(a thin plane-parallel glass plate), the second image can be shifted to
the side and projected onto a screen. Using this auxiliary mirror H,
we can see the principle of the setup; for this purpose, the rotatable
mirror is turned slowly by hand back and forth. The segment ˛ of the
light beam moves in the direction of the curved double arrow. At the
same time, the segment ˇ of the light beam is shifted parallel to the
optical axis. Both movements are indicated for the beam segments ˛0
and ˇ0. The first image of the slit S0 moves across the whole diameter
of the planar mirror P in the direction of the straight double arrow.
In spite of these motions of the light beam and the first image S0, the

Screen

Rotating
mirror

Planar
mirror 

P
β'β'

β

α'

α
S'

S'' S0

R
H

L

f b

K

Figure 23.1 Measurement of the velocity of light by the method of FOU-
CAULT (1850), as simplified by A.A. MICHELSON (1878). The rotating
mirror serves as the entrance pupil, and the light path to the right of L is
telecentric. (A numerical example: R D 5:2m, f D 10:5m, b D 32m, di-
ameter of L and P is 30 cm each, diameter of the rotating double-sided mirror
5 cm, rotational frequency of the mirror up to about 200/s. The rotational
frequency N=t of the circulating light beam of radius R is up to 400/s. The
displacement s of the image of the slit is up to ca. 4mm).
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second image S00 remains unchanged and at rest. This the decisive
point. The reason is not difficult to understand: At low rotational
frequencies, each light signal strikes the rotatable mirror on its return
path at practically the same position as on its outward path.

This changes at high rotational frequencies. The returning signal
finds that the mirror has rotated through a small angle during its tran-
sit time. Therefore, the image S00 of the slit is displaced by a small
distance s to one side. If we now remove the auxiliary mirror H, we
find S00 no longer directly on the slit S0, but rather displaced to one
side by s. We have:

Transit time D Path traversed

Velocity

or

t

N
� s

2�R
D 2.f C b/

c
: (23.1)

The data that apply to the lecture hall in Göttingen can be found in
the caption of Fig. 23.1.

23.3 The Group Velocity of Light

In Fig. 23.1, we can place part of the light path in a strongly dispersive
liquid, e.g. carbon disulfide. Then for the nearly non-periodic wave
groups of incandescent light, the same thing holds as for the similar
groups of gravity waves on a water surface: They are ‘stretched out’
into long wave groups. Their front flank consists of longer, nearly
sinusoidal waves, while their rear flank consists of shorter waves.
The “red” light (refractive index n � 1:6) arrives first, while the
“violet” light (n � 1:7) arrives last. As a result, in Fig. 23.1, the
second image S00 of the slit appears as a short spectrum.

Only the vacuum is strictly dispersion-free. An experimental proof
of this: When a Jupiter moon emerges from behind the planet, we see
it immediately as colorless, not first red, then yellow, green, and so
forth.

When dispersion occurs, we can no longer measure the phase velocity
of waves simply in terms of path length and transit time. Instead of
the phase velocity c, we obtain only their group velocity c
. This
concept, which is important for both physics and technology, was
explained in detail in Sect. 12.22 of Vol. 1. A group velocity c
 can
be defined for waves only within a limited spectral range. Within that
range, we find:

c
 D c0 � �dc
0

d�
I (23.2)
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with c0 D c=n, and (after differentiation)

dc0

d�
D � c

n2
dn

d�
: (23.3)

(c is here the phase velocity in vacuum, and c0 D c=n is the phase velocity
in a material of refractive index n).

Example: In carbon disulfide (CS2), yellow light of wavelength � D
589 nm, the well-known “sodium light” or “sodium D-light”, has a refrac-
tive index of nD D 1:63. The phase velocity of this light is therefore c0

D D
c=1:63 D 1:84�108 m/s. However, the measured value is only 1:72�108 m/s.
This is the group velocity c


D of light in this wavelength range. In order to
calculate it from Eq. (23.3), we must know the experimentally-determined
dispersion of CS2 for sodium D-light as well as the phase velocity c0

D. We
find .dn=d�/D D �1:88 �105/m and c0

D D c=n D 1:84 �108 m/s. With these
values, using Eq. (23.2) we obtain the result c


D D 1:72 � 108 m/s.

23.4 Light in Moving Frames
of Reference

1. For a light source outside the moving frame of reference (astro-
nomical aberration)

The earth’s orbit around the sun is a large carousel, which appears
pointlike when observed from a star. Figure 23.2 shows the earth at
two arbitrary points along its orbit, separated by one-half of a year.
From these points, an angle ı is observed between a star near the
earth’s orbital axis and a star near the earth’s orbital plane. One
observes (Fig. 23.3) an angular difference of 2� D ıD � ıJ D 41 arc
second, i.e. an aberration (the ratio � D u=c � 10�4). The velocity
uS of the sun relative to the system of fixed stars is unknown; only
the difference 2u � 60 km/s is known.

As a result of these variations, all fixed stars near the earth’s or-
bital axis appear to move on a circular orbit with a diameter of
41 arc second. Stars between the orbital axis and the orbital plane

Figure 23.2 Variation of the velocity
of the earth along its orbit around the
sun, relative to a distant star (the orbit is
seen in perspective from the side)

u = 30

u = 30 km
s

km
s

J

D

S

Figure 23.3 The apparent angular
spacing ı between two stars changes
according to the season of the year (as-
tronomical aberration)C23.2

C23.2. Pointing the tele-
scope: Think of raindrops
which are hitting the window
of a moving train. If we want
to look at them directly, we
have to fix our gaze along
the direction of travel and
upwards.

δJ
δD
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Figure 23.4 The measurement of the velocity
of light using the aberration

Orbital velocity
of the earth

Light from
a star

u u

γ γ

c S
 =

 c
   

1 
– 

u2 /c
2

cc

follow elliptical orbits over the course of a year, with a major axis of
41 arc second. This phenomenon was discovered by BRADLEY and
explained in 1728 as in Fig. 23.4, left side.

According to EINSTEIN’s theory of relativity (1905; see Com-
ment C5.1 in Chap. 5 of this volume), the velocity of light c is
a limiting value which cannot be exceeded when adding velocities.
Therefore, the left-hand diagram in Fig. 23.4 should be replaced by
the diagram on the right. From it, we can read off

cs D
p
c2 � u2 D c

p
1 � u2=c2 (23.4)

andC23.3 C23.3. Historical note:
A derivation using the
LORENTZ transforma-
tion (time dilation), was
given in the 13th edition of
POHL’s “Optik und Atom-
physik”, Chap. 9, Sect. 4.
English: see e.g. https://
www.lsw.uni-heidelberg.
de/users/mcamenzi/
DopplerAberration.pdf
or https://en.wikipedia.org/
wiki/Stellar_aberration_
(derivation_from_Lorentz_
transformation) .

tan � D u

cs
D u

c
� 1p

1 � u2=c2
: (23.5)

Now, however, u � c. Therefore, we can approximate the tangent by
the sine and set the square root in the denominator equal to 1. Then
the aberration becomes sin � D u=c or � � u=c. This result agrees
with the observations of BRADLEY.

2. For a light source within the moving frame of reference

Figure 23.5 shows a carousel from above; at first, it is at rest. Two co-
herent light beams, 1 and 2, are emitted simultaneously from point A.
They are reflected by mirrors at the vertices of the polygon to point B.
There, they are superposed in a suitable manner, so that they produce
interference fringes, for example curves of constant inclination. The
position of the fringes is recorded (e.g. photographically). Then the
carousel is set in motion, rotating in a counter-clockwise sense as
seen from above, and the interference fringes are again photographed.
Now, the fringes have shifted by some fraction Z of their original

https://www.lsw.uni-heidelberg.de/users/mcamenzi/DopplerAberration.pdf
https://www.lsw.uni-heidelberg.de/users/mcamenzi/DopplerAberration.pdf
https://www.lsw.uni-heidelberg.de/users/mcamenzi/DopplerAberration.pdf
https://www.lsw.uni-heidelberg.de/users/mcamenzi/DopplerAberration.pdf
https://en.wikipedia.org/wiki/Stellar_aberration_(derivation_from_Lorentz_transformation)
https://en.wikipedia.org/wiki/Stellar_aberration_(derivation_from_Lorentz_transformation)
https://en.wikipedia.org/wiki/Stellar_aberration_(derivation_from_Lorentz_transformation)
https://en.wikipedia.org/wiki/Stellar_aberration_(derivation_from_Lorentz_transformation)
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Figure 23.5 The measurement of the ve-
locity of light by means of interference
experiments on a carousel. In this sim-
plified schematic, the components of the
interferometer setup at points A and B are
not shown.

B

A
12

spacing. From the magnitude of this shift, we can calculate the ve-
locity of light.

Explanation: We choose our point of observation in the “laboratory
frame”, outside the carousel. Furthermore, we imagine that the light
path along the edges of the polygon from A to B is replaced by the
circumference of the semicircle, that is �r. Then we can say that
each light beam has a transit time from A to B equal to t D �r=c.
During this transit time, the target point B has moved forward at the
velocity u D !r, and has covered the distance

s D !rt D !�r2

c
(23.6)

(! D 2�N=t is the angular velocity of the carousel at its rotational fre-
quency N=t. �r2 is the area enclosed by the two light paths 1 and 2).

Therefore, light beam 1 must travel along a path which is longer by
s, while light beam 2 travels along a path which is shorter by s. This
gives rise to a path difference between the two light beams due to the
rotation:

� D 2s D 2!�r2

c
: (23.7)

This path difference in turn causes a shift in the interference fringes.
It can easily be increased by a factor of 4. Firstly, points A and B
can be placed adjacent to each other so that both light beams have to
travel along the full circumference of the carousel. This doubles the
shift of the fringes. Secondly, the sense of rotation can be reversed
during the experiment, so that the shift of the fringes is again doubled.
Then we find for the overall path difference

� D 8!�r2

c
or

�

�
D 8!�r2

c�
: (23.8)

Numerical example: A path difference of � D �=3 is desired; with
a reversal of the rotation, this will give a shift in the position of the
fringes equal to 1=3 of their spacing. For yellow light, � D 0:6�m D
6 � 10�7 m, and c D 3 � 108 m/s. Then the product N�r2=t must be
made equal to 1.2m2/s. This can be accomplished experimentally in
various ways. Examples:
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1. A carousel with an area of 1.2m2 and N=t D 1/s, that is one
rotation per second.

2. The interference apparatus is put on board a ship. Its light path
encloses an area of �r2 D 120m2, and the ship sails around a full
circle every 100 s, so that N=t D 10�2/s (for rotational motion, the
angular velocity is independent of the location of the axis of rotation;
the latter is in the center of the apparatus in example 1., but off to the
side for a circling ship).

3. The light path (protected by an evacuated pipeline) encloses an
area of the order of �r2 D 105 m2. Then the angular velocity of the
earth’s rotation, ! D 2�N=t, is sufficient; or, more strictly speaking,
the angular velocity of its vertical component at the location of the
observations. We thus have constructed an optical analog of FOU-
CAULT’s pendulum demonstration (Vol. 1, Sect. 7.6).

Of course, we can neither bring the earth’s rotation to a stop nor can we
change its direction. Therefore, the determination of the original position
of the interference fringes requires a trick: We first let the light beams fol-
low a path enclosing a very small area, and then later use the large area.
In this way, we lose a factor of 2 in Eq. (23.8), but nevertheless, the com-
parable experiment carried out by A.A. MICHELSON in 1925 yielded an
impeccable result.

None of these methods is suitable as a demonstration experiment.
Protecting the apparatus from perturbations by centrifugal forces and
temperature variations requires a considerable effort. That is why we
left it at the simple scheme described above, without considering the
details of the light path.C23.4 C23.4. The interferometer

described here, named for
G. SAGNAC, has considerable
practical importance today
as an “optical gyroscope” or
“ring-laser gyroscope”.

23.5 The DOPPLER Effect with Light

For mechanical waves, for example sound waves, either the source
or the receiver or both may be moving relative to the medium of
the waves, e.g. the air. Their velocity u can be clearly defined and
measured. With all such motions, the frequency 
0 measured at the
receiver is different from the frequency 
 emitted by the source. This
is called the DOPPLER effect. When the receiver is moving and the
source is stationary, we find (Vol. 1, Sect. 12.2):


0 D 

�
1 ˙ u

c

�
; (23.9)

where c is here the velocity of sound in the particular medium.

In contrast, when the source is moving and the receiver is station-
ary (the upper signs hold when the receiver is moving towards the
source), we have:


0 D 
�
1  u

c

� D 

�
1 ˙ u

c
C u2

c2
˙ : : :

�
: (23.10)
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Figure 23.6 A simple ion-beam tube
for observing the DOPPLER effectC23.5C23.5. Herbert E. Ives and

G.R. Stilwell, Journal of the
Optical Society of Amer-
ica 28 (1938), p. 215. This
experiment observes the lon-
gitudinal DOPPLER effect,
i.e. parallel to the direction of
wave propagation. There is
also a transverse DOPPLER

effect, but it is much smaller.
Historical note: POHL dis-
cussed the transverse Doppler
effect in the 13th ed. of
“Optik und Atomphysik”,
Chap. 9, Sect. 6. For mod-
ern treatments in English,
see e.g. mathpages.com/
home/kmath587/kmath587.
htm, or http://spiff.rit.edu/
classes/phys314/lectures/
doppler/doppler.html, or
https://en.wikipedia.org/wiki/
Relativistic_Doppler_effect#
Transverse_Doppler_effect .

with light

A C+ S

We first consider only small values of the ratio u=c and therefore
neglect the term u2=c2 and all the higher terms. Then Eqns. (23.9)
and (23.10) are the same. The observed change in the frequency,
(
0 � 
), then depends only on the relative velocity u between the
source and the receiver. This gives


0 D 

�
1 ˙ u

c

�
: (23.11)

If we relax our restriction to small values of u=c, that is when our
measurement precision also includes the second-order term u2=c2,
then the equations (23.9) and (23.10) which hold for mechanical
waves cannot be applied in optics. In optics, i.e. when dealing with
electromagnetic waves, which are completely relativistic, we cannot
distinguish between motion of the source and motion of the receiver,
and there is no ‘medium’ that carries the waves. The two equa-
tions (23.9) and (23.10) must be replaced by a single equation; it
is


0 D 

�
1 ˙ u

c

�.s
1 � u2

c2
D 


�
1 ˙ u

c
C 1

2

u2

c2
˙ : : :

�
; (23.12)

where c is now the velocity of light.

This equation can be derived from the LORENTZ transformations
(see Chaps. 7 and 8 in this volume, in particular Comment C7.1 and
Sect. 7.4, and the references quoted there). An experimental test of
Eq. (23.12) was successfully carried out only in 1938, using the light
emitted from ion beams.C23.5

Qualitative demonstration experiments can be performed using the
ion-beam tube sketched in Fig. 23.6. The velocity u (of the ions in
the beam) must be a few tenths of the velocity of light c.

Within the tube, and between the cathode C and the anode A, there
is hydrogen gas at a low pressure of ca. 0.1 Pa. An anode voltage of
around 30 kV produces a self-sustaining discharge in the gas. Acceler-
ated, positively-charged hydrogen ions emerge from the channel in the
cathode (canal rays). When these collide with the hydrogen molecules
in the right-hand part of the tube, they produce rapidly-moving, excited
hydrogen atoms which then emit light. The light is observed along the
direction of motion of the ions with a spectrometer, leading to the image
reproduced in Fig. 23.7. It shows a shift of the spectral lines towards
shorter wavelengths, that is to higher frequencies.

This demonstration of the optical DOPPLER effect using mechani-
cally-moving light sources does not justify the required efforts. It

mathpages.com/home/kmath587/kmath587.htm
mathpages.com/home/kmath587/kmath587.htm
mathpages.com/home/kmath587/kmath587.htm
http://spiff.rit.edu/classes/phys314/lectures/doppler/doppler.html
http://spiff.rit.edu/classes/phys314/lectures/doppler/doppler.html
http://spiff.rit.edu/classes/phys314/lectures/doppler/doppler.html
https://en.wikipedia.org/wiki/Relativistic_Doppler_effect#Transverse_Doppler_effect
https://en.wikipedia.org/wiki/Relativistic_Doppler_effect#Transverse_Doppler_effect
https://en.wikipedia.org/wiki/Relativistic_Doppler_effect#Transverse_Doppler_effect
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Hδ
= 0.410 μm

Hγ
= 0.434 μm

Figure 23.7 The DOPPLER effect in the spectrum of moving hydrogen
atoms. The sharp lines Hı and H� are emitted by atoms at rest (the BALMER

series, see for example M. BORN’s “Atomic Physics”, 8th ed. (1969) (avail-
able for download – see https://archive.org/details/AtomicPhysics8th.ed).
The broad lines which are seen to the left of the sharp lines are DOPPLER

shifted from moving atoms and exhibit the distribution of their velocities.

shows no more than some arbitrary interference experiment in which
a mirror is being moved at a velocity u along the direction of a light
beam or opposite to it. As an example, we use an air wedge formed
by two silvered plates (Fig. 20.11); we move one plate slowly and
thereby continuously vary the path difference of the two wave trains
that overlap between the plates. The interference fringes slide across
the field of view, and the irradiation intensity at a particular location
in the field of view varies periodically N times during the time t.
Due to the DOPPLER effect, the frequency of the reflected wave train
is shifted relative to the frequency 
 of the incident wave train by
�
 D 2u=�. The superposition of the two wave trains thus produces
beats of frequency 
S D N=t D �
 (compare Vol. 1, Sect. 12.18).

The optical DOPPLER effect has acquired considerable importance
for astronomy. In the spectra of distant stars and galaxies, the line
spectra of known elements are often shifted towards longer or shorter
wavelengths. This shift can be interpreted in many cases unambigu-
ously as a DOPPLER effect. From its magnitude, the radial velocity
ur between the source and the earth can be computed. Generally large
shifts, always towards longer wavelengths (“redshift”), are observed
in the spectra of extragalactic objects (distant galaxies). They lead to
surprisingly large radial velocities, up to several tenths of the velocity
of light.C23.6

C23.6. Today, redshifts
corresponding to much
higher velocities have been
observed. These are “cos-
mological redshifts” which
are due to the expansion
of space and not to mutual
motion at a velocity u within
space. They are a measure
of the age of the emitting
object, since the expansion
has led with time to greater
distances and greater ve-
locities for distant objects.
See e.g. http://curious.astro.
cornell.edu/physics/104-the-
universe/cosmology-and-
the-big-bang/expansion-
of-the-universe/610-what-
is-the-difference-between-
the-doppler-redshift-
and-the-gravitational-or-
cosmological-redshift-
advanced or https://en.
wikipedia.org/wiki/Redshift#
Highest-redshifts .

All of these observed velocities are directed away from the earth, and their
magnitudes increase proportionally to the distances of the galaxies. This
is illustrated by Part a) of Fig. 23.8 (E is the earth). The lengths of the
lines correspond to the velocities. Distances observable today are up to
5 � 108 light years.C23.7

C23.7. The current record
distance (2016) is about
3:3 � 1010 light years, corre-
sponding to a relative redshift
of z D �0��

�
D 11:1. Here,

�0 is the observed wavelength
and � is the emitted wave-
length (in the rest frame of
the source). See the refer-
ences in Comment C23.6.

This relation between distance and (expansion) velocity, discovered by
E. HUBBLE, appears at first view to attribute an improbable special van-
tage point to our earth. But this is not the case; the graph a) could represent
a race in which many students participate. Initially, they were all clustered
around their teacher at position E. Then, at a given time, they all began
to run away in all possible directions. Their goal is a distant circle with E

https://archive.org/details/AtomicPhysics8th.ed
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
http://curious.astro.cornell.edu/physics/104-the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/610-what-is-the-difference-between-the-doppler-redshift-and-the-gravitational-or-cosmological-redshift-advanced
https://en.wikipedia.org/wiki/Redshift#Highest-redshifts
https://en.wikipedia.org/wiki/Redshift#Highest-redshifts
https://en.wikipedia.org/wiki/Redshift#Highest-redshifts
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Figure 23.8 The radial escape
motion of distant galaxies,
obtained from the “redshifts”
of their spectral lines (the
location of the observer is at E
in the upper graph, and at N in
the lower graph)

a

b

E N

E N

at its center. At the moment of observation represented by the graph, each
point in graph a) shows the position of one student, and his or her velocity
is given by the length of the line. The distances covered since starting at E
are proportional to the velocities of the runners. The fastest runners have
moved furthest away. Part b) of the figure shows the same race, observed
at the same moment in time, but now not from the locationE of the teacher,
but rather from that of some randomly-chosen participant in the race at the
location N. The graph b) can be constructed very simply from graph a);
we need only add the velocity vector of the runner at N in graph a) to all
of the other velocity vectors in a) (shown at top left for one example as
dashed lines). Now, E is no longer at the center point of the general radial
escape velocities, but instead the location N is the apparent center point.
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Polarized Light 24
24.1 Distinguishing Transverse

and Longitudinal Waves

In the sections on mechanics, we learned to distinguish between
transverse and longitudinal waves. Figure 24.1 shows as an example
two “snapshots” or instantaneous images. The upper one represents
a transverse wave, e.g. along an elastic cord; we see the crests and
troughs of the waves. The lower snapshot shows a longitudinal wave,
e.g. a sound wave in the air inside a pipe. We see compressions
and rarifications1. A longitudinal wave exhibits the same behavior
all around its direction of propagation (it is cylindrically symmetric
relative to that direction), while a transverse wave, in contrast, is
decidedly “one-sided”. As shown in Fig. 24.1 (top part), it can be
“linearly polarized”. We want to see what this means in some detail.

View the wave perpendicular to its direction of propagation and con-
sider the experiments. Initially, the viewing direction is also perpen-
dicular to the plane of the page. Both wave phenomena appear in full
clarity. Then, imagine that your viewing direction is within the plane
of the page (from above or below the waves). The longitudinal wave
still looks the same, but the transverse wave is now no longer visible;
we see the cord as a straight line. The transverse wave in Fig. 24.1
thus has a one-sidedness or planarity which is called its “polariza-
tion”. It is characterized by a single plane of oscillation. The motion
of the transverse wave becomes invisible when the eye of the observer
is itself in this plane of oscillation.

Figure 24.1 Snapshot
a: A transverse wave
(A is its deflection).
Snapshot b: A longi-
tudinal wave

A

x

0

a

b

1 Figure 24.1 should be thought of as a “snapshot” of two experiments. In a draw-
ing, any longitudinal wave can also be represented by a wavy line, e.g. a sine
function. In the drawing of a sound wave, the ordinate may then represent the air
pressure, that is wave crests refer to regions of compression; or it can represent the
density, which is maximal at a wave crest.

467© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_24

https://doi.org/10.1007/978-3-319-50269-4_24
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Figure 24.2 A slit
P as a polarizer
for mechanical
transverse waves

P

In mechanics, a polarization can thus occur only for transverse waves.
But beware of the converse of this sentence: the lack of polarization
does not rule out transverse waves. The position of the plane of oscil-
lation of transverse waves can change rapidly and randomly. Then,
averaged over time, the transverse waves may also have no polariza-
tion (we then call them “unpolarized”).

Nevertheless, even in this case, we can distinguish experimentally
between longitudinal and transverse waves. We make this clear again
using a mechanical demonstration. In Fig. 24.2, a hand produces
a transverse wave on a long elastic cord. The hand moves with a fixed
frequency and amplitude, but it changes its direction of oscillation
continually and randomly. As a result, the plane of oscillation of the
waves also changes continually and randomly; the waves completely
fill a cylindrical region with the direction of propagation as its center
axis. The intersection of this cylinder with the plane of the page is
indicated by two dashed lines. Now comes the essential point: At P,
the cord passes through a narrow slit. This slit acts as a “polarizer”. It
selects one single fixed plane out of the mixture of rapidly changing
planes of oscillation. In Fig. 24.2, this selected plane lies parallel to
the plane of the page. Therefore, to the right of the polarizer P, we
can observe a linearly-polarized wave. Its polarization clearly shows
the character of the waves which are travelling from the left towards
the polarizer: They are transverse waves.

24.2 Light as a Transverse Wave

The knowledge of waves that we obtained from mechanics can be
applied analogously to optics. But – should we describe light in terms
of longitudinal waves or of transverse waves?

We employ one of the fundamental observations of optics, the visible
trace of a light beam in a cloudy medium. We can use water with fine
suspended particles as such a medium. The light beam looks just the
same all around its direction of propagation; we initially observe no
polarization. But only a positive observation, i.e. the occurrence of
a polarization, could eliminate longitudinal waves and demonstrate
uniquely that light consists of transverse waves. We can obtain this
positive evidence in the following way:

ERASMUS BARTHOLINUS, a Dane, discovered birefringence (also
called double refraction) in 1669. He let a light beam n fall perpen-
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Figure 24.3 A demonstration of birefringence. A thick plate of calcite crystal
(a natural rhombohedral cleaved crystal) is attached to a disk SS (seen here
in cross-section). This disk can be rotated within the ring RR around the n-o
direction as axis. When we add a circular aperture B, we have made a simple
polarizer. (The direction of the optical axis of the calcite crystal is indicated
by shading, as in Sect. 24.4)

dicularly onto a platelet of Icelandic calcite (CaCO3 – Fig. 24.3). He
observed that the beam was split into two sub-beams. One of the
two, denoted by o, passes through the crystal platelet in its original
direction without any refraction. It thus shows the same behavior as
seen for any glass plate with a beam of light at perpendicular inci-
dence. This sub-beam o is therefore called the “ordinary” ray. The
other sub-beam eo experiences a refraction on entering the crystal, in
spite of its perpendicular incidence, and it leaves the calcite crystal
with a parallel shift of its beam axis. This second sub-beam is called
the “extraordinary” ray.

There are several possibilities for eliminating one of the sub-beams.
In the simplest case, the aperture B in Fig. 24.3 is sufficient. It al-
lows only the ordinary ray (beam) to pass through. By eliminating
one of the sub-beams, we have converted the doubly-refracting crys-
tal into a polarizer. It serves the same purpose for light as the slit in
Fig. 24.2 for the mechanical waves on the cord. We will see this in
our next experiment. We allow the light to pass through such a polar-
izer and then follow its trace in a container filled with cloudy water
(Fig. 24.4). Now, the light beam shows a clear-cut polarization: We
can observe the light beam from a direction perpendicular to its prop-
agation direction and look at it from all sides. Along two particular
directions, separated by 180ı, the beam becomes invisible; in these
directions, the eye is in the plane of oscillation of the polarized beam.
We mark the position of this plane of oscillation on our polarizer
with a pointer E. Now, we can make the observations more straight-
forward. We maintain our viewpoint and make use of the pointer to
position the polarizer around the axis of the light beam as optical axis.
This allows us to demonstrate the transitions between good visibility
and complete invisibility of the light beam to a large audience in an
impressive manner.
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E

L C F P T

Figure 24.4 A demonstration of the plane of oscillation of a light beam. P
is the polarizer. (The water is clouded by adding suspended particles, most
expediently by using Styrofan (BASF), i.e. plastic spherules whose diameter
is less than the wavelength of the light)C24.1 (Video 16.1)Video 16.1:

“Polarized Light”
http://tiny.cc/5dggoy

C24.1. The light beam is
made visible by scattering
(Chap. 26). JOHN TYN-
DALL, 1820–1893, an Irish
physicist, observed that small
suspended particles in liquids
can produce light scattering
(TYNDALL effect); see Pro-
ceedings of the Royal Society
(London), Vol. 17 (1868/69),
p. 223, an article which is
still quite readable today.

We summarize: Using a polarizer, we can prepare light beams as
transverse waves with a fixed plane of oscillation. The light beam
becomes invisible when the eye of the observer lies in its plane of os-
cillation. This allows us to fix the position of the plane of oscillation
in the polarizer and to mark it with a pointer.

The discovery of polarization considerably enriched the interpreta-
tion of light as a form of waves. We can now say that the wave
scheme which we have often utilized, i.e. a wavy line, in the sim-
plest case a sinusoidal curve, corresponds in optics to the picture
of a transverse wave. Its “deflection” can be oriented parallel to
a plane, i.e. the light wave can be linearly polarized. Therefore, the
“deflection” and its maximum value, the “amplitude”2 are directed
quantities, vectors oriented transverse to the direction of propagation
of the wave. We will correspondingly refer to the “deflection” of
a light wave from now on as the light vector and denote it by the
symbol E.C24.2C24.2. The letter E stands

at the same time for the vec-
tor of the electric field with
which we can describe light
as an electromagnetic wave.
See Sect. 12.6.

Concerning the physical nature of the light vector,
we need make no statements for the time being. We will continue
to limit our descriptions of optical phenomena to what is absolutely
essential.

24.3 Polarizers of Various Types

The polarizer sketched in Fig. 24.3 produces light beams of only
a few millimeter in diameter; for larger beams, we would need thick
and expensive plates of calcite or some other double-refracting crys-
tal. To overcome this disadvantage, a series of other types of polariz-
ers have been developed.

In the first group, one or the other sub-beam is eliminated by reflec-
tion, making use of total reflection. For this purpose, we cut a piece

2 Compare Sect. 16.9, conclusions.

http://tiny.cc/5dggoy
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Figure 24.5 A NICOL prism, that is a polarizer after WILLIAM NICOL

(1828), shown as a longitudinal section and a cross-section. A prism of this
form is suitable for modest requirements. The extraordinary light beam is
transmitted. Its plane of oscillation (the light vector E) lies parallel to the
shorter diagonal of the diamond-shaped cross-section. (The optical axis of
the crystal is indicated by the shading)

Figure 24.6 A polarizer with its end surfaces perpendicular to its long axis.
In a superior construction as described by GLAN-THOMPSON, the quite
uniformly-polarized field of view encompasses around 30ı. Various but su-
perficially similar shapes differ in the orientation of the crystal axes of the
calcite. Therefore, one must determine the position of the plane of oscillation
experimentally, e.g. as shown in Fig. 24.4, if the particular construction type
is unknown.

of calcite crystal3 in an oblique direction (Fig. 24.5) and separate the
two halves by a transparent intermediate layer of suitable refractive
index, i.e. one which leads to a total reflection of the ordinary rays
(e.g. Canada balsam or linseed oil). For optimal performance, the
two end surfaces should be perpendicular to the long axis (Fig. 24.6).
With this shape, the transmitted sub-beam experiences no transverse
displacement, so that when the polarizer is rotated, it does not “wob-
ble”.

In the second group of polarizers, one of the two sub-beams is elim-
inated by absorption. For this type, one makes use of “dichroic”
materials. These are double-refracting and also absorb the two po-
larized sub-beams differently. In the most favorable case, one of the
oscillating components is transmitted practically without attenuation
over the entire visible spectral range, while the other, perpendicular
to the first, is completely absorbed (see also Sect. 12.8). The most
serviceable types of fabrication in use today are “polarizing foils”
or “Polaroid sheets”.C24.3 C24.3. These polarizing foils

are commercially available
with dimensions of up to
1/2m and more. They are
quite suitable for demonstra-
tion experiments, e.g. using
an overhead projector.

One type of these foils contains many
parallel-oriented tiny dichroitic crystallites. Another type consists
of films of a transparent plastic with rod-shaped structural elements
(miscellanea). These rods are oriented parallel to a particular axis
during the manufacture of the foils by mechanical deformation and
are treated with dyes which are absorbed onto their surfaces. With

3 All polarizers made from calcite are useless in the ultraviolet spectral range.
Calcite, and especially the glue for attaching the parts, absorb strongly in the short-
wavelength region. An alternative is shown in Fig. 24.9. In the infrared, calcite
can be used out to � D 2:5�m.
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this process (E. KÄSEMANN), one can also fabricate polarization
foils for the ultraviolet and the infrared spectral regions.C24.4C24.4. Another type of Po-

laroid foil was invented in
1938 by EDWIN H. LAND.
It is called “H-sheet” and
contains a polyvinyl alcohol
(PVA) polymer impregnated
with iodine. During manufac-
ture, the PVA polymer chains
are stretched to form an array
of aligned, linear molecules
in the material. The iodine
dopant attaches to the PVA
molecules and makes them
conducting along the length
of the chains. Light polarized
parallel to the chains is ab-
sorbed, and light polarized
perpendicular to the chains is
transmitted.

A third group of polarizers will be described in Sect. 25.6 (polariza-
tion by reflection).

24.4 Birefringence, in Particular
in Calcite and Quartz

Polarized light plays a significant role in optics. Wewill meet up with
it again and again in later chapters. Important accessories for produc-
ing and investigating polarized light are based on the phenomenon of
birefringence in crystals (also called double refraction). It is thus ex-
pedient for us to consider some additional facts about the subject of
birefringence.

Quartz crystals are generally known in the form of hexagonal
columns. Calcite is also found in the same form, although its rhom-
bohedral cleavage fragments are better known. We put two surfaces
perpendicular to the long axis of the column and allow a thin light
beam to enter the crystal parallel to its long axis. Then the beam
passes through the crystal without deflection, the splitting into two
spatially separated sub-beams is absent (Fig. 24.3). The long axis of
the hexagonal column is thus optically distinguished; along this axis,
there is no birefringence.

This special direction is referred to – not very adroitly – as the optical
axis. (“Axis” here means a direction, not a line, deviating somewhat
from the usual parlance!). Every plane which contains the optical
axis is called a principal plane (or principal section) of the crystal4.
We will often make use of this concept.

For our next experiment, we use two geometrically-identical calcite
prisms as shown in Fig. 24.7. Within the upper prism, its optical
axis lies parallel to the base plane of the prism; in the lower, it is
perpendicular. This is indicated by the shading lines in the figure.

The light is normally incident on both prisms (perpendicular to the
first surface, from the left). In the upper prism, it propagates parallel
to the optical axis, and in the lower prism, it is perpendicular. As a re-
sult, birefringence occurs only in the lower prism, and only there do
we see two separate beams. The beam that is more strongly deflected
(o) takes a similar path as in the upper prism, without birefringence.
Thus, it is the ordinary beam. The extraordinary beam (eo) is less
strongly deflected. Both beams then pass through a polarizer P. Its
direction of oscillation is marked by the double pointer E. In the
position shown, the polarizer allows only the extraordinary beam to
pass. If we rotate it by 90ı (so that E is perpendicular to the plane of

4 In contrast to the principal plane of a prism, which is a plane perpendicular to
the refractive edge of the prism (Sect. 16.6, beginning).
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Figure 24.7 The birefringence of calcite. The direction of the “optical axis”
is indicated by the shading lines, and the plane of oscillation of the extraor-
dinary beam is shown pictorially. The principal plane of the prisms (a plane
perpendicular to its refracting edge) is at the same time a principal plane of
the crystals, here the plane of the page.

the page), then only the ordinary beam can pass through the polarizer.
Therefore, the planes of oscillation of the two beams are perpendic-
ular to each other. The plane of oscillation of the extraordinary beam
lies along a principal plane of the crystal, while that of the ordinary
beam is perpendicular to it.

From the angles of deflection, the refractive indices can be calculated.
For green light, we obtain

neo D 1:49 ;

no D 1:66 :

The extraordinary beam is less strongly refracted (Fig. 24.7, bottom).
For this reason, calcite is called negative birefringent. For quartz, the
opposite is the case; quartz is positive birefringent.

In Fig. 24.7, the beam in the interior of the crystal is either parallel to
the optical axis (above), or it is perpendicular (below); i.e. the angle
� between the beam and the optical axis is either zero or 90ı. The
measurements can however also be repeated for intermediate values
of � , for example as shown in Fig. 24.8, left side. The refractive
index no of the ordinary beam is found to be equal to the value quoted
above, no D 1:66, for all values of � . The refractive index of the
extraordinary beam, in contrast, changes with ˛ and � . It has its
smallest value at � D 90ı, and its maximum at � D 0ı. For � D 0ı,
neo D no, i.e. along the optical axis, birefringence is absent.

In Fig. 24.8, right side, a prism with a different orientation is
sketched. In this case, the optical axis is parallel to the refractive
edge of the prism, and thus perpendicular to the plane of the page.
This is indicated by the dots. The two beams are perpendicular to the
optical axis within the crystal for every angle of incidence ˛, i.e. � is
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Figure 24.8 The birefringence of calcite. At left, the refractive indices can
be measured for different angles of inclination � between the beam and the
optical axis. At the right, in contrast, � is constant at 90ı, because the optical
axis lies parallel to the refracting edge of the prism.

o
eo

ca. 1°

Figure 24.9 A double prismmade of quartz gives two non-achromatized (see
Sect. 18.8), symmetrically deflected sub-beams (WOLLASTONprism). When
joined by a film of water, it is suitable for the polarization of ultraviolet light.
For other choices of the axis directions in the halves of the prism, the ordinary
beam can be made to pass through the prism without deflection and can thus
be achromatized. However, this costs half of the beam divergence (ROCHON,
SENARMONT prism).

always 90ı. Therefore, for every angle of incidence, we measure the
same two values of the refractive indices as given above, no D 1:66
and neo D 1:49.

The examples given thus far in this section refer to several special
cases, which are also important for applications (Fig. 24.9): Both
the first surface on which the light is incident as well as the plane
of the page were either parallel or perpendicular to the optical axis.
Without this condition, the situation becomes very complex even for
single-axis (“uniaxial”) crystals.

The essential point can be demonstrated as shown in Fig. 24.10. We
make use of the same experimental arrangement as in Fig. 24.3, but
the light is incident at an oblique angle and, together with the angle
of incidence ˛, it determines a plane of incidence. In the orientation
as drawn, the plane of incidence is parallel to a principal plane of the
crystal. Both sub-beams propagate in the plane of incidence.

Now, the thick calcite block is rotated slowly around the normal NN.
This causes the optical axis to move out of the plane of incidence.
This is unimportant for the ordinary beam; it remains as before within
the plane of incidence (plane of the page) over its entire path. How-
ever, the extraordinary beam continues to propagate along a principal
plane of the crystal. This principal plane contains the normal and the
optical axis. It is thus no longer in the plane of incidence and circles
during the rotation around the ordinary beam on a cone inside and
on a cylindrical surface outside. Apart from the special cases treated
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Figure 24.10 Refraction outside
the plane of incidence. When the
calcite block is rotated around
the normal NN to the surface of
incidence, the extraordinary
beam is refracted out of the
plane of incidence (the plane
of the page).
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N N
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above, the refraction of the extraordinary beam thus does not take
place within the plane of incidence. The elementary law of refrac-
tion (Fig. 16.4) fails. The refraction of the extraordinary beam can
in general be described only in perspective with a three-dimensional
representation.

The phenomena become still more complex when the crystals have
two axes, i.e. with crystals which have two internal directions that
exhibit no birefringence. In such “biaxial” crystals, there is no “ordi-
nary” beam at all. Both beams are “extraordinary”, i.e. for both, the
refractive index depends on the direction, and both in general leave
the plane of incidence when refracted. The planes of oscillation of
both beams remain perpendicular to each other in biaxial crystals.
For physical investigations, one often uses cleaved pieces of crystals
from the biaxial group of clear mica5.

Mica sheets have mechanically distinguished directions. If the sheet
is laid onto a blotting pad and a hole is punched through it with a pin,
a chatter mark as photographed in Fig. 24.11 results. It shows a six-
pointed star with two long arms. The direction of the long arms is
called the ˇ direction, and the direction perpendicular to it in the
plane is the � direction.

The two beams resulting from birefringence oscillate parallel to the
ˇ direction and to the � direction. Red-filter light which oscillates
parallel to the ˇ direction (which propagates faster within the crystal)
has a refractive index of

nˇ D 1:5908 :

The red light which oscillates parallel to the � direction (and propa-
gates more slowly within the crystal) has a refractive index of

n� D 1:5950 :

Many additional details of birefringence are important for crystallog-
raphy, but not for its physics applications.

5 The two optical axes in mica form an angle of 45ı within the crystal. The midline
of this angle is nearly perpendicular to the cleavage planes (deviations of less than
2ı). The plane defined by the two optical axes intersects the cleavage planes in
Fig. 24.11 along the direction � .
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Figure 24.11 A chatter mark on
a sheet of mica

β

γ

24.5 Elliptically-Polarized Light

In the sections on mechanics, we treated the superposition of two per-
pendicular sinusoidal oscillations (Vol. 1, Sect. 4.4; see also Sect. 9.4
and Fig. 9.20). When both oscillations have the same frequency, in
general the deflection follows elliptical orbits; circles and lines are
limiting cases. The form of the ellipses can be varied at will. We
mention two methods:

1. The two mutually perpendicular sinusoidal oscillations x and y
have amplitudes A and B; the phase difference ı is varied. In this
case (Fig. 24.12), the axes of the ellipse lie at some angle between
the directions of the two individual oscillations:

x D A sin.!t C ı/ ;

y D B sin.!t/

.! D 2�
 is the circular frequency/:

Figure 24.13 shows examples for the special case in which A D B.

B
b

a
A
y

x

Figure 24.12 The formation of an elliptical oscillation by superposition of
two mutually-perpendicular linear oscillations with the amplitudes A and B
and a phase difference of ı D 45ı. The vertical oscillation along the x
axis leads the horizontal oscillation. a and b are the semi-axes of the ellipse
(Video 9.1).

Video 9.1:
“Circular Vibrations”
http://tiny.cc/qcggoy.

http://tiny.cc/qcggoy
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Figure 24.13 Examples of elliptical oscillations for the special case of A D B. The vertical oscillation leads
the horizontal one by a phase difference of ı. That is, the vertical deflections begin sooner with positive values
than the horizontal ones. If we wish to apply these images to travelling transverse waves (using the values of
the path differences shown), they show the sense of rotation for light that is incident on the plane of the page in
the positive z direction (that is perpendicular from above). Compare Figs. 24.15d and e.

Figure 24.14 The formation of an elliptical oscillation
from two mutually-perpendicular linear oscillations with
the amplitudes A and B and a phase difference of ı D
90ı. The semi-axes of the ellipse, a and b, are equal to
the amplitudes of the linear oscillations, A and B. a

b
y

x

A

B

2. The phase difference ı of the two individual oscillations is kept
constant at 90ı, and the ratio of their amplitudes is varied. Then the
axes of the ellipses are parallel to the directions of the two individual
oscillations (Fig. 24.14).

In a corresponding manner, we can superpose two propagating, linear
polarizedwaves. Their planes of oscillation are positioned perpendic-
ular to each other and their “light vectors” are added at every point
along their path.

We will illustrate the composition of the waves and the forms of cir-
cular and elliptically-polarized waves with two examples using per-
spective drawings (Fig. 24.15). These represent snapshots – like all
pictures of propagating waves. The direction of propagation is the z
axis, from the front left to the rear right in the drawings (Fig. 24.15a).

In Fig. 24.15 b, the two waves have the same amplitudes and their
path difference � is zero. When their vectors are added, we again
obtain a linearly-polarized wave. Its plane of oscillation is inclined
to the vertical by 45ı (Fig. 24.15c). In Fig. 24.15 d, the two waves
likewise have equal amplitudes, but now, the horizontally-oscillating
wave leads the vertically-oscillating wave by� D �=4. Adding their
vectors yields a circularly-polarized wave. In its snapshot image, the
set of all the vectors makes up a helical surface or “spiral stairway”
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Figure 24.15 The superposition of two transverse waves which are oscillating in mutually
perpendicular planes and propagating in the z direction. They have equal amplitudes (here “snap-
shots”; the positive x axis points upwards and the positive y axis horizontally to the right). In
Part d, the horizontally-oscillating transverse wave leads the vertically-oscillating wave by �=4.
The arrowheads along the helix in Part e simply indicate its helical form. The area of the he-
lix does not rotate around the z axis as the wave moves forward. Instead, we should imagine
the entire area enclosed by the helix to move in the z direction without rotation, at the velocity
characteristic of the waves. A fixed plane at the right rear which is perpendicular to z is then
penetrated in sequence by the individual vectors (like the steps of a spiral stairway). Their lines
of intersection rotate in a clockwise sense as seen by an observer looking against the propagation
direction z (i.e. towards the source of the waves). This is a right-circularly polarized (rcp) light
wave.C24.5

C24.5. The notation de-
scribed in the figure caption
is the so-called “optical con-
vention”; the rotation of the
electric field of the light is
observed looking towards
the source. The “physical
convention” is just the op-
posite: There, the observer
is supposed to be looking
away from the source along
the beam of light rather than
towards it, so that the mean-
ings of ‘rcp’ and ‘lcp’ are
exchanged. Helpful anima-
tions can be seen at https://en.
wikipedia.org/wiki/Circular_
polarization
In this book, the optical con-
vention is used.

If the horizontally-oscillating transverse wave were leading with a path difference of
3�=4, the snapshot would show a left-hand screw (a left-circularly polarized (lcp) light wave).

with the direction of propagation z as its center axis. In every pair of
points which are spaced at a distance of one wavelength, the vectors
point in the same direction; one rotation of the helix corresponds to
one wavelength.

This general scheme, valid for every type of transverse waves, can be
applied to the description of some important phenomena which are
connected with birefringence. We demonstrate this with reference
to Fig. 24.16. From the condenser C, a nearly perfectly collimated
beam of light passes through a red filter F and onto a polarizer P.
Its plane of oscillation, indicated by the pointer E, is inclined by 45ı
to the vertical. The linearly-polarized light then strikes a birefringent
mica plateletG at perpendicular incidence. In the mica plate, the light
beam is split through its birefringence into two sub-beams. The beam
which propagates faster within the crystal has its plane of oscillation
vertical, while the slower beam oscillates in the horizontal plane. The
two beams overlap almost completely within the small thickness d of
the platelet, in contrast to Fig. 24.3, both inside the crystal and to the
right, after leaving it.

After leaving the birefringent platelet G, the two light beams have
a path difference (i.e. a difference in their optical path lengths; see

https://en.wikipedia.org/wiki/Circular_polarization
https://en.wikipedia.org/wiki/Circular_polarization
https://en.wikipedia.org/wiki/Circular_polarization
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Figure 24.16 The production of elliptically-polarized light using a mica platelet G. ˇ and
� are the directions defined in Fig. 24.11. Without the radiometer M, the arrangement
is also suitable for demonstrating interference phenomena with collimated beams of light
(Sect. 24.6).

Sect. 16.3) of

� D d.n� � nˇ/ : (24.1)

We insert the values of the refractive index for red-filter light as given
at the end of the previous section (� D 650 nm D 6:5 � 10�4 mm) and
obtain

� D 42 � 10�4d

or

�

�
D 42 � 10�4

6:5 � 10�4 mm
� d D 6:5

d

mm
: (24.2)

As a result of this path difference, the two light beams, which are os-
cillating perpendicular to each other, superpose to give an elliptically-
polarized light beam (this includes of course the limiting cases of
circularly- and linearly-polarized beams).

To identify the type of polarization, the section of the apparatus to
the right of G is employed; its most important component is a second
polarizer A, called in this application the “analyzer”. The light which
it transmits falls on a lens L, and the lens forms an image of G either
on the radiometer M (e.g. a photocell) or on an observation screen.
So much for the experimental arrangement, now to its demonstration:

We set the analyzer into a slow, uniform rotation. At the same time,
we observe the deflections of the radiometer for different angles  
between the plane of oscillation of the analyzer and that of the polar-
izer. Examples:

1. A ‘dry run’ experiment without the mica plateletG (i.e. for d D 0).
Only linearly-polarized light reaches the analyzer. It allows only the
component of the light vector E of the incident light which is par-
allel to its transmission direction to pass through, with a magnitude
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Figure 24.17 The radiant power (relative values) transmitted by the analyzer
in Fig. 24.16, represented as the length of the radius.  is the angle between
the plane of oscillation of the analyzer and that of the polarizer. Curve I refers
to linearly-, II to elliptically-, and III to circularly-polarized light

of E cos . The transmitted radiant power must therefore be propor-
tional to cos2  . This agrees with the measurement; the results are
shown graphically using polar coordinates in Fig. 24.17, curve I.

The zero values appear at  D 90ı and D 270ı. This means that two
“crossed” polarizers (P and A) allow no light to pass through from
the lamp to the observer.

2. A mica platelet of thickness d D 0:154mm is now inserted. It pro-
duces a path difference of � D �, according to Eq. (24.2). The light
remains linearly polarized, and we again measure curve I. The same
holds for mica platelets whose thickness is an integral multiple of the
above thickness, and thus giving path differences of� D 2�; 3� etc.

3. The mica platelet is 0.077mm thick, � D �=2. We again ob-
tain a curve of the form I, however rotated by 90ı. At  D 0ı and
 D 180ı, no light is transmitted. The light is thus again linearly po-
larized, but its plane of oscillation relative to the polarizer P is tilted
by 90ı (not shown in Fig. 24.17).

4. The mica platelet is 0.038mm thick, � D �=4 (a “�=4 plate”
or “quarter-wave” plate). The deflection of the radiometer is in-
dependent of  , and we observe curve III. The light is circularly
polarized.C24.6

C24.6. There are also
polarization foils avail-
able today for producing
circularly-polarized light
(Sect. 24.3); they convert
linearly-polarized light into
circularly-polarized light.
They can also be obtained as
combinations of linear and
circular polarizing foils (keep
in mind the direction of the
light!).

5. The mica platelet has a thickness of d D 0:167mm. � D .1 1
12 /�,

equivalent to d D 1
12�. The light is elliptically polarized, we measure

curve II, and the analyzer allows some light to pass for every angle
 . At  D 90ı and  D 270ı, there are more or less flat minima,
but no longer is the transmitted intensity zero, as it would be with
linearly-polarized light.
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6. Thus far, we have kept the amplitudes of the two sub-beams
constant and have varied their path differences. Now, we keep the
path difference constant at �=4, i.e. we use a �=4-plate and vary
the ratio of the amplitudes. To do this, we change the angle be-
tween the plane of oscillation of the polarizer P and the vertical
(i.e. the ˇ direction of the mica platelet). In this way, we can produce
elliptically-polarized light with any desired oscillation form using
only a single mica platelet. We can thus obtain all of the curves as
measured in Fig. 24.17 as well as their intermediate forms.

To conclude this section, we replace the red-filter light which we have
used throughout the section by everyday incandescent light. Furthermore,
we remove the radiometer and observe the images directly on a screen.
The constant in Eq. (24.2) has a different value for every wavelength re-
gion; thus for example, with green light of wavelength � D 535 nm (from
a thallium-vapor lamp), we find

�

�
D 7:1

d

mm
: (24.3)

The individual wavelength ranges thus exhibit different path differences
and polarization states. The analyzer allows some spectral ranges to pass,
others less or not at all, i.e. for one range, curve I in Fig. 24.17 applies;
for another curve II applies, etc. As a result, the image of the mica platelet
appears in a variety of colors, which glow brightly for some thicknesses of
the crystal.

24.6 The Interference of Parallel Beams
of Polarized Light

In the last experiments discussed above, we superposed two coher-
ent, transverse waves which were however oscillating in perpendicu-
lar planes, with arbitrary path differences. This yielded elliptically-
polarized waves (including the limiting cases of linear and circu-
lar polarization), but no interferences, i.e. no changes in the spatial
distribution of the waves, no maxima or minima as for example in
Fig. 20.10. In order to produce “interference fringes”, the coherence
of the two beams alone is not sufficient; instead, they must also have
a common plane of oscillation.

A common plane of oscillation can always be obtained by inserting
an analyzer (e.g. A in Fig. 24.16). An analyzer permits only those
components of the two waves oscillating perpendicular to each other
that are parallel to its own plane of oscillation to pass through. In
Fig. 24.16, the plane of oscillation of the polarizer and that of the
analyzer are perpendicular to each other. They could also be set to be
parallel; then all the maxima and minima in the interference patterns
would exchange places. Take note of both possibilities. Following
these general preliminary remarks, we will present two examples –
in this section, only for parallel beams of polarized light.
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Figure 24.18 Equidistant interference fringes in a quartz
wedge cut parallel to the optical axis (collimated beam of
red-filter light, length of the wedge 38.5mm, thickness
decreasing from 0.79 to 0.48mm; photographic positive,
just as in Fig. 24.19)

e

f

g

h

E

F

G

H

I

Thin edge

Thick edge
of the wedge

1. The mica platelet G in Fig. 24.16 is replaced by a long, flat wedge
cut from a birefringent crystal (e.g. quartz). The direction denoted
as optical axis is parallel to the edge of the wedge (Fig. 24.8, right),
and this edge is placed horizontal. The radiometer M is now su-
perfluous and can be removed. On the screen, using red-filter light
we see the image of the wedge as photographed in Fig. 24.18. It ex-
hibits interference fringes parallel to the edge of the wedge. Explana-
tion: The interference fringes are curves of constant path difference.
The crystal produces two sub-beams due to its birefringence. Their
path difference depends on the thickness of the layer that they pass
through. The interference fringes are thus a kind of curves of constant
thickness. At the positions e; f ; g etc., the path difference of the two
sub-beams is equal to an integral multiple of the wavelength, so that
� D m � �. Therefore, the light behind the birefringent crystal is po-
larized just as before entering it. It cannot pass through the analyzer;
the fringes e; f ; g etc. appear as deep black minima. The maxima
E; F; G etc. occur for path differences of � D .m � �C �=2/. The
light is again linearly polarized behind the birefringent crystal, but its
plane of oscillation is tilted by 90ı and is now parallel to that of the
analyzer. In the transition regions between e and E, f and F etc., the
light is elliptically polarized. The analyzer allows some part of the
light to pass through, depending on the form of the ellipse (compare
Fig. 24.17).

Using ordinary incandescent light, the interference fringes appear as
color-shaded bands. This is because the spacing of neighboring in-
terference fringes is reduced as the wavelength decreases. Thus, with
incandescent light, the interference fringes of the various wavelength
regions overlap in different locations. This is true of all interference
phenomena.

2. A plane-parallel quartz plate, about 1mm thick, also cut parallel
to its optical axis, is placed between the analyzer and the polarizer,
whose planes of oscillation are set to be perpendicular to each other.
The image of the quartz plate in incandescent light shows over its
whole length the same chromatic hue as the wedge where it had the
same thickness. We now cast the image of the plate not onto a screen,
but rather onto the entrance slit of a spectrometer, and observe its
spectrum on the screen. The spectrum is striped across its long di-
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Figure 24.19 Interference fringes in a continuous spectrum, produced by
a plane-parallel quartz platelet cut parallel to its optical axis and ca. 1.1mm
thick; here shown as a function of wavelength

rection by dark interference fringes (Fig. 24.19). The missing waves
in these dark bands remained linearly polarized at the right of the
apparatus, behind the birefringent plate, just as they were at the left,
before entering the plate. Therefore, they could not pass through the
analyzer.

24.7 Interference with Diverging Beams
of Polarized Light

Interference with divergent polarized light can be dependably pro-
duced in the focal plane Z of a lens. The light source must have
a large area. It is expedient to make the optical path on the image
side of the lens telecentric (Fig. 24.20, top). Then one requires only
small birefringent crystal plates. The light beams belonging to the
image points 1 and 4 are dotted in the figure. They penetrate the crys-
tal plate, just like the light beams of all the other image points, with
parallel boundaries. Furthermore, all the light beams pass through
the polarizer and the analyzer, in this case two polarization foils
(Sect. 24.3). The plane of oscillation of these two foils are perpendic-

From a large
illuminating

area X

Light
source

Polarizer

Image of light source Image of light source

Analyzer Focal plane Z Exit
pupil

To the
screen

C Y E

E

L2

L1

L1 L3

f2 f2 f1 f1 f3

f1 f1

B
χ

1

4

Entrance
pupil

Crystal
plate

Figure 24.20 Top: Using divergent polarized light, interference fringes are produced in the focal
plane of a lens. Bottom: The same as a demonstration experiment. The glowing surface X is an
illuminated lens L2. The image of the light source (a carbon arc) projected by L2 acts as entrance
pupil. In Z, there is not only the image of an infinitely distant plane, but also one of the plane Y
determined by f2. A free-hand experiment: Place the crystal platelet between two crossed polarization
foils, hold it close to an arc lamp and observe the light on a screen.
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ular to each other (“crossed polarizers”). The image plane Z is thus
initially dark. Only after the birefringent crystal plate is inserted do
we see in Z the image of a plane which is infinitely distant at the left.
It shows interference fringes.

Examples:

1. A calcite plate, cut perpendicular to its optical axis (see Fig. 24.8,
left), gives the interference pattern shown as a photograph in
Fig. 24.21 a. It exhibits circular interference fringes and a dark
cross. Explanation: The path difference of the two polarized sub-
beams depends only on their angles of inclination � (Fig. 24.20, top).
Therefore, the curves of constant path difference, i.e. the interfer-
ence fringes, are circular (they are thus a sort of “curves of constant
inclination”).

The crosses are interference-free regions. In them, there is only one
polarized beam. The reason: We have drawn the crystal plate in
Fig. 24.22 as seen from in front and enlarged. The numbers 1 and 4
mark the penetration points of the beam axes for the two light beams
sketched in Fig. 24.20 (top). Furthermore the penetration points of
three additional beam axes are shown. For each of them, the plane
of incidence (a principal plane of the crystal) and the plane perpen-
dicular to it are indicated by the dashed intersecting lines. The thick
double arrows show the plane of oscillation of the light coming from
the polarizer. Each beam is decomposed at the positions 2 and 3 into
an ordinary and an extraordinary sub-beam. This is indicated by the
thin double arrows. At the positions 1 and 4, in contrast, there is only
an extraordinary beam, and at position 5, only an ordinary beam. One
beam alone can never produce interference. Therefore, the incident
light remains unchanged and thus cannot pass through the analyzer;
the corresponding areas in the image remain dark.

2. A thick, uniaxial crystal plate, cut parallel to its optical axis,
shows the interference pattern photographed in Fig. 24.21 b. It is vis-
ible only with monochromatic light (e.g. from a sodium-vapor lamp).
With incandescent light, the orders of the interference fringes are too
high. The curves of constant path difference have a hyperbolic shape.
The detailed explanation of this phenomenon would take us too far
afield here.

In Fig. 24.21 b, the path difference � in the center of the image was equal
to m�. For � D .m C 1

2 /�, the dark and the light regions are exchanged.
With a parallel beam of light in earlier figures (Fig. 24.16), we observed
only the center part of this image, using the same plate.

3. A uniaxial crystal plate, cut at 45ı to the optical axis, gives practically
linear interference fringes. They could be considered to be extensions of
the branches of the hyperbola in Fig. 24.21b.

4. We put two such plates together and rotate one of them by 90ı . Then we
obtain the complicated interference pattern photographed in Fig. 24.21 c.
In incandescent light, one of the middle fringes appears colorless; it is thus
due to rays with a zero path difference, and is a fringe of zeroth order. Its
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a b

c

Figure 24.21 Three interference patterns of uniaxial crystals in divergent polarized light,
photographed in the image plane Z of the apparatus in Fig. 24.20 (photographic positives).
Part a shows a calcite plate (d D 2mm) cut perpendicular to its optical axis (using circularly-
polarized light, the black cross can be eliminated). b: A quartz plate cut parallel to its optical
axis (d D 9mm, Na-D light). c: Two quartz plates, cut about 45ı to their optical axes and put
one above the other, rotated by 90ı (SAVART’s double plate).

All of the interference patterns obtainable with crystals and polarized light are noticeable
for their strong intensity. This is a result of the coherence condition (Eq. (20.1)). Compare
e.g. the interference pattern in Fig. 24.21 a with the one in Fig. 20.10. There, the angle 2! was
already very small; when using polarized light, it is zero. This means that both of the “rays” in
each pair which can interfere with each other have the same direction. They nevertheless have
a path difference, since they are polarized perpendicularly to each other and propagate in the
material at different velocities. For sin 2! D 0, one can use light sources of arbitrarily large
diameter and thus obtain high light intensities.

neighboring fringes on both sides are colored, and the rest of the structure
of the interference pattern is not visible with incandescent light.

F. SAVART set two such crossed quartz plates, cut at 45° to their optical
axes, together with a polarization prism in the same mount, and thus ob-
tained a very sensitive polarimeter. It serves in many kinds of observations
to detect small admixtures of polarized light in natural light. If you look at
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Figure 24.22 The explanation of the
dark cross in Fig. 24.21a
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the sky or some illuminated object through such an instrument and rotate
it around its long axis, then you will always see the interference fringes of
low order, the colorless center fringe with its colored neighbors. A small
fraction of the light is nearly always polarized; completely unpolarized
light is an ideal limiting case.C24.7C24.7. An historical note:

Further details, in particular
on the analysis of elliptically-
polarized light, were given
in the 13th edition of “Optik
und Atomphysik”, Chap. 10.
Some relevant references
in English can be found at
https://www.osapublishing.
org/josa/abstract.cfm?
uri=josa-65-3-352 and at
https://www.osapublishing.
org/josa/abstract.cfm?
uri=josa-50-9-892 .

24.8 Optically-Active Materials –
Rotation of the Oscillation Plane.
The FARADAY Effect

We now return to Fig. 24.16 and replace the mica platelet G by
a quartz plate which is cut perpendicular to the optical axis. With
this setup, a new phenomenon can be observed: The quartz plate ro-
tates the plane of oscillation of the light. The angle of rotation ˛ is
proportional to the thickness d of the plate, that is

˛ D const � d : (24.4)

The value of the constant for red-filter light is 18ı/mm, and it in-
creases strongly with decreasing wavelength. Therefore, if we use
incandescent light instead of red-filter light, there is no position of
the analyzer for which no light is transmitted; instead, at each posi-
tion, we see a bright field of view which has a different color.

For demonstration experiments, a quartz plate 3.75mm thick is par-
ticularly suitable. Two of these plates can be set up adjacent to each
other, one of them made of right-rotating (“dextrorotatory”) quartz,
the other of left-rotating (“levorotatory”) quartz6. Such a “sensi-
tive double plate” exhibits a uniform purple color only when it is

6 These are two mirror-image forms of quartz which rotate the light in either the
one or the other direction (“right- and left-rotating”, enantiomorphism; see for
example Bergmann-Schaefer, “Lehrbuch der Experimentalphysik”, Vol. 3, 10th
edition (2004), Sect. 4.9). English: See for example http://www.quartzpage.de/
gen_phys.html .

https://www.osapublishing.org/josa/abstract.cfm?uri=josa-65-3-352
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-65-3-352
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-65-3-352
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-50-9-892
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-50-9-892
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-50-9-892
http://www.quartzpage.de/gen_phys.html
http://www.quartzpage.de/gen_phys.html
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Figure 24.23 The superposi-
tion of two oppositely-rotating
circular oscillations of the same
frequency and amplitude. The
direction r in the left-hand im-
age is shown as the long dashed
line outside the circle in the
right-hand image.
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l l
0 0

A' A'

δ

δ
2

placed between strictly parallel-oriented NICOL prisms. Even with
very small angular deflections, the color hue on the one side changes
towards the red, and on the other side towards the blue. This setup
can be used to align the oscillation planes of polarizer and analyzer
strictly parallel to each other, which is useful for example in calibrat-
ing measurement instruments, e.g. the saccharimeters which will be
described below.

The ability to produce optical rotation (rotations of the oscilla-
tion plane of light), usually termed optical activity, is not specific
to a crystalline structure of the material. It can also be found in
molecules in solutions, for example for sugar dissolved in water.
The angle of rotation of the plane of oscillation is in this case pro-
portional not only to the layer thickness of the sample, but also
to the concentration of the solution. Therefore, we can determine
unknown concentrations from the value of the angle of rotation mea-
sured (for example in “saccharimeters”). Sugar molecules can also
be right-rotating (“right-handed” or dextrorotatory) or left-rotating
(“left-handed” or levorotatory). A 50% mixture of the two is called
a “racemic mixture”.

Every linearly-polarized oscillation can be treated as the superposition of
two circular oscillations of the same frequency and amplitude, but with
opposite senses of rotation. In Fig. 24.23, at the left, l denotes the vector
which is rotating to the left, and r the vector which is rotating to the right,
while R is the resultant (sum) vector. Its end point passes along the double
arrow AA0. The half-length OA is the amplitude of the linear oscillation
(that is, the maximum value of its deflection). At the right, the same su-
perposition is drawn, but now the oscillation of the vector rotating to the
right leads that of the left-rotating vector by a phase difference ı. As a re-
sult, the resultant linear oscillation vector R is rotated by the angle ı=2 in
a clockwise direction.
Applied to the case of light, this means that a dextrorotatory material trans-
mits a right-circularly-polarized light wave (see Fig. 24.15) more quickly
than a left-circularly-polarized wave. The right-circular wave propagates
more rapidly in the material than the other wave; it has a smaller refrac-
tive index. An optically-active material shows a new type of birefrin-
gence, called circular birefringence: It splits natural light not into two
linearly-polarized beams (as in linear birefringence), but instead into two
circularly-polarized beams.
This strange form of birefringence can be seen in all spectrometers which
use simple quartz prisms. During the fabrication of such prisms, the line
of symmetry SS (Fig. 24.24) is chosen to be perpendicular to the long
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Figure 24.24 A quartz prism that exhibits birefrin-
gence in the dashed direction, which is denoted as
its optical axis

S

S

direction of the quartz column, that is perpendicular to the optical axis.
Nevertheless, we can see that all the spectral lines are split into two closely-
spaced double lines. These two lines are circularly polarized in opposite
directions.
The magnitude of this circular birefringence is very small. The refractive
indices differ for example at � D 436 nm by only 7 units in the fifth place
after the decimal point. We can therefore in general simply define the
optical axis to be the direction which is free of birefringence, in quartz and
likewise in calcite, and in all the other non-optically-active birefringent
crystals.
Because of the small magnitude of this circular birefringence, it is not
suitable for demonstration experiments. For individual observations, the
blue spectral line from a mercury-arc lamp is suitable. We place a �=4-
plate of mica in front of the ocular, together with a polarization analyzer.
Then, depending on the positions of the ˇ and the � axes, we can see that
one of the two spectral lines vanishes.

Paramagnetic and especially ferromagnetic materials rotate the plane
of oscillation of light when they are placed in a magnetic field and
the direction of light propagation is parallel to the field direction; this
is the FARADAY effect, i.e. a rotation of the plane of the linearly-
polarized light beam.C24.8C24.8. See for example the

book by Y.R. Shen, “Prin-
ciples of nonlinear optics”
(Wiley-Interscience, New
York 1984) (http://www.osti.
gov/scitech/biblio/6102640 )
for a detailed discussion of
the FARADAY effect and
other magneto-optical and
electro-optical effects. See
also https://en.wikipedia.
org/wiki/Faraday_effect for
a brief history and references.

Looking perpendicular to the field direc-
tion, we observe birefringence, with the optical axis parallel to the
field direction.

24.9 Strain Birefringence. Conclusions

In the field of electromagnetism, we distinguish between conductors
and insulators. There are numerous conductors among the solid
materials (in particular the metals), but a perfect insulator remains
an idealized limiting case. In optics, we find a similar situation with
the division into single- and double-refracting (birefringent) sub-
stances. Among

“Among the solid materials,
there are numerous bire-
fringent substances, includ-
ing the crystals of all the
non-regular systems, but
a strictly single-refracting
material can only be ap-
proximated”.

the solid materials, there are numerous birefringent
substances, including the crystals of all the non-regular systems, but
a strictly single-refracting material can only be approximated. If
we place thick layers (of several centimeter thickness) of apparently
singly-refracting materials (regular crystals, glasses, transparent
plastics) between crossed polarizers, e.g. in place of the plate G in
Fig. 24.16, then we find that the field of view always shows brighter
and darker regions, which are colored when incandescent light is
used: The materials are birefringent in many more-or-less extended
regions.

http://www.osti.gov/scitech/biblio/6102640
http://www.osti.gov/scitech/biblio/6102640
https://en.wikipedia.org/wiki/Faraday_effect
https://en.wikipedia.org/wiki/Faraday_effect
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Figure 24.25 Strain birefringence
in a model of a hook for a crane (the
polarizers are perpendicular to each
other and tilted by 45ı to the vertical;
photographic positive). (The holder,
the lever to provide the load, and the
outline of the hook were drawn into the
photo to make them clearly visible)

This birefringence comes about through internal strains which vary
from place to place within the material. Their practical elimina-
tion is tedious and expensive; the material must be heated to al-
most its melting point and then cooled very slowly. Glass blanks
for large astronomical lenses have to be cooled over a period of many
months. “Tempered” glass approaches the optical ideal of a solid
object without birefringence rather closely. However, it must be care-
fully protected against mechanical stresses. Even pressing between
the fingertips produces a noticeable birefringence.

For optical technology, strain birefringence is a source of annoying
disturbances. For another technical field, however, namely the sci-
ence of materials strength, it is extremely useful. With its help, the
distribution of compressive and tensile stresses can be investigated in
model experiments. For example, Fig. 24.25 shows a model profile of
the hook for a crane, made of plastic and placed between two crossed
polarizers. A load is applied via a lever. The regions which are
stressed due to compressive or tensile strains appear brighter in the
image. The dark boundary stripes between them show the strain-free
transition regions, the “neutral fibers”. The quantitative evaluation of
such images is not simple. It is treated in the voluminous technical
literature on this subject.

Our treatment of polarization has been limited to experiments using
visible light. In the ultraviolet and infrared spectral ranges, one finds
nothing new. Polarizers for the ultraviolet are described in Fig. 24.9,
and for the infrared, they will be discussed later in Sect. 25.6. It is
also more expedient to treat the polarization of X-rays later; it re-
quires special experimental techniques (Sect. 26.8).
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The Relation Between
Absorption, Reflection
and Refraction of Light

25

25.1 Preliminary Remark

In this entire chapter, we assume that we are dealing with collimated
beams (i.e. parallel-bounded beams) of light, that is practically
pure plane waves. This radiation is presumed to be monochromatic
(single-frequency); for measurements, we use individual spectral
lines, such as those from a metal-vapor lamp. In all the experiments
presented, the plane of incidence (also known as the plane of reflec-
tion; see Sect. 16.3) of the light lies in the plane of the page. The
amplitude of the light oscillating within that plane is denoted by Ek,
and that of light oscillating perpendicular to the plane by E?.C25.1 C25.1. The quantity E de-

notes the vector of the elec-
tric field of the electromag-
netic waves which constitute
light, as in the previous
chapter. Ek and E? are the
components of the field par-
allel and perpendicular to the
plane of incidence, and, as al-
ways, both are perpendicular
to the propagation direction
of the light.

25.2 The Extinction and Absorption
Constants

In all of our observations thus far, we have assumed that the radiation
was not attenuated on passing through a layer of matter. In that case,
we needed only a single materials constant, namely the refractive in-
dex n of the material. If there is however an attenuation, then we need
a secondmaterials constant, the so-called extinction constant K (or an
equivalent quantity derived from it). It is defined by a measurement
procedure, just like the refractive index:

In Fig. 25.1, a collimated light beam is incident on a radiometer.
Along its path, one of two sheets of the same material (but with dif-
ferent thicknesses, x1 or x2) are alternately placed in the beam. The
difference of the thicknesses �x D .x2 � x1/ is chosen to be small
compared to the thickness x1. The deflections S (the ’signal’) of the
radiometer give a relative measure of the radiant power PW of the light
arriving at the radiometer. These powers PW1 and PW2 (or the corre-
sponding radiant intensities; see Eq. (19.2)) are in both cases smaller
with the sheets than without them. This is for two reasons: First,
some fraction of the radiation is lost to reflection at the front and rear
surfaces of the sheets. These fractions are the same for both sheets.

491© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_25

https://doi.org/10.1007/978-3-319-50269-4_25
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a b
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x2 – x1

dx

x1

Radiometer

V

Figure 25.1 a: The definition of the extinction constant K; in the absence of
scattering out of the beam, K is also called the absorption constant. b: Its
measurement with thick absorber layers

Second, a fraction of the transmitted radiation is either “absorbed”
(i.e. taken up by the material, that is converted into heat, chemical or
electrical energy5),

C25.2. POHL gave a detailed
treatment of fluorescence
and phosphorescence in
the 13th edition of “Optik
und Atomphysik”, Chap. 15.
For a modern discussion in
English, see for example
https://en.wikipedia.org/wiki/
Phosphorescence .

or it is “scattered” out of the beam. The fraction
of the radiant power which penetrates into the sheet and is thus re-
moved from the beam by extinction is larger for the thicker sheet than
for the thinner one. The measurements yield

.S1 � S2/ D const � S1�x ;

� PW D PW1 � PW2 D K � PW1�x :

)
(25.1)

In words, this means that the radiant power� PW that is lost by a colli-
mated beam of light within a layer of material due to absorption and
scattering is proportional to the power PW1 which penetrates through
the layer of material, and also to the thickness of the layer, �x D
d.C25.3C25.3. The proportionality

between the absorbed radiant
power and the layer thick-
ness, and the exponential law
which results (Eq. (25.2)), are
often referred to in the liter-
ature as “LAMBERT’s law of
absorption” (or “LAMBERT-
BEER’s law”). (LAMBERT’s
cosine law was treated previ-
ously in Sect. 19.2).

The proportionality factor K is termed the extinction con-
stant. If scattering plays no role in comparison to absorption, then
we will call the extinction constant simply the absorption constant.
If, in contrast, we can neglect absorption relative to scattering, then
we will call it the extinction constant from scattering. The use of
the concepts ‘extinction’, ‘extinction constant’, etc. by themselves
leaves it open as to which relative importance is to be attributed to
absorption and to scattering.

Equation (25.1) serves to define the extinction constant. For its prac-
tical measurement, the thickness difference .x2 � x1/ is nearly always
chosen to be of the same magnitude as the layer thickness d; that is,
not small compared to the thickness, as assumed above (Fig. 25.1b).
We imagine the segment .x2�x1/ to consist of thin layers dx and then
sum over the absorption of all of these layers, obtaining

PW1Z
PW2

d PW
PW D

dZ
0

K � dx ; thus ln PW1 � ln PW2 D K � d ; and

PW2 D PW1 e
�Kd : (25.2)

The measurement of large extinction constants (K > 104 mm�1) is diffi-
cult. It requires extremely thin layers. In such layers, interference occurs,

5 These energy forms can later be converted back into radiation (fluorescence –
see Sect. 16.10 – and phosphorescence).C25.2

https://en.wikipedia.org/wiki/Phosphorescence
https://en.wikipedia.org/wiki/Phosphorescence
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and furthermore, the reflectivity depends on the layer thickness. These dif-
ficulties can be avoided by using the following procedure: We first measure
the ratio of incident to transmitted radiant power . PWi= PWt/ as a function of
the layer thickness d. Then we plot ln. PWi= PWt/ graphically against d. The
larger values of . PWi= PWt/ will lie on a straight line. Its slope is the extinc-
tion constant that we are seeking.

25.3 The Mean Penetration Depth w
of the Radiation. The Extinction
and Absorption Coefficient k

In this section, we first list some values of the absorption constants
of various materials for light waves in the visible spectrum. They are
set out in the third column of Table 25.1.

The reciprocal of the absorption constant K (or, more generally, the
extinction constant), has an intuitively clear meaning: Along the path
w D 1=K, the radiant power of a collimated light beam decreases
to 1=e D 1=2:718 � 37% of its initial value. This distance w will
be called the mean penetration depth of the light. Examples of this
useful quantity can be found in the fourth column of Table 25.1.

The transparency (everyday language) of a layer of material of thickness
d depends on the ratio d=w. The smaller this ratio, the more transpar-
ent is the layer. Thus, at a thickness of a few �m, even pitch becomes
transparent(w � 7�m); and at a thickness around a hundred times smaller,
metals are also transparent (w � 10 nm).

For wave phenomena, the wavelength is always the appropriate
length scale, in particular the wavelength in vacuum (or air). We thus
use the ratio of the wavelength � in vacuum (air) to the mean pene-
tration depth w of the radiation in the particular material, i.e. �=w.

Table 25.1 Absorption constants, mean penetration depths, and absorption coefficients of some materials

C25.4. In carefully purified
silicate glasses, for infrared
light (� D 1:55�m),
absorption constants of
3:6 � 10�8 mm�1 can be
attained, and thus mean
penetration depths of
around 28 km. With the aid
of intermediate amplifiers,
this makes it possible to man-
ufacture and use optical-fiber
cables for transmitting data
around the globe (see Com-
ment C16.10).

Material Wavelength �
in nm

Absorption
constant K
in mm�1

Mean pene-
tration depth of
light w D 1=K

Penetration depth w

Wavelength �

Absorption
coefficient

k D 1

4�
� �
w

Water 770 0.0024 42 cm 550 000 1:4 � 10�7

Heavy flint
glassC25.4

450 0.0046 22 cm 500 000 1:6 � 10�7

“Black” neutral
glass

546 10 0.1mm 180 4:4 � 10�4

Pitch 546 140 7�m 13 6 � 10�3

Brilliant green 436 7000 0.14�m 0.32 0.25
Graphite 436 20 000 0.05�m 0.11 0.72
Gold 546 80 000 0.01�m 0.022 3.6
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To simplify later trigonometric calculations, we multiply by 1=4�
and define the resulting quantity as the extinction coefficient (or in
the special case of no scattering, the absorption coefficient):C25.5C25.5. In some textbooks,

the absorption constant K
defined by Eq. (25.1) is also
called the absorption coeffi-
cient.

k D 1

4�

�

w
D 1

4�
K� : (25.3)

Some values of k are shown in the last column of Table 25.1. Whether
one uses the extinction quantity K or k in a particular case depends
only upon which of the two makes possible a more convenient for-
mulation of a statement.

25.4 BEER’s law. The Interaction
Cross-Section of a Single Molecule

Sometimes, one finds the extinction constant of a uniform material to
be proportional to its density %, or that of a solution to be proportional
to its concentration c (“BEER’s law”; see Fig. 25.2). In both cases,
one can then define a specific extinction constant:

K% D K

%
(25.4)

and

Kc D K

c
I (25.5)

(here, % is the density and c is the concentration, i.e. the amount of sub-
stance n of the dissolved molecules/volume V of the solution).

Example: From the slope of the line in Fig. 25.2, for an aqueous copper
sulfate solution we obtain the specific extinction constant1

Kc D K

c
D 1:71 cm�1

1mol=liter
D 1710

cm2

mol
:

Figure 25.2 BEER’s law
and the measurement of the
specific extinction constant
K=c

Number density of the molecules

E
xt

in
ct

io
n 

co
ns

ta
nt

 K

Concentration c
0.25 0.750.5

1.5 4.5 1026 m–33

 mol 
liter

cm–1

1.5

1

0.5

CuSO4 in H2O
λ = 600 nm

1 It is called the molar extinction constant in chemistry, as suggested by the units
employed; this is however not completely consistent, since molar quantities are
otherwise referred only to the amount of substance n.
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Figure 25.3 A model experiment demonstrat-
ing the interaction cross-section of individual
molecules

If the proportionality mentioned above is experimentally obeyed,
i.e. when K=% or K=c can be treated as constants, then the extinction
takes place without interactions between the individual molecules.
Then it is expedient in Eqns. (25.4) and (25.5), instead of the density
% or the concentration c, to use the

Number density
of the moleculesNV

D NumberN of active molecules

VolumeV of the body or the solution

(as in Fig. 25.2, upper abscissa scale), that is:

K D K% � % D K%Mn

NA
� NV and K D Kc � c D Kc

NA
� NV

(Mn is the molar mass D M=n, n is the amount of substance, and NA is the
AVOGADRO constant D 6:022 � 1023 mol�1).

The extinction constant K is the reciprocal of a length. Therefore,

K

NV
D KV

N
(25.6)

has the dimensions of an area. We call it the interaction cross-section
� of a molecule. In the limiting cases discussed in Sect. 25.2, � is
an “absorbing” or a “scattering” cross-section (i.e. the area of the
“target” for absorption or scattering).

Example: From Fig. 25.2, we find the following value for the interaction
cross-section:

� D 2:82 � 10�25 m2 :

The physical significance of the interaction cross-section can be explained
in an intuitively apparent manner. Figure 25.3 shows a “snapshot” of
a model gas composed of steel balls, with a layer thickness of 1 cm. We
see the projection of the cross-sectional areas of the individual molecules.
When brought into a collimated beam of radiation, each of these areas acts
as if it were completely opaque; the radiation can continue in its original
direction only in the gaps between the molecules. If we stack such lay-
ers of a model gas with a statistically-disordered distribution of molecules,
then the overall area of the remaining free gaps decreases according to an
exponential function, and this yields Eq. (25.2).C25.6

C25.6. Here, we thus have
� D �r2. In general, we find

NV � l D 1 ;

where l is the ‘mean free
path’. For radiation, l D w,
the mean penetration depth;
for gases, it is the mean
free path between collisions
(compare Fig. 2.15).
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Figure 25.4 Some of the arms of
a torsional-wave machine. The
upper portion is fitted with an ad-
justable frictional damping mechanism
(Video 25.1)Video 25.1:

“Absorption”
http://tiny.cc/sfggoy
The absorption process
is demonstrated using
a torsional-wave machine.

00

γ

β

α

25.5 Distinguishing Between Weakly-
and Strongly-Absorbing Materials

Distinguishing between weakly- and strongly-absorbing materials is
of great importance for what follows in this chapter. This distinction
is made by employing the mean penetration depth w of the radiation,
or else the absorption constant K:

Weak absorption means: Strong absorption means:

w D 1

K
> � or2 k < 0:1 w D 1

K
< � or2 k > 0:1 :

(25.7)

Seldom“Seldom have physical
terms been chosen in
such a misleading way as
the words ‘weakly’ and
‘strongly’ absorbing.”

have physical terms been chosen in such a misleading way as
the words “weakly” and “strongly” absorbing.

“Weakly” absorbing materials, for example diluted inks, can never-
theless absorb the entire incident radiant power or intensity (at a suf-
ficiently large layer thickness d), apart from the minor losses due
to reflection. “Strongly” absorbing materials, for example metals,
in contrast, can absorb only a small fraction of the incident radiant
power. The greater part cannot penetrate the material at all, and is
reflected by its surface.

This is quite general, as can be demonstrated using mechanical
waves. In Fig. 25.4, a short portion of a torsional-wave machine is
sketched. This machine is fitted with a damping mechanism (above
the dashed line O � O in the figure); it consists of small brushes at
the ends of the oscillating arms. The brushes scrape over rough paper
surfaces when the machine is set into motion. These paper surfaces
can be raised or lowered together, thus varying the frictional damping
of the waves. Along the axis of this machine, we excite a short wave
group (� � 60 cm), starting from below and travelling upwards. We
can make three observations:

1. Without damping, the wave group passes over the boundaryO�O
with no effect.

2 If we round 0.08 up to 0.1.

http://tiny.cc/sfggoy
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2. With strong damping: The dumbbell arms ˇ are strongly impeded
by the damping. They can take up only a small fraction of the os-
cillation energy from the arms ˛. The major part is reflected, so that
the amplitude of the wave group which travels back down is barely
smaller than that of the original group which moved upwards.

3. The energy which is transferred to ˇ in spite of the damping is
mostly converted into frictional heat. A small remainder is passed
on to � , etc. Thus, the wave motion dies out over a short distance
within the “absorbing material”. Its mean penetration depth w in our
example is only a small fraction of the wavelength �. In the case of
“strong” absorption, i.e. w < �, the waves cannot penetrate into the
material. Only a small amount of energy is absorbed, and this occurs
over a short distance (cf. Sect. 25.8).

25.6 Specular Light Reflection by
Planar Surfaces

Following our detailed treatment of the second optical materials con-
stant, the extinction constant K or the extinction coefficient k, we will
now discuss on an experimental basis the specular reflection of light
from the planar surfaces of homogeneous materials.

In Fig. 25.5, a collimated light beam passes through a polarizer P,
and the now linearly-polarized beam is incident on a radiometer, ei-
ther directly (lower radiometer deflection S1 / PW1), or else after
reflection by the surface M (upper radiometer deflection S2 / PW2).
The plane of oscillation of the light is alternately chosen to be paral-
lel (Ek) or perpendicular (E?) to the plane of incidence; furthermore,
the angle of incidence ˛ is varied (the limiting case of ˛ D 0, i.e. per-
pendicular incidence, can be only approximately achieved with this
simple setup). The analyzer A is initially not present in the optical
path. Each time, we measure the

Reflectivity R D Reflected radiant power

Incident radiant power
D PW2

PW1
: (25.8)

The amplitude of a light wave is proportional to the square root of
its radiant power (or of the deflection of the radiometer).C25.7 C25.7. Light waves are elec-

tromagnetic waves (see Com-
ment C24.2). The statement
that their amplitudes are
proportional to the square
roots of their radiant powers
was dealt with in Com-
ment C12.5.

Then,
for the ratio of the amplitude Er of the reflected light vector to the
amplitude Ei of the incident light vector, we can write:

Er

Ei
D
s

PW2

PW1
: (25.9)

The results of several measurements can be seen in Fig. 25.6 a–c.
In Fig. 25.6 a and b, the mirror is made of materials with “weak”
absorption (typically dielectric materials), while in Fig. 25.6 c, it
is made of a material which exhibits “strong” absorption (typically
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Figure 25.5
Measuring the
reflectivity at
various angles of
incidence ˛ (P:
polarizer, A: ana-
lyzer). The plane
of incidence is the
plane of the page

M
AP

Pr
90°

α

α

α

Radiometer

V

V

a metal). Placing the results for these various cases side by side as
in Fig. 25.6 a–c is the best way to illustrate their common character-
istics and their differences. We want to point out in particular four
aspects:

1. The ratio Er=Ei is much larger for strongly-absorbing materials
than for weak absorbers in the range of small and medium angles of
incidence ˛.

2. If the light vector lies parallel to the plane of incidence, then for
weak absorption, there is a characteristic angle ˛P. It is called the
polarization angle or Brewster’s angle, and it occurs for the follow-
ing reason: When the incident light is unpolarized, at the angle of
incidence ˛P, only that fraction is reflected whose vector is perpen-
dicular to the plane of incidence. Thus, the reflected light has become
linearly polarized.

The French researcher E.L. MALUS was thus able to discover the linear
polarization of light in 1808 by studying its reflection. Unfortunately, with
this method we lose 84% of the incident radiant power (Fig. 25.6 a). Fur-
thermore, the kink in the optical path is inconvenient.
In the infrared, this method of polarization is indispensable even today.
For example, at wavelengths greater than about 3�m, one can utilize sub-
stances with very high refractive indices, e.g. selenium or lead sulfide, and
thus avoid the large losses which occur in the visible spectral region. Mir-
ror surfaces made from such materials can be prepared in a similar manner
to most metallic surfaces: The material is evaporated in high vacuum and
condensed onto a polished (and if necessary, cooled) glass plate.

3. At the polarization angle ˛P, the reflected beam is perpendicular
to the refracted beam. This is consistent with BREWSTER’s law:

tan˛P D n (25.10)

.Derivation: sin˛P D n sinˇ D n sin.90ı � ˛P/ D n cos˛P

.ˇ is defined as in Fig. 16.4//:

With Eq. (25.10), ˛P can be utilized to measure the refractive index n.

4. With strong absorption, there is no polarization angle or BREW-
STER angle ˛P. Instead, the principal angle of incidence ˚ is ob-
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served (Fig. 25.6c). It can be employed when the two optical con-
stants n and k are to be measured in strongly-absorbing materials
(Sect. 25.12).

25.7 Phase Changes on Reflection
of Light

We now no longer alternate between incident light beams which are
oscillating perpendicular and parallel to the plane of incidence; in-
stead, we fix the angle (called the azimuthal angle) between the light
vector and the plane of incidence at a value of of  D 45ı. This is
sketched in Fig. 25.7 for ˛ � 0. The figure depicts a special case,
drawn in perspective, of our general arrangement. The latter is shown
in Fig. 25.8 without a perspective view, again making the plane of the
page coincide with the plane of incidence. Our agreed-upon arrange-
ment states: In every case, the positive directions of Ek, E?, and z
follow each other in a similar sequence as the x, y, and z axes of
a right-hand coordinate system. (In such a coordinate system, if we
look along the z direction, we must rotate the x axis in a clockwise
sense to bring it into the original direction of the y axis).

The experimental setup in Fig. 25.5 is now complemented by adding
the polarization analyzer A. It can be rotated around the beam axis of
the reflected beam. We then obtain measurement results as shown in
Fig. 24.17. They are plotted in Fig. 25.6 d–i : Reflection produces not
only different amplitudes Ek and E?, but also phase differences be-
tween the vectors Ek and E?. When these are not equal to 0ı or 180ı,
the reflected light is elliptically polarized. With weak absorption, this

E┴

E║ E║

E┴y
z

z

Ψ = 45° Ψ = 135°

y

To the mirror From the mirror

Plane of incidence xx

Figure 25.7 The orientation of the light vectors in the special case of nearly
perpendicular light reflection and an observer who is always looking along
the direction of light propagation

Figure 25.8 The orientation of the
light vectors for an arbitrary angle of
incidence ˛

Ei,┴ and Er,┴ point upwards, per-
pendicular to the plane of the page

α α

zz
xx

Ei║ Er║

Mirror
Refl

ec
ted

 bea
mIncident beam
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occurs only in the region of total reflection (indicated in Fig. 25.6 b).
For strongly-absorbing materials, however, it occurs at all angles of
incidence.

At the principal angle of incidence ˚ , the phase difference between
Ek and E? becomes 90ı. After two reflections at the principal angle
of incidence ˚ , the light is thus again linearly polarized. This is the
basis for a convenient measurement method for ˚ , useful also for
demonstration experiments (J. JAMIN, 1849).

25.8 FRESNEL’s Formulas for
Weakly-Absorbing Materials.
Applications

The entire empirical content of the left-hand and the center columns
in Fig. 25.6 (graphs a and b, d and e, and g and h) was summarized
by A. FRESNEL (1788–1827) in simple formulas. If we write the law
of refraction as sin˛= sinˇ D n, then for the reflected radiation, we
have:C25.8 C25.8. POHL gave a deriva-

tion of FRESNEL’s formu-
las in the 13th edition of
“Optik und Atomphysik”,
Chap. 11. For a derivation
in English, see for exam-
ple http://physics.gmu.edu/
~ellswort/p263/feqn.pdf

Er?
Ei?

D � sin.˛ � ˇ/
sin.˛ C ˇ/

(25.11)

and

Erk
Eik

D n cos˛ � cosˇ

n cos˛ C cosˇ
D tan.˛ � ˇ/

tan.˛ C ˇ/
: (25.12)

For the radiation that penetrates into the material, we find

Ep?
Ei?

D 2 sinˇ cos˛

sin.˛ C ˇ/
(25.13)

and

Epk
Eik

D 2 sinˇ cos˛

sin.˛ C ˇ/ cos.˛ � ˇ/ : (25.14)

In the special case of perpendicular incidence, it follows from
Eq. (25.11) for ˛ ! 0 that:

Er

Ei
D � n � 1

n C 1
: (25.15)

By squaring this equation, we obtain for one boundary surface the

Reflectivity R D Reflected radiant power

Incident radiant power
D
�
n � 1

n C 1

�2

(25.16)

http://physics.gmu.edu/~ellswort/p263/feqn.pdf
http://physics.gmu.edu/~ellswort/p263/feqn.pdf
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which we introduced in Sect. 25.6; this is an important and often-used
relation.

Examples: For glass, with n D 1:5, R D 4%; for germanium, with
n D 4, we find R D 36%. The penetration of radiation can thus by
no means be prevented by strong absorption alone.

From Eq. (25.16), it seemed for a long time that it would not be pos-
sible to manufacture reflection-free glass surfaces; however, making use
of interference in thin evaporated crystal layers, a considerable degree of
“anti-reflection” or “dressing” can be achieved (Sect. 20.12). In the first
practically successful method, thin crystalline layers (e.g. of KBr or CaF2)
were evaporated onto quartz glass in high vacuum (G. BAUER, 1934).C25.9C25.9. GERHARD BAUER,

Dr. rer. nat. Göttingen 1931;
Annalen der Physik 39, 434
(1934).

The minus sign in Eq. (25.15) means that Er and Ei are directed op-
positely to one another for n > 1, and they are parallel for n < 1.
The reflection produces a phase jump of 180ı or �=2C20.3 for n > 1.
When n < 1, in contrast, the phase remains unchanged.

The demonstration experiment of THOMAS YOUNG (1802): In a demon-
stration of NEWTON’s rings (Sect. 20.9), he bounded the air layer by
a piece of cambered glass with a small refractive index, and a piece of
planar polished glass with a large refractive index. Then he filled a section
of the air gap with a liquid whose refractive index lay between those of the
two pieces of glass. In this region, the bright and dark interference fringes
exchanged positions3.

With our knowledge of this phase jump, we illustrate the perpendic-
ular reflection at the planar surface of a weakly-absorbing material
graphically for two examples in Fig. 25.9. For the perpendicular
reflection, we use a single coordinate system whose z direction co-
incides with the direction of incidence of the light.

FRESNEL’s formulas (25.13) and (25.14) hold for the light that pen-
etrates beyond the boundary surface and into the material. It is expe-
dient to illustrate them graphically (Fig. 25.10).

The amplitude ratio Ek=E? for an oblique passage through the bound-
ary does not reach its maximum value at the polarization angle ˛P D
56ı190, but rather it continues to increase with increasing angle of
incidence, as will be shown in the following.

When a collimated light beam passes at an oblique angle through a glass
plate, one obtains partially-polarized light, i.e. a mixture of natural light
and linearly-polarized light. Quantitatively, this light is characterized by
its

Degree of polarization Q D
ˇ̌̌
ˇ̌ PWEk � PWE?

PWEk C PWE?

ˇ̌̌
ˇ̌ (25.17)

. PW is the radiant power/:

If we produce the partially-polarized light from a collimated light beam
which passes at an oblique angle through a glass plate, then the degree of

3 R.W. Pohl, Physikalische Blätter 17, 208 (1961).
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S is the resultant of the incident and the reflected waves

Ei

Ei

Er

Er

δp = 0º

δp = 0ºδr = 0

δr = 180º
Ep

Ep

z

z

0

0

0

0

Continuous transition

Continuous transition

S

S

Air A; nA = 1 Solid object B; nB = 2

Solid object B; nB = 2 Air A; nA = 1

In the direction air → object, n = nB/nA = 2

In the direction object → air, n = nA/nB = 0.5

Figure 25.9 Two examples of a perpendicular passage of travelling waves
through the boundary O �O between two materials of different refractive in-
dices. ‘Snapshot’ images of this type continually change their form over time,
but they repeat themselves periodically. In each snapshot, at each moment in
time, the sum of the incident and reflected light vectors at the boundary is
thus equal to the light vector of the light that penetrates the boundary.

Figure 25.10 The
penetration of
light with the
polarizations E?
and Ek into an
optically-denser
material which
absorbs weakly,
corresponding to
Eqns. (25.13) and
(25.14)
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polarization will be

Q D 1 � cos4.˛ � ˇ/
1 C cos4.˛ � ˇ/ (25.18)

.˛ is the angle of incidence, and sinˇ D 1

n
sin˛/:
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Figure 25.11 Influence
of the angle of incidence
on the degree of po-
larization of the light
transmitted by a glass
plate
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The degree of polarization for a given refractive index n is thus determined
by the angle of incidence ˛. Figure 25.11 shows an example for n D 1:5
which is practically important. From the continuous increase of the degree
of polarization Q with increasing angle of incidence ˛, it follows that the
amplitude ratio Ek=E? also increases with ˛.
Derivation of Eq. (25.18): From Eqns. (25.13) and (25.14), we find for the
passage through one boundary surface:

Epk
Ep?

D 1

cos.˛ � ˇ/ D a and through two boundary surfaces
Epk
Ep?

D a2 :

(25.19)

The radiant powers PW are proportional to the squares of the amplitudes,
that is

PWEk
PWE?

D a4 ; (25.20)

and, from Eq. (25.17)

Q D
ˇ̌̌
ˇ̌ PWEk � PWE?

PWEk C PWE?

ˇ̌̌
ˇ̌ D a4 � 1

a4 C 1
: (25.21)

Inserting a D 1= cos.˛ � ˇ/ yields Eq. (25.18).

25.9 Detailed Description
of Total Reflection

In Fig. 25.12, a thin layer A with a refractive index nA is sandwiched
between two sheets of material B with planar surfaces and a larger
refractive index, nB. Waves are incident from the lower left at the
angle of incidence ˛. They undergo total reflection when ˛ surpasses
the critical angle ˛T for total reflection, as defined by Eq. (16.7),
i.e. sin˛T D nA=nB.

Total reflection can occur only when the thickness d of the layer
of material A is at least of the order of the wavelength (Vol. 1,
Sect. 12.9). Thinner layers are not an insurmountable obstacle for
the waves; they can pass through the layer, although attenuated, as
though they were passing through a tunnel: This is called the tunnel
effectC25.10,

C25.10. Total reflection and
the tunnel effect are dis-
cussed in detail in Vol. 1
using water waves as an ex-
ample system (Sect. 12.9). In
earlier editions, the series of
images in Fig. 12.23, Vol. 1,
could be found here in this
chapter on optics. or “frustrated total internal reflection”.
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Figure 25.12 Avoidance of total reflection.
The tunnel effect (Video 12.2 Video 12.2 from Vol. 1:

“Water-wave experiments”
http://tiny.cc/tfgvjy.
The experiments on total re-
flection and the tunnel effect
are shown after the time mark
at 5:30min.

from Vol. 1)
d

B

B

A

α > αT

For light, the demonstration is carried out using waves from the in-
frared spectral region. In Fig. 25.13, the crater of an arc lamp is im-
aged onto a radiometerM by two lenses made of rock salt. The colli-
mated beam between the lenses is split into two beams by a mask B1.
An aperture B2 which can be shifted in the vertical direction allows
one or the other of the two sub-beams to pass. The two sub-beams
are then incident on three 90ı prisms made of rock salt. The bases
of the small prisms are separated from the base of the large prism by
small strips of metal foil, above with a thickness of 15�m, below
with 5�m.

The visible part of the two sub-beams undergoes total reflection; it
exits to the sides in the direction of the arrows. Likewise, the infrared
radiation of the upper sub-beam undergoes total reflection. For the
lower beam, in contrast, the radiometer indicates a large deflection.
Radiation thus passes through the lower pair of prisms. This means
that a 5�m thick layer of air behind the base of the large prism avoids
total reflection. But a 15 �m thick air layer allows the total reflection
to occur without hindrance. As a result, the infrared radiation in the
two beams contains waves of up to about 15�m wavelength. (Waves
of wavelengths longer than 15�m were already absorbed by the first
rock-salt lens. Details are given in Sect. 27.2).

This experiment using two prisms is also technically important. We can
make the spacing of their basal areas variable; we then would have the
possibility of changing the transmitted radiant power through tiny shifts
in the spacing, i.e. of continuously varying the intensity. Furthermore, the
two prisms can be used in the infrared spectral range as a filter. They stop
shorter wavelengths and allow the longer ones to pass through.

15 μm

5 μm

M
B1

B2

V

Figure 25.13 Demonstration of total reflection of infrared light and its avoid-
ance by the “tunnel effect”

http://tiny.cc/tfgvjy
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According to Fig. 25.6 h, in the region of total reflection, there is
a phase difference ı between Ek and E?. Thus, linearly-polarized
light which has a component within the plane of incidence as well as
perpendicular to it will be converted to elliptically-polarized light by
reflection. We find (for n < 1, ˛ > ˛T):

tan
ı

2
D cos˛

p
sin2 ˛ � n2

sin2 ˛
: (25.22)

Example: For n D 1=1:5, ı D 45ı for two angles of incidence, at ˛ D
48:5ı and also at ˛ D 54:5ı .
Derivation: The law of refraction sinˇ D 1

n
sin˛ yields values of sinˇ >

1 only for n < 1. Then we find

cosˇ D
q
1 � sin2 ˇ D i � 1

n

p
sin2 ˛ � n2 ; (25.23)

an imaginary quantity (i D p�1). This is inserted into the FRESNEL

formulas, and then the computation is carried out according to the same
scheme as in Sect. 25.11.C25.11C25.11. A detailed deriva-

tion of Eq. (25.22) can be
found in Max Born and Emil
Wolf, “Principles of Optics”
(4th ed.), Pergamon Press
(1970), Sect. 13 (available
online at https://archive.org/
details/PrinciplesOfOptics ) .

25.10 The Mathematical
Representation of Damped
Travelling Waves

Travelling waves were treated in Sect. 12.1 of Vol. 1. Their phase
velocity was denoted there by c. In optics, the phase velocity is the
velocity of light c. Within a material of refractive index n, the phase
velocity is reduced to c=n. In optics, an undamped travelling wave
can be represented by the equation

Ex D A sin!

�
t � z

c=n

�
(25.24)

(Ex is the momentary value of the x component of the light vector (the
vector of the electric field) at the location z and at time t; the wave is
travelling in the positive z direction, and A is its amplitude, ! D 2�
 its
circular frequency, c=n D its phase velocity in a material, and n is the
refractive index of that material).

We can carry out computations more easily with exponential func-
tions than with trigonometric functions. Therefore, we replace the
trigonometric functions by an exponential function, making use of
EULER’s relation:

ei' D cos' C i sin'; i D p�1 : (25.25)

Instead of Eq. (25.24), we can write

Ex D A ei!.t�zn=c/ ; (25.26)

https://archive.org/details/PrinciplesOfOptics
https://archive.org/details/PrinciplesOfOptics
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Complex number ζ 
= a + ib = Aeiφ

= A (cosφ + i sinφ)

A
φ b 

= 
A 

si
nφ

a = A cosφ
+ 3 Real part

+ 3i

+ 2i

+ 1 + 2

+ 1i

– 1i

– 1

Figure 25.14 Graphical display of a complex number

and then we can use complex numbers for calculations and employ
separately either the imaginary or the real part.

Complex numbers are pairs of numbers with particular rules of calculation,
developed especially for such pairs. The words “imaginary” and “com-
plex” are of only historical importance.
For the following sections, we need to note only a few items:
A complex number

	 D Aei' D A.cos' C i sin'/ D a C ib (25.27)

(A is the “magnitude” and ' the phase angle of the complex number) can
be represented graphically (Fig. 25.14):
To calculate the angle ', we make use of the equation

tan' D sin'

cos'
D Imaginary part

Real part

�
of the complex number 	: (25.28)

The “magnitude” A of a complex number .a˙ ib/ is found by multiplying
it by its “complex conjugate” .a  ib/, so that for example

A2 D .a C ib/.a � ib/ D a2 C b2 : (25.29)

In these two equations, we find pure real numbers as the results. In other
cases, one finds complex numbers on both sides of the equals sign, e.g.

a C ib D C C iB : (25.30)

This then means that a D C and also b D B is a physical result, i.e. a rela-
tion between similar and comparable quantities.
Example: Consider a sinusoidal oscillation which begins at time t D 0
with a phase ı (positive or negative). Then instead of A sin.!t C ı/, we
could write (in the complex representation):

	 D A eiı � ei!t : (25.31)

The product A eiı D A0 is called the complex amplitude. It contains two
parameters of the oscillation, namely both the real amplitude and also the
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phase angle ı. The ratio of two complex amplitudes

A0
1

A0
2

D A1

A2
� ei.ı1�ı2/ D % eiı (25.32)

contains both the ratio % D A1=A2 of the real amplitudes as well as the
phase difference ı between them. Here, % is the magnitude and ı the phase
angle of the complex number % eiı .

In a material with extinction, the waves are damped exponentially.
After a distance z, the power has decreased to the fraction e�Kz of its
original value, and the amplitude has thus decreasedC25.12C25.12. The power is pro-

portional to the square of
the amplitude (see Com-
ment C12.4).

to the frac-
tion e�Kz=2. If the extinction constant K is replaced by the extinction
coefficient k using the relation

K D 4�k

�
(25.3)

(�: wavelength in vacuum), then we obtain for the momentary value
at the location z and at time t

Ex D A � e�2�kz=� � ei!.t�zn=c/ : (25.33)

The transition from Eq. (25.26) (a wave without extinction) to
Eq. (25.33) (a wave with extinction) can be carried out formally
in a different way: We need only replace the refractive index n in
Eq. (25.26) by a complex quantity, namely the complex index of
refraction:

n0 D n � ik : (25.34)

It contains two numerical quantities, both the refractive index n and
the extinction coefficient k. Making use of the complex index of
refraction, we can go directly from Eq. (25.26) to Eq. (25.33).

This result is important. It can be used to compute the influence
of extinction on the propagation of a wave from a simple rule: We
start with the formulas derived for a wave without extinction and re-
place the refractive index n there by the complex index of refraction
n0 D n � ik. It performs excellent service as a formal computational
quantity and is indispensable in any treatment of the extinction of
waves.

25.11 BEER’s Formula for Perpendicular
Reflection by Strongly-Absorbing
Materials

We have already presented the experimental facts in Sect. 25.6. Our
quantitative treatment is based on an extension of FRESNEL’s for-
mulas. In addition to the refractive index n, we must also take the
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extinction coefficient k into account. This is accomplished by apply-
ing the general rule introduced above: We replace the real refractive
index n by the complex refractive index n0 D n � ik.

In the special case of perpendicular incidence, we found for the re-
flection

Er

Ei
D � n � 1

n C 1
: (25.15)

Inserting the complex refractive index, we obtain the ratio of two
complex amplitudes:

E0
r

E0
i

D � n � ik � 1

n � ik C 1
D % eiır : (25.35)

Here, the magnitude % (see Eq. (25.32) in Sect. 25.10) is the ratio
of the real amplitudes, that is % D Er=Ei; and ır is the phase angle
between Er and Ei, i.e. between the reflected and the incident ampli-
tudes. Both are to be computed according to the rules in Sect. 25.10.
We begin with the calculation of the

Reflectivity R D %2 D
ˇ̌̌
ˇEr

Ei

ˇ̌̌
ˇ
2

:

For this calculation, we multiply the complex number in Eq. (25.35)
by its complex conjugate, thus

R D .n � ik � 1/.nC ik � 1/

.n � ik C 1/.nC ik C 1/
(25.36)

or

R D
ˇ̌̌
ˇEr

Ei

ˇ̌̌
ˇ
2

D .n � 1/2 C k2

.n C 1/2 C k2
: (25.37)

This is the often-used formula of AUGUST BEER (1854). For every
value of the reflectivity R, there are many pairs of values of the optical
constants n and k that satisfy Eq. (25.37). The set of all these pairs
forms circles, as is shown in Fig. 25.15 for values of R between 20
and 80%.

In metals, the summand k2 in the numerator and denominator of
BEER’s formula (25.37) is generally predominant. Then R is compa-
rable to 1. A large fraction of the incident radiant power is reflected.
In the example in Fig. 25.6 c, this fraction was .Er=Ei/

2 � 0:782 �
60%. Silver can reflect more than 95% in the visible range. In
the longer-wavelength infrared range, all metals have a reflectivity
of R � 100% (cf. Fig. 27.8).

To calculate the phase difference, we put Eq. (25.35) in the form a C ib.
To do this, we multiply the numerator and the denominator by the complex
conjugate of the denominator, that is

% eiır D � n � ik � 1

n � ik C 1
� n C ik C 1

n C ik C 1
D 1 � n2 � k2 C i2k

n2 C 2n C 1 C k2
(25.38)
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Figure 25.15 A graphical representation of BEER’s formula shows pairs of
values of n and k which give the same value of the reflectivity R at perpendic-
ular incidence. The center of the circles is at n D .1 C R/=.1 � R/, and their
radii r are given by r2 D 4R=.1 � R/2

or

..n C 1/2 C k2/ � % eiır D 1 � n2 � k2„ ƒ‚ …
Real part

C i2k„ƒ‚…
Imaginary part

:

Then we make use of Eq. (25.28),

tan ır D Imaginary part

Real part
of the complex quantity , (25.39)

and obtain for the phase angle between the reflected and the incident am-
plitudes:

tan ır D 2k

1 � n2 � k2
: (25.40)

In a similar manner, we could start from the FRESNEL formula (25.14)
and calculate the ratio of the transmitted amplitude Et and the incident
amplitude Ei, and likewise the phase angle ıt between the amplitudes. For
perpendicular incidence, we obtain

ˇ̌̌
ˇEt

Ei

ˇ̌̌
ˇ
2

D 4

.n C 1/2 C k2
(25.41)

and

tan ıt D k

n C 1
: (25.42)

In Fig. 25.9, we illustrated FRESNEL’s formula for perpendicular
incidence and weak reflection with a ‘snapshot’ image, for the nu-
merical example of n D 2. Analogously, Fig. 25.16 shows ‘snapshot’
images to elucidate Eqns. (25.37) through (25.42); at the left, for n D
2 and k D 4, and at the right, for n D 2 and k D 0:1.

Figure 25.16 (right) is hardly distinguishable from Fig. 25.9 (top).
This means that an absorption coefficient of k D 0:1 plays practically
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z z

S is the resultant of the incident and the reflected waves

Ei EiEr
Er

EtEd
S S

δr = 157º δt = +53º δt = +2ºδr = 176º

Air A Air AnA = 1

0

0

0

0
n = nA→B = nB/nA= 2

nA=1
R = 68%
Object B
nB = 2; k = 4 Object B

nB = 2; k = 0.1

Continuous transition

Figure 25.16 ‘Snapshot’ images of waves, continuing those in Fig. 25.9, to illustrate the appli-
cation of Eqns. (25.37) through (25.42). At the boundary between air and the object B, at each
moment the magnitude of the light vector of the transmitted light is equal to the sum of the light
vectors of the incident and the reflected light. The left-hand image represents for example the
reflection of red light from a platinum surface. The right-hand image exaggerates somewhat the
situation for dye solutions of very high concentrations.

no role in reflection. k D 0:1 (or, more precisely, k D 0:08) means
that w D �, i.e. the mean penetration depth of the light is equal to its
wavelength (in vacuum). w D � was introduced in Sect. 25.5 as the
boundary between strong and weak absorption. That definition finds
its justification here.

If, for a strongly-absorbing material, we have measured two of the
three quantities R, n and k D K�=4� , then we can use BEER’s for-
mula (25.37) to calculate the third. We could however also measure R
and ır, and then combine Eqns. (25.37) and (25.40) in order to obtain
k and n.

25.12 Light Absorption
by Strongly-Absorbing Materials
at Oblique Incidence

In Sect. 25.11, we have discussed the reflection of light with strong
extinction at perpendicular incidence (˛ D 0) rather thoroughly.
The significance of the equations derived there extends far beyond
the field of optics. These equations also play an important role in
acoustics and electrical technology. They indeed contain only two
formally-defined materials constants, the refractive index n and the
absorption coefficient k, independently of any considerations of the
exact nature of the waves.

When the light is incident at an oblique angle (˛ > 0), the situa-
tion becomes more complicated. If we insert the complex index of
refraction into the law of refraction, we obtain a complex angle of
refraction. It contains two pieces of information: First, the positions
of surfaces of equal phase, and second, the positions of surfaces of
equal amplitude. Figure 25.17 serves to illustrate this. In the figure,
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Figure 25.17 The various forms of spa-
tial damping of travelling waves (the
thickness of the lines indicates the ampli-
tude of the waves)
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the wave crests are marked by broad dark lines. Their thickness is
supposed to indicate the amplitudes. In the first two images, the re-
fractive index of the material below the boundaryO � O is presumed
to be smaller than that of the material above the boundary.

In Fig. 25.17, top, ˛ D 0, so that the light is incident perpendicular to
the boundaryO�O. The lines of constant phase (the wave crests) and
the lines of constant amplitude (equal thickness of the lines drawn)
coincide: We have longitudinal damping.

In the center image of Fig. 25.17, ˛ is about 33ı. Now, the wave
crests below the boundary no longer coincide with the lines of con-
stant amplitude, i.e. in the figure with lines of constant thickness. The
wave is “inhomogeneous” and “obliquely damped”.

In Fig. 25.17, bottom, the refractive index of the material below the
boundary is larger than it is above. Here, again, we see an oblique
damping.

Experimentally, this oblique damping makes itself known in an un-
pleasant manner: The ratio sin ˛= sinˇ measured with prisms is no
longer constant; it depends upon the angle of incidence (Fig. 25.18)
and can increase by more than a factor of two with increasing ˛, for
example in the case of Cu.

In spite of these complications, the case of oblique incidence on
strongly-absorbing materials can be treated just like the case of per-
pendicular incidence. We once again start with FRESNEL’s formulas
for weak absorption, that is with Eqns. (25.11) and (25.12). Once
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Figure 25.18 In materials with
strong absorption, the ratio
sin˛= sinˇ depends on the angle
of incidence ˛ (this was measured
by D. SHEA using very thin metal
prisms)
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again, we replace the real refractive index n by a complex index of
refraction, which also takes absorption into account:

n0 D n � ik : (25.34)

Unfortunately, the ensuing computations are rather extensive and
complicated, if carried out in rigorous form. For this reason, we limit
the problem and ask only, “How can we determine the optical con-
stants n and k from reflection measurements with oblique incidence
of the light”?

For the special case that ˛ is equal to the principal angle of inci-
dence ˚ (Sect. 25.6, Fig. 25.6c), we have, according to CAUCHY’s
formulasC25.13, C25.13. POHL gave a deriva-

tion of CAUCHY’s formulas
in the 13th edition of “Optik
und Atomphysik”, Chap. 11.
See also PAUL DRUDE,
Annalen der Physik 271
(1888), p. 508–523. A mod-
ern derivation in English is
given in Born and Wolf’s
book, Sect. 13.2 (cf. Com-
ment C25.11.).

k D n tan 2� (25.43)

n D sin˚ tan˚ cos 2� ; (25.44)

where � is defined by

tan� D
�
Erk
Er?

�
˛D˚

: (25.45)

We thus have two equations for the determination of the two optical
constants n and k. The measured quantities are the principal angle of
incidence˚ and tan� , that is the ratio of the two reflected amplitudes
at the principal angle of incidence (Eq. (25.45) and Fig. 25.6c).

The two equations (25.43) and (25.44) are rather important in meas-
urement technology. They were published already in 1849 by
A.L. CAUCHY. They should thus not be considered to be results
of MAXWELL’s theory, contrary to popular belief.

25.13 Conclusion: Pictures Used
in Physical Descriptions

The quantitative treatment of “strong” light absorption, when w < �,
is not a pleasing chapter. One has to carry out numerous calculations
and nevertheless, for oblique incidence, only approximate solutions
lead to formulas of acceptable simplicity.
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But another aspect is still worse. Even beginning physics students“Even beginning physics
students associate optical
measurements with a high
degree of precision; they
are aware that refractive
indices, wavelengths, etc.
are measured to many sig-
nificant figures. In the case
of strong absorption, this
precision goes out the win-
dow”.

associate optical measurements with a high degree of precision; they
are aware that refractive indices, wavelengths, etc. are known to
many significant figures. In the case of strong absorption, this preci-
sion goes out the window. Being able to reproduce measurements
of n and k to within a few percent has to be considered satisfac-
tory. The reason is clear: With strong absorption, all of the processes
take place within very thin surface layers of the absorbing material;
the main contributions are made by layers less than 10�4 mm thick.
These layers, in contrast to the bulk of the material, are unprotected
against all kinds of external influences. Their structures are not stable
over time; they depend on the history of the material and on the pres-
ence of impurity molecules near the surface. The situation is similar
to that of external friction between two solid objects in close contact.

No surface layer shows the same properties as the bulk of the ma-
terial. For example, we can place a glass block with a carefully
polished surface into a liquid with exactly the same refractive index
(for the light being used). But we can always see the surface layer
owing to reflections of up to some tenths of a percent of the incident
light. The refractive index of the surface layer is always somewhat
different from that of the bulk glass. According to Lord RAYLEIGH

(1937)C25.14,C25.14. Proceedings of the
Royal Society (London),
Series A, Vol. 160, pp. 507 –
526 (1937).

the thickness of the layer that is influenced by handling
is about 3 �10�6 cm (0:03�m), and the increase in its refractive index
can be up to 10%.

This fact is particularly noticeable in the filters fabricated by the method of
CHRISTIANSEN. These filters consist of a layer at least 1 cm thick of fine,
carefully purified glass powder in a mixture of benzene and carbon disul-
fide. At the correct mixing ratio, the dispersion curve of the glass and that
of the liquid can be made to intersect. Then the glass and the liquid have
practically the same refractive index over a narrow frequency range; for
the transition from glass ! liquid, n D 1. Light within this range is trans-
mitted without attenuation, while everything outside the range is deflected
off to the sides by diffuse reflection. This is however only approximately
realized, because the grains of glass powder have no unified value of their
refractive index near their surfaces.

All physical descriptions make use of simplifying pictures which in
the end are useful only as approximations. The same empirical facts
may be encompassed by different pictures. The simplifications must
be kept to that minimum which is still compatible with the intended
purpose of the pictures. An example is more instructive than wordy
explanations:

In drawings, for example in a sketch of a lens, we indicate the bound-
aries of a body by a surface. A surface is a simplified picture: In
reality, we are dealing with an inhomogeneous transition layer of fi-
nite thickness. If a surface is described as planar, we are again using
a simplifying picture.

Physically, a fresh liquid surface, for example of water, exhibits the
least irregularities. But every liquid has a vapor pressure, e.g. for
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water at room temperature, it is 24 hPa. Therefore, at the bound-
ary between the liquid and its vapor, there is a statistical equilibrium
between evaporating and condensing molecules. Per square centime-
ter and second, around 1022 molecules make the transition from the
liquid into the vapor and vice versa. In a square centimeter of the sur-
face, however, there is room for only 1015 molecules. Each individual
molecule can thus remain at the surface for only about 10�7 s; then
it again flies off the surface with a velocity of around 700m/s. This

“This clamoring, swarming
throng is the best approxi-
mation that physicists can
use to approach the ideal
picture of a surface as for-
mulated by mathematics!”

clamoring, swarming throng is the best approximation that physicists
can use to approach the ideal picture of a surface as formulated by
mathematics!

All “All pictures and words are
contingent on their time.
They must be adjusted in
the course of years to the
continual extension of our
experimental knowledge”.

pictures and words are contingent on their time. They must be
adjusted in the course of years to the continual extension of our ex-
perimental knowledge.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_25) contains supplementary material, which
is available to authorized users.
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Scattering 26
26.1 Preliminary Remark

In the preceding chapters, we have described quantitatively the prop-
agation of radiation from its source to a receiver using two quantities,
usually the refractive index n and the extinction coefficient k. Within
a qualitative description, the phenomena related to diffuse reflec-
tion and scattering were also considered. Both play an important
role in optics. They lead us to the concept of a light beam and its
graphical representation using ‘light rays’ drawn as straight lines.
Diffuse reflection and scattering allow objects that themselves do not
emit light to become visible as “secondary emitters”. The treatment
of some important diffraction and interference phenomena is based
upon them. Scattering allows us to identify polarized light through
its asymmetry (Fig. 24.4).

These examples however by no means exhaust the significance of
scattering. Scattering leads to a whole series of other important
insights, for example in connection with refraction and dispersion
(Chap. 27). This is why we want to treat the topic of scattering more
comprehensively in this chapter.

26.2 The Basic Ideas Underlying
the Quantitative Treatment
of Scattering

The fundamental aspects of scattering have already been illustrated
by demonstration experiments in earlier chapters. Their qualitative
interpretation makes use of the analogy to water waves: An obstacle
which is small compared to the wavelength, e.g. a rod, is encountered
by a wave train. The obstacle then becomes the source of a new,
“secondary” wave train which propagates in all directions away from
it (Vol. 1, Fig. 12.17).

The obstacle is presumed to be rigid and immobile. This is however
only a special case. In general, the obstacle will be an object which
can itself vibrate (an oscillator), and it can be excited to forced vi-
brations as a resonator by the oncoming waves. Forced vibrations
of harmonic oscillators (sinusoidal oscillations) were treated in depth
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in Vol. 1 (Sect. 11.10)1. Here, we review briefly the most important
aspects and supplement them by quantitative data.

A force F D F0 cos.2�
t/ which acts periodically on a harmonic os-
cillator (e.g. a sinusoidally-vibrating spring pendulumwith a massm,
see Vol. 1, Fig. 4.13) produces forced vibrations, as shown in Vol. 1,
Fig. 11.42b for torsional oscillations. In a steady state, their ampli-
tude depends on F0 and on the frequency 
, and also on the eigenfre-
quency 
0 of the free oscillator, and on its damping, expressed as the
logarithmic decrement. Quantitatively, we found for the amplitude
(cf. Comment C11.8 and Exercise 26.1):

l0 D 1

4�2

F0=ms
.
20 � 
2/2 C

�


�

�2

� 
20
2
: (26.1)

The oscillator vibrates at the frequency 
, but with a phase shift of ':

l.t/ D l0 cos.2�
t � '/ ; (26.2)

where

tan ' D 

�
� 
0



20 � 
2 : (26.3)

These forced vibrations, for their part, cause the emission of sec-
ondary waves. In the case of light scattering, we must describe the
mechanism of this emission quantitatively. We undertake this task in
the following section.

26.3 The Radiation from Oscillating
Dipoles. PURCELL’s Experiment

The analogous behavior of electrical waves and light waves has al-
ready been pointed out in Sect. 12.8. Here, we extend that discussion
by a comparison which forms the basis for a treatment of scattering.

Conveniently-operated transmitters for linearly-polarized electro-
magnetic waves of short wavelength are readily available today. We
make use of one of them (Fig. 26.1). Its essential component is easily
recognized, namely the short antenna S. High-frequency alternating
current flows in it. The devices required to generate this current and
the technical accessories (electronic components, etc.) are contained
in the shielded box K. The electric field produced by the transmitter
lies in planes which contain the long axis of the antenna S.

1 The analogous forced oscillation of an RLC circuit (tank circuit) was also de-
scribed in Sect. 11.7.
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Figure 26.1 Left: A transmitter
or source dipole for emitting
undamped waves (� � 10 cm).
Right: A non-tuned receiver
dipole with a rectifier and a gal-
vanometer as detector S

K

G

E

Radiant

intensity Iϑ ϑ

Figure 26.2 The graph shows how the radiant intensity I# of the waves emit-
ted by the source depends on the angle # between the direction of propagation
of the waves and a plane perpendicular to the long axis of the source. For the
measurement, the receiver (antenna E) is perpendicular to the direction of
propagation of the waves, while the angle is varied by tilting the source an-
tenna S. At # D 0, the source and the receiver antennas are parallel.

As receiver, we use a short antenna E (as described already in
Sect. 12.6). At its center, it contains a rectifier (diode), which
produces a direct current that is measured by the ammeter (gal-
vanometer G). With this setup, we measure the radiant intensity I#
(Eq. (19.2)) of the linearly-polarized radiation as a function of the
angle # . The result is plotted in Fig. 26.2. This corresponds to
Fig. 12.24.

Now, we show a corresponding experiment in optics. In Fig. 24.4, we
produced linearly-polarized light by scattering. We repeat that exper-
iment in quantitative form here. In Fig. 26.3, the shaded circle P is
the cross-section of the primary light beam within a cloudy medium.
Its plane of oscillation is marked by a double arrow E. Along the
large dashed circle, we can slide a radiometer M around the beam
P which forms the center of the circle. We measure the intensity of
the scattered radiation (i.e. the deflection of the ammeter) as a func-
tion of the angle # . The result can be seen in Fig. 26.4, as the solid
curve. The similarity between Figs. 26.4 and 26.2 is evident. In both
cases, for the radiant intensity I# in the direction # , we find to a good

Figure 26.3 The measurement
of the scattered radiation as
a function of the angle. At P,
the primary beam of linearly-
polarized light is incident
perpendicular to the plane of
the page.

E
ϑ

M

G

P
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Radiant

intensity
 I ϑ ϑ

E

yP

x

Figure 26.4 The scattering of polarized light by spherical dielectric parti-
cles. The primary light beam is perpendicular to the plane of the page at the
point P, and E indicates its plane of oscillation. The length of the radius cor-
responds to the radiant intensity (or to the deflection of the radiometer M in
Fig. 26.3). The figure can be thought of as rotationally symmetric around the
double arrow E as central axis (see also Fig. 26.9).

approximation

I# D const � cos2 # : (26.4)

This relation is shown by the dashed curve in Fig. 26.9.

This analogous behavior leads to the following conclusions: In the
optical experiment, the incident polarized light converts the sus-
pended particles in the cloudy liquid into sources, which radiate as
dipole antennas. The light can excite the suspended particles be-
cause it consists itself of electromagnetic waves. Their electric fields
can produce periodically alternating electric dipole moments in the
suspended particles; or, put briefly, excite them to forced electrical
oscillations.

E.M. PURCELL described an experiment in which visible light is pro-
duced as dipole radiation.C26.1C26.1. See S.J. Smith and

E.M. Purcell, Physical Re-
view 92, 1069 (1953).

This demonstration is the electrical
analogue of the acoustical experiment with which THOMAS YOUNG

in 1801 explained the action of a grating (Sect. 22.4, small print at the
end). Its principle: In Fig. 26.5, an electron passes with the velocity u
closely above a corrugated metal sheet. Its negative charge, together
with the positive influence charge in the metal (mirror charge), form
a dipole. The spacing of the two charges and thus the dipole moment
are varied periodically with the period T D d=u. This corresponds to
a frequency of 
 D u=d. In a direction # , as a result of the DOPPLER

effect (Sect. 23.5), the frequency 
0 D 
=
�
1 � u

c cos#
�
will be ob-

served, corresponding to the wavelength

�0 D d
� c
u

� cos#
�
:

Figure 26.5 The production of visible
dipole radiation

ϑ eU

d
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Example: An optical grating with d � 1:7�m serves as a “corrugated
sheet”. Close to its surface and at right angles to its grooves, there is a thin
electron beam (diameter � 0:15mm, accelerating voltage U D 3 � 105 V,
I D 5 � 10�4 A, u � c). One can see its path as a colored streak whose hue
changes with # .

26.4 Quantitative Treatment
of Dipole Radiation

In an electric field, every object becomes an electric dipole: Ev-
ery conductor through influence (Fig. 2.25 b), and every insulator
through the “polarization of the dielectric”. This can occur in two
different ways: First, through the action of influence on the individ-
ual molecules (Fig. 2.56); and second, through a parallel alignment
of the dipoles of “polar” molecules that are already present without
the field, but are randomly oriented due to thermal motions. These
are molecules with permanent electric dipole moments, e.g. H2O and
HCl (Sect. 13.10). These polar molecules will initially be left out of
our considerations. They will be treated later in Sect. 27.16.

An oscillating dipole is the archetype of an electromagnetic wave
source (HEINRICH HERTZ, 1887). In the simplest case, its electric
dipole moment p varies sinusoidally, so that we have:

p D p0 sin!t : (26.5)

Let the amplitude of the dipole moment be p0 D Q l0. Then at a large
distance r (i.e. r � l0, the length of the dipole), the radiant intensity
from the dipole in the direction # is given by

I# D c�2

2"0
� p

2
0

�4
cos2 # (26.6)

(Units: watt/steradian (Eq. (19.2)); c is the velocity of light, and "0 is the
electric field constant D 8:86 � 10�12 A s/Vm).

How Eq. (26.6) comes about is easy to understand qualitatively:C26.2

C26.2. A quantitative
derivation can be found
for example in F. Hund,
“Theoretische Physik”,
Vol. 2, Sect. 61 (B.G. Teub-
ner, Stuttgart, 1957) or in
P. Lorrain, D.R. Corson,
and F. Lorrain, “Funda-
mentals of Electromagnetic
Phenomena”, Chap. 25
(W.H. Freeman, New York,
2000).
The integration over solid an-
gles leading from Eq. (26.6)
to Eq. (26.7) can be found
in standard textbooks on in-
tegral calculus. Note that
the angle # as defined here
(Fig. 26.9) is the complement
of the usual polar angle # in
spherical coordinates. ' is
the azimuthal angle around
the z axis.

As-
suming that the dipole is undergoing forced oscillations at the circular
frequency ! D 2�
, then the electric field that it emits is produced by
an induction process, so that its amplitude E0 is proportional to the time
derivative of the electric current. Furthermore, the current flowing in the
oscillating dipole is � dp=dt. Because of this second-order differentiation,
the amplitude E0 of the emitted field is � �!2p0, and its power is thus
� !4p20 � p20=�

4. (The minus sign before !2p0 means that there is a phase
difference of 180ı between the field emitted and the dipole moment).

Integration of the radiant intensity in Eq. (26.6) over the solid angle
d˝ (that is over # and ', total solid angle ˝ D 4� ; see Fig. 19.1)
yields the total average power emitted by the dipole at the frequency

:

PW D 4c�3

3"0
� p

2
0

�4
D 1

12�"0c3
� !4 p20 D 4�3

3"0c3
� 
4 p20 : (26.7)
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26.5 The Wavelength Dependence
of RAYLEIGH Scattering

Now, we have all the prerequisites for a quantitative treatment of
scattering. RAYLEIGH scattering is characterized by the following as-
sumptions: The scattering particles are spherical and their diameters
are small compared to the wavelength of the light that is scattered.
They are transparent in the visible spectral range and their absorption
begins only in the ultraviolet, and thus at higher frequencies. Further-
more, their arrangement in space allows no fixed phase relations to be
established among the rays of secondary radiation from the individual
scattering particles.C26.3C26.3. The important role

played by the phase rela-
tions between the sources of
scattered radiation is empha-
sized by the footnote near
the end of this section. These
relations lead to a reduction
of the overall scattered ra-
diant intensity; that is, they
increase the fraction of the
light which continues along
the path of the incident light
beam.

For this reason, the average spacing of the
particles is supposed to be larger than the wavelength, and their ar-
rangement is statistically disordered. In Fig. 24.4, we illustrate these
conditions by using fine particles of a weakly-absorbing material sus-
pended in water. Scattering by these particles leads to extinction of
the primary light beam. Its measurement, as described for example in
Sect. 25.2, yields an extinction constantK proportional to the number
densityNV of the scatterers. Thus, at a given wavelength, the quotient
K=NV, called the scattering or interaction cross-section (Sect. 25.4),
is constant.

We begin by following RAYLEIGH’s method of calculating the wave-
length dependence of the extinction constant K due to scattering
alone. The light beam is assumed to be collimated, i.e. it has parallel
bounds; then in a given section of the beam of length �x and cross-
sectional area A, there will be NVA�x scattering particles. They give
rise to an extinction constant of:

K D � PW
PWp

1

�x
: (Defining equation (25.1))

Here, � PW indicates the average radiant power (or the radiant inten-
sity) of the secondary radiation, and

PWp D "0

2
E2
0c � A (26.8)

("0 is the electric field constant, E0 the amplitude of the electric field of the
light, and c is the velocity of light)

is the radiant power in the primary beam of light that passes through

the area A.C26.4C26.4. The derivation is
given in Comment C27.9.

� PW is composed of the sum of the intensities given
by Eq. (26.7) from all of the scattering particles within the volume
A�x:

� PW D NVA�x
4c�3

3"0
� p

2
0

�4
: (26.9)
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In this expression, p0 D Q l0 is the amplitude of the dipole moment
of a scatterer which is induced by the field E0 of the primary light
that excites the scattering.

Combining Eqns. (26.8) and (26.9) with the definition (25.1) yields
the extinction constant due to scattering:

K D NV
8�3

3"20

�
p0
E0

�2

� 1

�4
: (26.10)

The relation between p0 D Q l0 and the field strength E0 can be
calculated quite generally from Eq. (26.1). The amplitude of the
force is given by F0 D QE0. The scattering particles are small com-
pared to the wavelength; therefore, considered as antennas, they have
very high eigenfrequencies 
0. Compared to these eigenfrequencies,
we can neglect the frequency 
 of the primary light in Eq. (26.1).
Then the amplitude and thus also the polarizability ˛ D Q l0=E0 D
p0=E0 are independent of 
, so that only constant quantities occur in
Eq. (26.10) before 1=�4, and we obtain

K D const � 1

�4
: (26.11)

The extinction constant resulting from this so-called RAYLEIGH scat-
tering is thus proportional to 1=�4 (like the power emitted by the
dipoles).

This important relation (26.11) is realized experimentally only as
a limiting case. A good example is the scattering in a NaCl crystal
with small additions of SrCl2 (SrCC ions/NaC ions D 1 W 103). These
additional ions produce local lattice perturbations in the crystal. In
reflected daylight, the crystals appear bluish, but they are reddish-
yellow with transmitted light. Figure 26.6 shows measurements of
the constant K due to scattering in the wavelength range between
� D 0:2�m and � D 1�m. The coordinate axes are logarithmic.
The measured data points lie on the solid straight line, which cor-
responds to K D const=�3:8. The dashed line would correspond to
K D const=�4; thus, Eq. (26.11) is fulfilled to a good approximation,
but not strictly verified. The approximation would in any case be
sufficiently good to determine one of the two quantities NV or p0=E0,
that is the particle number density and their polarizability, if the other
quantity is known.

Qualitative examples for preferential scattering at shorter wave-
lengths are easily found.C26.5 C26.5. See for example

Video 16.1 (“Polarized
light”) http://tiny.cc/5dggoy,
or, in Vol. 1, Video 10.4
(“Smoke rings”)
http://tiny.cc/ocgvjy.

Water containing some drops of milk
looks bluish. Thin skin over the dark background of veins near the
surface also looks bluish, for example on the inside of the wrist.
The most famous example is provided by the earth’s atmosphere. It
scatters the shorter-wavelength light in the visible spectrum; thus,
the clear sky appears blue.

During the day, even when we are standing in shadow, we cannot see
the stars; we are dazzled by the secondary light from scattering in the

http://tiny.cc/5dggoy
http://tiny.cc/ocgvjy
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Figure 26.6 The wavelength de-
pendence of the extinction constant
for RAYLEIGH scatteringC26.6C26.6. In the wavelength

range of these measurements,
K varies by more than a fac-
tor of 200! Light scattering
with a similar wavelength de-
pendence was also observed
in NaCl:Mn and KCl:Ca. The
deviation from the expected
wavelength dependence
(Eq. (26.11)) was explained
by the fact that the scatter-
ing particles have a diameter
of ca. 150 nm (onset of MIE

scattering). (K.G. Bansigir
and E.E. Schneider, Journal
of Applied Physics, Sup-
plement to Vol. 33, p. 383
(1962)).

NaCl crystal doped
with SrCl2 (1 : 103)
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upper atmosphere. The longer the path of light through the air, the
greater is the loss by extinction due to scattering. As a result, we see
the sun’s disk near the horizon with a bearable brightness and colored
yellow-orange to red.

In the clear, dust-free atmosphere, only the individual molecules act
as scattering centers2. Therefore, from the measured extinction con-
stant K of the atmosphere, we can determine the number density
of the molecules. This is carried out as follows: Quantitatively,
Eq. (26.10) holds. However, we now denote the dipole moment of
a single molecule as p0

0, that is p
0
0 D Q l0. For its polarizability, we

have p0
0=E0 D ˛ (cf. Sect. 13.9, Eq. (13.26)). Then Eq. (26.10) can

be rewritten as:

K D NV
8�3

3"20
� ˛2 � 1

�4
: (26.12)

With 
 � 
0, the polarizability ˛ becomes independent of the fre-
quency and has the same value as in a static field. The polarizability ˛
of single molecules of a material is well known from electromagnetic
theory; it was determined in Sect. 13.9 from the dielectric constant ".
For gases with " � 1 (Eq. (13.27)), it was shown there that

˛ D "0

NV
." � 1/ : (26.13)

2 The average spacing of the molecules is in fact small compared to the wavelength
(near the earth’s surface, it is about 3 � 10�9 m); but the large local thermal density
fluctuations in gases act to eliminate phase relations between the secondary rays
from individual molecules. This can be shown quantitatively.C26.7

C26.7. See for example
Max Born and Emil Wolf,
“Principles of Optics” (4th
ed., Pergamon Press 1970),
Sect. 81; available online:
See Comment C25.11.
A brief introduction can also
be found in F.S. Crawford,
“Waves”, Berkeley Physics
Course, Vol. 3 (McGraw Hill,
New York 1968), p. 559.

Liquids are
less compressible than gases and vapors. Their thermal motions therefore produce
much smaller statistically-distributeddensity fluctuations than in gases and vapors.
As a result, light scattering by liquids is relatively weak. To demonstrate it clearly,
we first have to remove all suspended particles from the liquid by distillation in
vacuum. For demonstration experiments, benzene or diethyl ether are suitable;
in both, light scattering can be observed using red-filter light. The local density
fluctuations in solids are even smaller than in liquids. In a block of good-quality
optical glass with polished faces, the scattering cone can still be readily observed.
A similar block of crystalline quartz has to be heated to several hundred °C to
make the scattering visible.
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Combining Eqns. (26.12) and (26.13), we obtain

NV D 8�3

3K
� ."� 1/2

�4
: (26.14)

Observations (e.g. from the Pic de Teneriffe) have given a roughly
constant value of the product K � �4 D 1:13 � 10�30 m3 at 0 °C and
1013 hPa between � D 320 and 480 nm. Thus, for example, at
� D 375 nm, the extinction constant is K D 5:7 � 10�5 m�1. This
is an extraordinarily small value. It means that a reduction in radiant
intensity to 1=e D 37% occurs only after a path length of 18 km! The
dielectric constant of the air is " D 1:00063. With these numerical
values, Eq. (26.14) gives

NV D 2:9 � 1025 m�3 :

The number density NV;id of an ideal gas under these conditions of
pressure and temperature is known (Vol. 1, Sect. 14.6); it is

NV;id D p

kT
D 2:7 � 1025 m�3

(p D 1:013 � 105 hPa, T D 273K, k (BOLTZMANN’s constant) D 1:38 �
10�23 W s/K).

The good agreement of the two number densities verifies RAYLEIGH’s
theory, and with it, the perhaps initially unclear footnote on the pre-
vious page.

Finally, we investigate the connection between RAYLEIGH scattering and
compressibility. The isothermal compressibility (Vol. 1, Sect. 14.9) is:

� D dV

dp
� 1

V
:

For an ideal gas (pV D NkT), the magnitude of � is

� D 1

p
:

With this, we obtain from Eq. (26.14) for the extinction constant K

K D 8�3

3
� ."� 1/2

�4
� �kT

In ideal gases, the product �T D T=p is independent of T, and therefore,
so is K. In real gases, the product �T in the neighborhood of the critical
point becomes very large (Vol. 1, Sect. 15.1), and thus so does K; that
is, the light scattering is strong (“critical scattering”). This illustrates the
importance of local density fluctuations near the critical point (compare
the footnote on the previous page).



Part
II

526 26 Scattering

26.6 The Extinction of X-rays
by Scattering

The extinction of X-rays by scattering depends in general in a com-
plex manner on their wavelength and on the molar mass Mn D M=n
(M is the mass and n the amount of substance) of the irradiated mate-
rial. But here, also, a special case of scattering which is characterized
by great simplicity has been found. It is illustrated in Fig. 26.7.

For this scattering by materials with a small molar mass Mn, there
is a wavelength range in which the extinction constant relative to the
density, K=%, is independent of the molar mass of the scatterer and of
its chemical bonding, where it takes on the practically constant value

K

%
D 0:02

m2

kg
: (26.15)

The scattering in this characteristic wavelength range has led us to
two important physical perceptions: First, we can see that the num-
ber Z of electrons in atoms with moderate molar masses is close
to half as large as the number A of nucleons in their atomic nuclei
(Sect. 26.7). Second, it has provided the possibility of producing and
investigating linearly-polarized X-rays (Sect. 26.8).

26.7 The Number of Scattering
Electrons in Light Atoms

Scattering of short-wavelength X-rays is independent of the bonding
of the atoms in molecules or crystals. This is because for X-rays,
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Figure 26.7 The influence of the wavelength on the scattering of X-rays by
light atoms. On the ordinate, the extinction constant relative to the density %,
K=%, is plotted against the wavelength � as abscissa. Here, K is the extinction
constant from scattering alone. (After measurements by C.W. HEWLETT; the
portion of the total extinction constant due to absorption was subtracted. Mn

is the molar mass of the scatterer).
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only the electrons in the inner shells of the atoms act as scattering
centers. If an atom has Z electrons, then the number density of its
electrons is

NV D Z � NA%

Mn
(26.16)

(NA is the AVOGADRO constant D 6:022 � 1023 mol�1, andMn is the molar
mass D M=n).

The atomic electrons are somehow able to oscillate around the posi-
tive charge which binds them to the nucleus of the atom. The oscil-
lating electric field of the incident radiation excites the electrons to
forced oscillations around their average rest positions. The positive
charge remains at rest, due to the large mass of the atomic nucleus.
The diameter of the electrons is small compared to the wavelength
of the radiation, and their distribution within the atom is on aver-
age statistically disordered. Thus the conditions agree with those for
RAYLEIGH scattering. For the extinction constant due to scattering,
we can again use the equation

K D NV
8�3

3"20
� ˛2 � 1

�4
: (26.12)

Now, however, there is an essential difference: The eigenfrequencies

0 of the bound electrons in light atoms are small compared to the
frequency 
 of X-rays. As a result, their polarizability ˛ is no longer
constant, but rather it increases proportionally to �2. Therefore, K
becomes independent of � in Eq. (26.12). Derivation:

We again put F0 D eE0 into Eq. (26.1) (e is the electronic charge),
but this time, we neglect 
0 as small compared to 
. We thus obtain
for the amplitude of the oscillations of the electrons

l0 D 1

4�2
� e

m
2
� E0 ;

or, after multiplication by the charge e,

e l0
E0

D ˛ D 1

4�2
� e2

m
2
D e2

m
� �2

4�2c2
: (26.17)

On inserting this expression for ˛ into Eq. (26.12), the wavelength �
drops out. The remaining expression is

K D NV
e4

6�"20m
2c4

(26.18)

(K is the extinction constant due to scattering, NV the number density of
the electrons, e the electronic charge D �1:6 � 10�19 A s, m is the elec-
tron’s mass D 9:1 � 10�31 kg, "0 is the electric field constant D 8:86 �
10�12 A s/Vm, and c the velocity of light D 3 � 108 m/s).
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Once more, in words: In the spectral range considered, the extinc-
tion constant K due to scattering of X-rays is independent of their
wavelength; � does not occur in Eq. (26.18). The equation contains
only constants, apart from the number density of the electrons, NV.
Evaluating the constants yields for one electron

K

NV
D 6:6 � 10�29 m2 : (26.19)

With Z electrons per atom, we find from this, also using Eq. (26.16):

K

%
D 6:6 � 10�29 m2 � Z � NA

Mn
;

or, with Mn D Ar� kg/kmol,

K

%
D 0:04 � Z

Ar
� m

2

kg
: (26.20)

Experimentally, however, the measured value (Sect. 26.6) was found
to be:

K

%
D 0:02

m2

kg
: (26.15)

The comparison of (26.20) and (26.15) gives

Z D 0:5Ar : (26.21)

In words, this means that in the inner shells of an atom with a moder-
ate molar mass, the effective number Z of electrons is equal to Ar=2.
(Ar is the quantity relative atomic mass, a pure number proportional
to the atomic mass of each element; formerly, it was called the atomic
weight).C26.8

C26.8. The number Ar corre-
sponds roughly to the nuclear
mass number A, the total
number of nucleons (protons
and neutrons) in the nucleus
of an atom of a given ele-
ment (i.e. a given isotope).
The statement made here
thus means that the num-
ber of scattering electrons is
half as large at the number
of nucleons in the nucleus of
the corresponding atom. In
a neutral atom, the number of
electrons equals the number
of protons in the nucleus (Z),
so this means that in lighter
elements, the number of neu-
trons equals the number of
protons in the nucleus. This
is well known from nuclear
physics.

This fundamental piece of knowledge of atomic struc-
ture is due to J.J. THOMSON (1906).

26.8 Scattering as a Means
of Producing and Detecting
Polarized X-rays

In the visible spectral range, and in the neighboring regions, we can
make use of RAYLEIGH scattering not only for the detection of linear
polarization (Sect. 24.2), but also for producing it.

The polarization of radiation by means of scattering becomes fun-
damentally important only in the X-ray region. There, the other
methods which can be used for ultraviolet, visible and infrared ra-
diation, such as polarization prisms and foils, or reflection polarizers,
can no longer be used. In the X-ray range, scattering is the only
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Figure 26.8 The production and detection of linearly-polarized light by means of scat-
tering. a: Schematic, no tertiary radiation in the direction ˇ. b: A demonstration
experiment with visible light. c: A demonstration with X-rays (analyzer A fixed, po-
larizer P and source can be pivoted together on an arm around the vertical axis. The
X-ray source requires AC at 220V. J is an ionization chamber (Fig. 15.7), V is a static
voltmeter with power supply and a light-beam pointer; L is a lens). A and P are cloudy
water for visible light (compare Fig. 24.4), and for X-rays, they are made of materials
with a small molar mass, for example paraffine. The flat shape is intended to reduce
absorption losses. The openings o, which are not visible in the silhouette, are indicated
by outlines; likewise, an insulating column is shown by shading. Of course, the eye of
the observer at left could be replaced by a suitable radiometer.

method of polarization. However, this holds only in the characteris-
tic wavelength range, as we have seen in Sect. 26.6. The scatterers
which are used for producing and detecting the polarization of X-rays
must contain only atoms of light or moderatemolar mass. Figure 26.8
shows the procedure, both for the visible region and for X-rays.

The polarization of X-rays was detected for the first time in 1905,
thus 10 years after RÖNTGEN’s discovery of X-radiation. It was the
first new characteristic of X-rays, one which was not discovered by
RÖNTGEN himself and not contained in his original publications.
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26.9 The Scattering of Visible Light
by Large, Weakly-Absorbing
Particles

Often, the scattering objects are not small compared to the wave-
length of the light. Then the simple characteristics of RAYLEIGH

scattering no longer apply. For example, the symmetry of the scat-
tered radiation around the direction of the incident light is no longer
present.C26.9C26.9. In order to see this

symmetry in RAYLEIGH-
scattered radiation, imagine
that Fig. 26.4 were extended
to three dimensions, as sug-
gested in the last sentence in
the figure caption.

Instead, we see mainly “forward scattering”, i.e. scat-
tering along the direction of the incident beam of light. For a demon-
stration, small sulfur particles in water are suitable. We use the setup
shown in Fig. 26.9. The glass tube contains a solution of Na2S2O3,
with a small amount of H2SO4 added. This causes sulfur to pre-
cipitate in the form of small, solid suspended particles. The size
of the particles increases in the course of several minutes. During
this process, forward scattering becomes more and more prominent
(Fig. 26.10).

Primary
light beam

Screen with a
matte surface

S

Figure 26.9 Top: The experimental setup for demonstrating scattering (about
1/6 actual size). The primary light beam passes above the matte-surface
screen without touching it. The glass tube S contains suspended particles of
sulfur in water. The screen is illuminated only by the scattered light. Bottom:
The rough symmetry of the scattered radiation from small suspended par-
ticles. The primary light beam (red-filter light) is linearly polarized. Its plane
of oscillation is parallel to the surface of the screen (photographic positive;
cf. Fig. 26.4).

Figure 26.10 The lack of symmetry of the scattered radiation from large
sulfur particles: “forward scattering”, along the direction of the primary light
beam, predominates (the setup is shown in Fig. 26.9, top; the light used is
unpolarized, from an incandescent lamp. This image is about 1/10 actual
size).
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Figure 26.11 The influ-
ence of the wavelength on
the extinction constant of
the suspension of fine sulfur
particles used as scatterer in
Fig. 26.9. Below � D 350 nm,
the sulfur begins to absorb the
light strongly, i.e. the light is
no longer scattered, but in-
stead is converted to heat (see
Sect. 27.13)
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An additional important point is the dependence of the scattering
on the wavelength. For large particles, RAYLEIGH’s law no longer
holds, that is the wavelength dependence of the extinction constant:

K D const � 1

�4
: (26.11)

The exponent becomes smaller and smaller, the larger the scattering
particlesC26.6. In the example shown in Fig. 26.11, K has become
practically independent of �. The eigenfrequency 
0, which depends
on the size of the scattering particles (the “antenna length”), is much
smaller than the frequency 
 of the incident light.

From forward scattering, we continue on to diffraction, when the size
of the particles on which the light is incident reaches the same order
of magnitude as the wavelength of the light. This case can be readily
demonstrated in a model experiment using water waves. The par-
ticles are constructed from individual ‘building blocks’, which are
small steel balls of about 3mm diameter, placed below the surface
of the water. Each of these invisible “obstacles”, when struck by the
primary wave, becomes the source of secondary scattered wavelets.
The wavelets interfere with each other, and this produces a diffraction
pattern from the round particles. Figure 26.12 shows some snapshot
images on the background of the primary waves. When the parti-
cles move or rotate, the well-defined preferential scattering directions
disappear, and the superposition of different diffraction patterns with
different shapes and orientations gives a washed-out diffraction pat-
tern, concentrated along the direction of the incident primary waves.

We could consider the arrangements of the steel balls in Fig. 26.12 a and b
as models for ring- and rod-shaped molecules; the balls themselves would
be the atoms, and the waves would be X-rays. The directional distribution
of the scattered waves, which interfere and are combined into a diffrac-
tion pattern, permits conclusions to be drawn about the structure of these
‘molecules’.C26.10

C26.10. An example of
such an investigation is the
discovery of the double-
helix structure of DNA
(F.H.C. Crick, J.D. Watson,
and M.H.F. Wilkins, in No-
bel Lectures in Molecular
Biology, 1962 (Elsevier, NY
1977), pp. 147–215).
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a b c d

Figure 26.12 A model experiment showing the transition from scattering to diffraction by weakly-absorbing
particles whose diameter is larger than the wavelength. In Parts a and b, the arrangement of the individual
‘building blocks’ (steel balls under the water surface) is shown at the upper left on the same scale as the main
image. In Part c, the balls form a triangular object, and in Part d, it is circular

26.10 Diffuse Reflection from Matte
Surfaces

What we have learned thus far about scattering will allow us to under-
stand diffuse reflection from matte surfaces. Matte surfaces consist
of fine, usually crystalline ‘dust’ particles or fibers (paper!), made of
weakly-absorbing materials. Figure 26.13 shows an example.

We can distinguish three contributions to diffuse reflection:

First, the reflection by numerous extremely small and disoriented
‘mirror surfaces’, which are the boundary surfaces of the crystallites.
The radiant intensity of the light reflected from these micro-mirrors
obeys LAMBERT’s cosine law up to moderate values of the angle of
incidence (Sect. 19.2). Only at large angles of incidence do the di-
rections pointing away from the light source become predominant:
In these directions, the rays from mirrors that were struck at a very
flat angle are concentrated, and, according to FRESNEL’s formulas
(Sect. 25.8), they are more intense than the rays from mirrors struck
at more nearly perpendicular incidence.

10 μm 1 μm

a b

Figure 26.13 Photomicrographs of a matte zinc oxide layer, prepared by con-
densation from the vapor (at left, an optical image using visible light; at the
right, an electron microscope image)
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Figure 26.14 Demonstrating
LAMBERT’s cosine law for scat-
tered radiation from the matte
surface of a piece of chalk

P

R

S

α = 0°

α = 45°

To demonstrate LAMBERT’scosine law in the case of diffuse reflection, we
can use the arrangement shown in Fig. 26.14. The primary radiation P is in
the form of a collimated beam. It grazes a flat ramp R (at the end of a board,
shown as a shaded cross-section) and thereby indicates its direction and
diameter. Then it falls on the matte, planar surface of a piece of chalk (S).
The radiation scattered there by diffuse reflection illuminates the board
and produces a second diffuse reflection. Its rays can be seen directly or
photographed by a camera. Both views are perpendicular to the board.
Chalk exhibits a nearly “ideally-diffuse” reflection: The radiation is itself
still symmetric around the surface normal of the chalk, even when the angle
of incidence ˛ of the primary beam is � 45ı. Paper and porcelain also
produce very diffuse reflections. Their glazing has no effect on this; it only
produces additional specular reflections which remain within the plane of
incidence.

The second contribution to diffuse reflection is a genuine type of scat-
tering, the secondary radiation coming from tiny powder crystallites.
For larger scattering particles, it is confined mainly to the direction of
the incident light and a narrow cone which surrounds it. This forward
scattering is generally directed into the powder layer and produces
multiple scattering by the deeper layers within its interior. This again
obeys LAMBERT’s cosine law for the rays which finally emerge from
the surface. Only when the angle of incidence ˛ becomes large, that
is for grazing incidence, is the direction away from the light source
again preferred (Fig. 26.15).

A third contribution to diffuse reflection comes about because even
matte surfaces act as good mirrors at large angles of incidence. We
offer two examples of this:

Figure 26.15 was obtained using the zinc oxide layer already shown in
Fig. 26.13. It shows the distribution (as a polar diagram) of the secondary
radiation for an angle of incidence of ˛ D 80ı. We can see strong forward
scattering, superposed onto a specular reflection (giving the sharp peak Sp).
The radiant intensity of the light reflected from the matte surface exceeds
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Length of radius =
Intensity of scattered light
Intensity of incident light

Sp

10–4 10–5 10–5 10–4 10–3 10–2

Figure 26.15 The forward scattering from a matte zinc oxide surface, super-
posed onto a specular reflection Sp (H.U. Harten, Zeitschrift für Physik 126,
27 (1949))

Wavelengths of 400–440 mμ
Wavelengths of 400–440 mμ

Figure 26.16 Below, a direct photograph of printed type; above, a reflected
image, after reflection at a grazing angle from a matte glass plate (angle of
incidence ˛ D 89:5ı). Instead of the printed block letters, we could also
image a slit onto a screen with a lens and use a matte glass plate as mirror,
at grazing incidence. With increasing angle of incidence, the screen at first
becomes brighter due to forward scattering. On this bright background, we
see the reflected image of the slit, at first weak and reddish, then becoming
brighter and whiter

that of the scattered light by a factor of around a hundred (logarithmic
scale!).
Figure 26.16 shows two images of the same printed block letters. The
lower one was photographed directly, while the upper was reflected at graz-
ing incidence (˛ D 89:5ı) from a matte glass plate.

The explanation for this mirror-imaging is not hard to find: The
uppermost ‘peaks’ of the crystallites on the matte surface act like
a two-dimensional point grating with statistically-distributed grat-
ing constants. The zeroth order has the same direction for all of
these ‘partial gratings’, i.e. the direction corresponding to specular
reflection. The flatter the incident light beam relative to the surface
(grazing incidence), the smaller the grating constants become, due
to perspective foreshortening. This eliminates the higher orders, and
finally the whole illumination comes from the zeroth-order radiant
intensity diffracted by the grating points.
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Exercises

26.1 In our quantitative treatment of scattering, we mentioned
harmonic oscillators (in Sect. 26.2). Consider a spring pendulum
with a mass m (deflection l, logarithmic decrement ). It is excited
to forced vibrations by a periodic force Fp D F0 cos.2�
t/ (see
Eq. (26.2)). Their amplitude l0 and their phase shift ' are given
by Eqns. (26.1) and (26.3). These two equations are to be derived
from NEWTON’s fundamental equation, F D md2l=dt2 (equation of
motion, Vol. 1, Chap. 4).
a) In a first step, show that the equation of motion for a freely-
vibrating spring pendulum which is damped by a frictional force
FR D �˛ dl=dt that is proportional to its velocity, is solved by the
equation l D l0e�ıt, with ı D .1=2/.˛=m/. Find the relation between
˛ and .
b) Write the equation of motion for forced vibrations, and solve
it using a complex trial solution, l D l0ei.2�
t/. Derive from this
Eqns. (26.1) and (26.3). (See the footnote on complex numbers in
Sect. 25.10).
(For Sect. 26.2)
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Dispersion and Absorption 27
27.1 Preliminary Remark and Overview

of the ChapterC27.1

The refractive index n C27.1. This chapter goes well
beyond the topic of optics
and deals with many partic-
ular details from solid-state
physics. These are intended
to illustrate general applica-
tions of the optical concepts
dispersion and absorption,
which is the goal of this
chapter.

depends on the wavelength � of the radiation;
it exhibits “dispersion”. Dispersion is closely related to the absorp-
tion of radiation, and it, in turn, depends strongly on the wavelength.
In the following Sects. 27.2 through 27.5, we will consider the em-
pirical evidence relating dispersion and absorption. Then we will
treat quantitatively the wavelength dependence of refraction and ab-
sorption. This will show close ties to our quantitative treatment of
scattering in Chap. 26.

27.2 The Wavelength Dependence
of Refraction and Extinction

Let us recall Sect. 25.2: We refer to the extinction constant K and
the extinction coefficient k as the absorption constant and absorption
coefficient when the effects of scattering on the measured extinc-
tion are negligible. The basic facts can be most clearly illustrated
by a graphical representation. To represent the refractive index, we
draw “dispersion curves”. For the extinction, depending on the appli-
cation, we can represent the same measurements in two ways: Either
in terms of the extinction constant K, or, in the case of strong ab-
sorption, in terms of the extinction coefficient k. The latter compares
the average penetration depth of the radiation (i.e. w D 1=K) with
its wavelength, as we have seen in Eq. (25.3). Thus, the extinction
coefficient k naturally has a very different form from the extinction
constant K across the spectrum.

Unfortunately, we have only fragmentary knowledge of both the dis-
persion curves and the extinction curves for most substances. This
lack of knowledge is however minimal for the simplest of solids, the
regular crystals of the alkali halides. Therefore, we begin in Fig. 27.1
with measurements on NaCl (rock salt). We first focus our attention
on its refractive index. In the X-ray region, i.e. � < ca. 5 � 10�8 m,
the refractive indices are all slightly less than 1 (Sect. 27.9). The tiny
deviations from 1 cannot be seen on the ordinate scales of the figures.
In the region of longer wavelengths, the refractive index approaches

537© Springer International Publishing AG 2018
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, https://doi.org/10.1007/978-3-319-50269-4_27
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Figure 27.1 Refraction and extinction (absorption) of light by an NaCl crystal between � D 6 � 10�12 m and
1mm, thus over a range of about 28 octaves.C27.2

C27.2. The abscissa shows
the wavelength, above in cm
and below in (nano, micro,
milli)-meter. On the center
abscissa axis, the associated
quantum energy is quoted
in electron volt (eV), corre-
sponding to E D h
 D hc=�
(h is PLANCK’s constant D
6:626 � 10�34 W s2,
c (velocity of light)
D 2:998 � 108 m/s, 1 eVD
1:602 � 10�19 W s).

The extinction coefficient k reaches significant values only
in two narrow wavelength regions, namely from about 0.04 to 0.2�m and from about 30 to 90�m. In these
regions, the highest values of the ratio �=w are recorded. The smallest penetration depth that occurs, w �
0:01�m, is around 30 times larger than the spacing of the lattice planes in the crystal. The occurrence of the
absorption “edges” ClK etc. in the X-ray region is due to the fact that with increasing wavelength, the energy of
the light quanta is at some point no longer sufficient to knock the electrons out of their inner shells

the square root of the statically-measured dielectric constant ", that
is n D p

" (see Sect. 12.8). In most spectral regions, the refractive
index n increases with decreasing wavelength; the dispersion is then
termed ‘normal’. In some spectral regions, however, n decreaseswith
decreasing wavelength. Then the dispersion is called ‘anomalous’,
i.e. it deviates from the rule.

The distinguished regions in the dispersion curves, that is the regions
where n is varying most rapidly, and those where it has an ‘anoma-
lous’ wavelength dependence, coincide with those regions where the
absorption coefficient k is largest. This is documented in Fig. 27.2
with five additional examples. At the boundary of an absorption
band, the rate of change of the refractive index with wavelength,
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Figure 27.2 Five additional examples of dispersion and absorption. The birefringence of
PbCl2 cannot be seen on the scale of the figure. The values of k for water are magnified by
a factor of 10, as indicated

λ = 405 nm 436 546 578

Figure 27.3 A demonstration experiment illustrating the strong dispersion in
the spectral region just before the steep onset of self-absorption: The vis-
ible part of the Hg line spectrum, obtained under similar conditions with
two different 60ı prisms; below, a prism made from a single crystal of ZnO
(embedded in water), and above, a quartz prism (E. Mollwo, Zeitschrift für
Angewandte Physik 6, 257 (1954))

i.e. its dispersion dn=d�, can become very large. This is shown in
Fig. 27.3 with the aid of a prism made of ZnO.

The relationship between dispersion and absorption can be demon-
strated by an impressive experiment. For this purpose, neither solids
nor liquids are suitable1; we must use vapors, gases or very dilute
solutions. Sodium vapor is most convenient. Figure 27.4 shows
a suitable experimental arrangement. It uses a prism P to project the
continuous spectrum of a sodium-arc lamp onto a horizontal screen.
An iron tube R filled with Na vapor is placed directly behind the
projection lens L1. It has glass windows at each end and is evacu-
ated. Then the sodium is evaporated in the middle of the tube. A low
pressure of H2 gas and air cooling prevent the windows from being
clouded by condensing Na vapor. The vapor produces a strong ex-
tinction around � D 589 nm. The horizontal spectrum is interrupted

1 The justification of this statement will be seen later in Eq. (27.7). n attains high
values only when the difference of the squared frequencies, that is 
20 � 
2, is
very small. In solids and liquids, with their broad absorption bands, this leads into
regions where the material is opaque.
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Cooling water

R R

P

H

C S1
S2

L1
L2

Figure 27.4 A demonstration of anomalous dispersion in Na vapor (A. KUNDT, 1880, improved by
R.W. WOOD, 1904.C27.3

C27.3. See R.W. Wood,
Physical Optics, McMil-
lan Publishers, NY, 3rd ed.
(1934), p. 492.

S1 is a horizontal slit, S2 a vertical slit, and P is a direct-vision prismC27.4).

C27.4. In a “direct-vision”
prism, a combination of
strongly and weakly refract-
ing glasses is employed, so
that at a certain wavelength,
a light beam is not deflected
on passing through the prism.

The
vapor prism (schematic in the inset at upper right) deflects waves with a refractive index of n > 1 downwards,
while waves with a refractive index of n < 1 are deflected upwards. In the example shown in Fig. 27.5 (lower
image), the lower end of the slit S2 is imaged upwards onto the screen. A cylindrical lens between R and S2
improves the visibility

Violet Red

D

Figure 27.5 The anomalous dispersion of Na vapor, demonstrated with the
apparatus in Fig. 27.4 (photographic positives). The absorption bands which
are visible in addition to the D band are due to Na molecules. Because of
their low particle-number densities, they have no noticeable influence on the
refractive index of the vapor.

by an extinction band D (Fig. 27.5, upper image). Here, the contribu-
tion due to absorption is larger than that due to scattering. As a result,
we nearly always speak of absorption bands or lines.

Following this preliminary experiment, not only the ends but also the
upper part of the tube are cooled. This causes the cloud of Na vapor
in the tube to take on a prismatic shape (schematic in the inset at the
upper right in Fig. 27.4). At the hottest point, i.e. at the bottom of
the center of the tube, the density of the vapor is high; upwards and
towards both ends, it decreases. This ‘vapor prism’ leaves most of
the spectrum unchanged. In these unchanged spectral regions, the
refractive index of the Na vapor is practically equal to 1. On both
sides of the absorption band, however, the light is deflected verti-
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cally. On the red side, the deflection is downwards on the slit S2, that
is the refractive index is > 1. On the violet side of the band, the de-
flection on the slit S2 is upwards, that is the refractive index is < 1.
The spectrum thus forms a colored curve consisting of two branches
(Fig. 27.5, lower image).C27.5 C27.5. A colored image

can be found in the book
by R.W. Wood; see Com-
ment C27.3.

The shape of this curve corresponds to
the dispersion curve of Na vapor on both sides of the extinction (ab-
sorption) band. The section of the curve within the band is missing.
It can be seen only with moderate absorption and then only by direct,
subjective observation.

27.3 The Special Status of the Metals

We return to the important Fig. 27.1. The smallest values of the ex-
tinction constant K, i.e. the greatest penetration depths w, can be
found in the visible and the neighboring spectral regions, in particu-
lar in the infrared. In these regions, the mean penetration depth can
be up to many meters and greatly exceeds those for all other radia-
tions, in particular for X-rays. An exception to this rule is provided
by the metals. This is shown in Fig. 27.6 for silver. The figure spans
a wavelength range of 16 orders of magnitude.

The extinction constant K has very high values over the entire in-
frared and visible spectral regions; the extinction processes acting
there extend into the ultraviolet. Details will be given in Sect. 27.17.

Values for n and k are shown for two important metals in Fig. 27.7.
The absorption coefficients k increase to high values from the ultra-
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Figure 27.6 The extinction (absorption) spectrum of a metal (silver) between � D 10�13 m (0.1 pm) and � D
1 km (the scale of the abscissa is half that of Fig. 27.1). The gap in the extinction curve for NaCl as seen in
Fig. 27.1 between 0.2�m and 20�m is not present in this curve. The small minimum ˛ at � D 0:32�m is by
no means comparable to that gap. The mean penetration depth w attains a value of only 50 nm here. The points
marked with ‘x’ are calculated. For Al, the minimum of the extinction constant is at � D 6 � 10�14 m. There, the
penetration depth 1=K D w D 17 cm. (Upper scale: 1 eV D 1:602 � 10�19 W s)
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Figure 27.7 The optical con-
stants n and k for silver and
copper. The scatter among
the values is still rather large,
even in the best measurement
series available today. Fur-
ther examples are given in
Fig. 27.22.
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violet towards longer wavelengths. At � D 4�m, for example for
silver, we find k � 30. The mean penetration depth w here is thus
equal to 1

400�. The smallness of the refractive index n is also often
notable in metals. For silver, it decreases to 0.16. Thus, the phase
velocity increases up to nearly 20 � 108 m/s instead of only 3 � 108 m/s
for light in vacuum.C27.6

C27.6. The phase velocity
of light within materials can
indeed become higher than
the vacuum velocity of light,
c. This does not mean that in-
formation can be transferred
at a velocity faster than c.
For information transfer, the
group velocity is the deci-
sive quantity (see Sects. 23.3
and 12.11), and as we have
seen, it is always less than c.

27.4 ‘Metallic’ Reflectivity

For the reflectivity R at perpendicular incidence, we can apply
BEER’s formula:

R D .n � 1/2 C k2

.n C 1/2 C k2
: (25.37)

If the summand k2 is predominant in the numerator and the denom-
inator, then we observe the high reflectivity (R � 1) which is char-
acteristic of materials with metallic bonding in the visible spectral
region (Sect. 25.11). Figure 27.8 shows some examples which are of
practical importance (more on this in Sect. 27.17). Metallic bonding
is however by no means the only reason for very large values of the
absorption coefficient k. Values of k on the order of 1 in the ultravio-
let can be found for the majority of solid and liquid substances. Some
examples are given in Fig. 27.2. In the case of dyes, e.g. cyanine or
brilliant green (see Table 25.1), and for some semiconductors, the ab-
sorption coefficient k attains large values already in the visible. As
a result, some semiconductors such as germanium, silicon, stibnite
(Sb2S3) etc. are indistinguishable from metals to the unaided eye.
However, the semiconductors lack the large absorption coefficients
in the infrared which are characteristic of substances with metallic
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Figure 27.8 The wavelength dependence of the reflectivities of gold, silver,
and rhodium. Rhodium is particularly suitable for mirror surfaces without
glass protection, due to its chemical inertness. In addition, thin, transparent
rhodium mirrors attenuate all the wavelength regions of the visible spectrum
(400 to 700 nm) to practically the same degree (they act as “grey filters”). In
the minimum at � D 316 nm, R D 4:2% for silver. The values for the alkali
metals are still smaller: at � D 254 nm, R D 2:6% for potassium and � 1%
for rubidium and cesium.

bonding, and which are caused by their special type of electronic
conduction (Sect. 27.17).

In the case of germanium, for example, k is already vanishingly small
at � D 3�m. Thus, blocks of germanium a few cm thick look like
pieces of metal. Nevertheless, they are transparent to infrared radi-
ation, apart from the considerable reflection losses due to their large
refractive index of n D 4.

This can be demonstrated by a very surprising experiment. It makes
use of the setup shown in Fig. 25.1, and shows quite clearly that
whether metallic bonding is present or not can never be determined
by the unaided eye; only absorption measurements in the infrared are
conclusive.

Finally, crystals with typical ionic bonding, such as the alkali-metal
halides, exhibit extreme values of n and k in the infrared (compare
Fig. 27.1, bottom). As a result, such crystals have a rather large re-
flectivity there. Figure 27.9 shows four examples. The wavelength
scale is three times larger than in Fig. 27.1. These reflectivity max-
ima are called residual rays. Their position is determined by both n
and by k. Therefore, their maxima are only approximately at the same
positions as those in a plot of the absorption coefficient k.

The unusual name ‘residual rays’ is related to the method of their first
observation. HEINRICH RUBENS (1865–1922) passed the radiation from
an incandescent light heated by a gas burner back and forth several times
with reflections between two crystal plates and then detected it using a ra-
diometer (radiation thermopile). The remaining (“residual”) rays consisted
of practically only those waves from the spectral regions of the reflection
maxima. These “residual rays” are absorbed by thin mica or glass plates,
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Figure 27.9 Residual rays exhibited by four alkali-metal halide crystals (the
bands are not simple Gaussian curves, in contradiction to earlier reports)

but can pass through thick layers of paraffine, etc. (This is readily shown as
a demonstration experiment, most simply using thin slabs of LiF or CaF2).

27.5 The Penetration Depth of X-rays

The penetration depths of X-rays are greater than those of visible
light only in metals (Fig. 27.6). In all other materials (for example
NaCl; cf. Fig. 27.1), X-rays do not have anything like the enormous
penetration depths which are observed with light from the visible and
the neighboring infrared spectral regions.

The importance of X-rays for medical and technical applications is
however not based on their great penetration depths, but rather on
something quite different: The refractive index for X-rays is very
close to 1 (Sect. 27.9). As a result, X-rays experience no diffuse
reflection in cloudy, inhomogeneous materials such as muscle tissue,
bones, wood etc. They are unaffected by the innumerable bound-
aries between the individual components of inhomogeneous materi-
als. Visible light, in contrast, with refractive indices of about 1.5,
is exceedingly sensitive to internal boundary surfaces. The ‘head’
on light Pilsner beer is“The ‘head’ on light Pilsner

beer is quite opaque to vis-
ible light, but completely
transparent to X-rays”.

quite opaque to visible light, but completely
transparent to X-rays.

The lack of diffuse reflection in the X-ray range does not imply that there
is no scattering there (see Sects. 26.6–26.8). Scattering plays a significant
role even for hard X-rays (� < 10�11 m). It is caused in this spectral
region by the COMPTON effect (see for example the 13th edition of “Op-
tik und Atomphysik”, Chap. 17. English: See e.g. hyperphysics.phy-
astr.gsu/hbase/quantum/comptint.html or https://en.m.wikipedia.org/
wiki/Compton_scattering), and at still shorter wavelengths, by nuclear
processes as well.

hyperphysics.phy-astr.gsu/hbase/quantum/comptint.html
hyperphysics.phy-astr.gsu/hbase/quantum/comptint.html
https://en.m.wikipedia.org/wiki/Compton_scattering
https://en.m.wikipedia.org/wiki/Compton_scattering
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27.6 The Explanation of Refraction
in Terms of Scattering

From reading Sects. 27.2 through 27.5, we are now familiar with
the more important empirical facts about refraction and extinction.
Here, we want to interpret them and describe them quantitatively. In
Sects. 27.6 through 27.11, we treat refraction; and in Sects. 27.12
through 27.21, we deal with that part of the extinction which is due
to absorption.

We return to Fig. 26.12 d. There, the model scattering object is trans-
parent. We can follow the course of the waves within it, although
with some difficulty. We observe a picture like the one sketched in
Fig. 27.10: The waves propagate more slowly in the region where
secondary-wave sources are present than outside the object; the wave
crests are noticeably delayed within the object. Or, expressed differ-
ently, the circular region has acquired a refractive index unequal to 1
due to the presence of secondary-wave sources in its interior. This ba-
sic fact will be verified by an impressive demonstration experiment.

The best-known effects of refraction are exhibited by lenses. Thus, in
Fig. 27.11 a, we show a group of “secondary-wave sources” arranged
in a lens-shaped pattern. The scattering “atoms” are again small steel
balls below the surface of the water in a wave trough. They are dis-
ordered, and their diameters and spacings are again smaller than the
wavelength. In Fig. 27.11 b, water waves with straight wavefronts
pass at a small angle of inclination through a wide slit. The slit cuts
out a collimated (parallel-bounded) beam of waves; diffraction can
be clearly seen.

In Fig. 27.11c, the “lens” has been placed in the opening of the slit.
The result is that the previously collimated wave beam is now fo-
cussed onto an image point. Now, there can be no further doubt:
The waves pass through the region containing secondary sources with
a reduced phase velocity. The region with secondary sources has a re-
fractive index n. We compute it using the elementary lens formula

.n � 1/
2

R
D 1

f 0 (16.12)

(R is the radius of the lens surface; in Fig. 27.11a, R D 7 cm and f 0 �
8:5 cm)

and obtain n D 1:4.

Figure 27.10 The occurrence of a phase shift due to sec-
ondary waves (sketched from Fig. 26.12d)
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a

b c

Figure 27.11 Water waves exhibit the occurrence of refraction through phase-shifted secondary waves

The explanation is readily found. The waves which propagate within
and behind the lens are the resultants of all the secondary waves
which are produced by scattering, together with the primary waves.
The primary waves generate secondary waves, and these generate ter-
tiary waves, etc. The resultant waves have an overall phase velocity
which is less than that of the individual wave components. There-
fore, each individual secondary wave produced by scattering must
have a negative phase shift ı0 relative to the primary waves. The
phase shift ı0 of the secondary waves generated by scattering causes
the refraction.

27.7 The Qualitative Interpretation
of Dispersion

The wavelength dependence of the refractive index n exhibits a very
characteristic form in the neighborhood of certain distinguished
wavelengths or frequencies (Figs. 27.1 and 27.2). We repeat it
schematically in Fig. 27.12. This dependence of the refractive index
on the wavelength or the frequency is readily interpreted in a quali-
tative way. To this end, we turn again to our model experiments with
mechanical waves.

In Fig. 27.11, the secondary-wave sources consisted of small rigid
balls beneath the surface of the water. Now, imagine that these
secondary-wave sources are replaced by objects capable of vibra-
tions, i.e. resonators; for example, by “breathing spheres” (Vol. 1,
Sect. 12.25). Their eigenfrequency is denoted by 
0. The incident
primary waves have a frequency of 
 and excite the resonators to
forced oscillations. Then both the forced amplitudes l0 and also the
phase differences between the resonators and the primary waves are
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Figure 27.12 Schematic
of a dispersion curve in the
neighborhood of an opti-
cal eigenfrequency (band
maximum; the points ˛
to " correspond to the im-
ages A�E in Fig. 27.13;
see the text)
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Figure 27.13 The occurrence of disper-
sion as a result of phase-shifted secondary
waves (the time increases in the clockwise
sense)
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determined by the ratio 
=
0 (Sect. 26.2, see also Vol. 1, Fig. 11.42).
Furthermore, the amplitude of each secondary wave is shifted rela-
tive to the amplitude l0 of the secondary-wave source by �90ı2.

We thus arrive at the simple vector diagrams shown in Fig. 27.13 A–
E. The notation there is:

Ep is the amplitude of the primary wave;

l0 is the amplitude of the forced oscillations; their relative values can
be read off from Fig. 11.42 in Vol. 1 (e.g. for  D 1);

ı is the phase angle between l0 and Ep; it can likewise be read off
from Fig. 11.42 in Vol. 1 (with  D 1);

Es is the amplitude of the secondary waves emitted by the resonators;

Er is the resultant wave amplitude from the superposition of the pri-
mary and secondary waves; and

ı0 is the phase angle between Er and Ep. The time and the phase
angles ı and ı0 are taken as positive in the clockwise sense in the
diagrams.

2 This is a simplifying hypothesis. In fact, this phase difference of �90ı results
from the summation of all the secondary waves along the path of the primary
waves.
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In Part A of Fig. 27.13, 
 � 
0 and ı is very small. ı0 takes
on a small negative value. This means that the resultant waves are
slightly delayed relative to the primary waves, or the refractive index
n is somewhat larger than 1. It is drawn in Fig. 27.12 as the point ˛.

In Part B, 
 < 
0, e.g. 
 D 1
2
0; ı has increased to around �15ı.

ı0 remains negative, but its magnitude is larger. This means that the
refractive index n is also larger: Point ˇ in Fig. 27.12.

In Part C, 
 D 
0, that is ı D �90ı. The resultant amplitude Er (the
difference Ep � Es) has the same direction as Ep. Then ı0 D 0 or
n D 1 (Point � ).

In Part D, 
 > 
0, e.g. 1:25 
0, and ı D �140ı. Then, ı0 takes
on a positive value. The resultant amplitude Er leads the primary
amplitude Ep. This means that the refractive index is smaller than 1
(Point ı).

Finally, in Part E, 
 � 
0, and ı is almost �180ı. ı0 has remained
positive, but its magnitude has decreased; n is approaching the
value 1, but is still smaller than 1 (Point ").

Figure 27.12 illustrates a typical dispersion curve. It exhibits qual-
itatively the same features as the curves observed in optical exper-
iments. The distinguished wavelength (point � ) corresponds in the
optical measurements to the maximum of an extinction band.

27.8 A Quantitative Treatment
of Dispersion

Quantitatively, the treatment in the previous section is rather unsatis-
factory. In particular, it distinguishes only the exciting primary wave
from the excited secondary waves. In reality, however, the secondary
waves for their part excite tertiary waves and so forth. Only the en-
tirety of all these waves finally leads to the resultant. The summation
is computationally not simple, but it can be carried out. In general,
however, one avoids that difficulty by using the following procedure:

We assume that per molecule3, there is one oscillating, bound elec-
tron; its eigenfrequency is denoted by 
0. It can undergo forced
oscillations under the action of a periodic force of amplitude F0 D
e � E0. Its oscillation amplitude l0 is found from Eq. (26.1) to be pro-
portional to E0, the amplitude of the primary waves, and inversely
proportional to the mass m of the electron and furthermore depen-
dent on the frequency 
 of the primary waves. An oscillating dipole
is thus produced, and its electric dipole moment has the amplitude

p0 D e � l0 D E0
e2

m
f .
/ (27.1)

3 Here, as always, ‘molecule’ refers to the smallest independent unit; this could
often be also atoms or ions.
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(the frequency-dependent expression f .
/ follows from a comparison
with Eq. (26.1)).

The quotient

p0
E0

D e2

m
f .
/ D ˛ (27.2)

is the electric polarizability of the molecules (see Sect. 13.9) at the
high frequency of the light waves.

In our discussion of RAYLEIGH scattering, it was assumed that

 � 
0. This made the polarizability ˛ independent of the excit-
ing frequency (Sect. 26.5). Therefore, ˛ could be computed from
the statically measured (i.e. at 
 D 0) dielectric constant ". In
Sect. 26.5, we used the CLAUSIUS-MOSSOTTI equation for this
purpose (Eq. (13.28)):

p

E
D ˛ D 3"0

NV

�
"� 1

"C 2

�
(27.3)

("0 is the electric field constant, and NV is the number density of the polar-
izable molecules).

It takes into account the influence of the surroundings on the polariz-
ability of the molecules.

Now, we follow the reverse path. We drop the limitation 
 � 
0
and thus make ˛ dependent on 
 (Eq. (27.2)); we insert the ˛ val-
ues into Eq. (27.3) and then calculate for each value of the exciting
frequency 
 a particular value of ". Thus we obtain a dielectric “con-
stant” which depends on the frequency 
.

Finally, we come to the decisive step: According to MAXWELL, for
long-wavelength electromagnetic waves (Sect. 12.8),

n D p
" I (27.4)

here, " refers to the statically-measured dielectric constant, i.e. at 
 D
0.

We now apply this same relation to light waves, but at every fre-
quency 
, we use the frequency-dependent dielectric constant espe-
cially calculated for that frequency, in order to compute the refractive
index n for light of the frequency 
. In this manner, the dependence
of the refractive index n on 
 or � can be quite satisfactorily repro-
duced.

We will now carry out this plan quantitatively. We again take
Eq. (27.1) for the induced dipole moments of the molecules, but actu-
ally compute l0 using Eq. (26.1). We avoid the frequency range close
to the eigenfrequencies 
0; the regions 
 < 0:7 
0 and 
 > 1:4 
0
suffice. In these regions, the forced deflections l0 are practically
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independent of , the logarithmic decrement ( 	 1). Thus, we can
neglect the second summand in the denominator and obtain

l0 D 1

4�2
� e

m
E0

1


20 � 
2 (27.5)

or

˛ D e l0
E0

D p0
E0

D 1

4�2

e2

m
� 1


20 � 
2 : (27.6)

This value of the frequency-dependent polarizability ˛ is now
inserted into Eq. (27.3). We write n2 in place of the frequency-
dependent " and finally arrive at:

n2 � 1

n2 C 2
D 1

12�2"0

e2

m
� NV � 1


20 � 
2 D 26:9
m3

s2
� NV

1


20 � 
2
(27.7)

("0 is the electric field constant D 8:86 �10�12 A s/Vm, e D 1:6 �10�19 A s,
m is the mass of the electron D 9:11 � 10�31 kg, and NV is the number
density of the polarizable molecules).

Equation (27.7) assumes that there is only one eigenfrequency 
0
and one electron per molecule. In reality, each molecule possesses
a whole series of optical eigenfrequencies (numbered by the index i)
and often also several effective electrons (number denoted by b).
Thus, we must write a sum in place of Eq. (27.7), namely

n2 � 1

n2 C 2
D 26:9

m3

s2
NV

X
i

bi

20i � 
2 : (27.8)

This dispersion formula 4 is well fulfilled for gases and vapors, of
course apart from the regions of their eigenfrequencies 
0. For liquids
and solids, it is however nothing more than a useful interpolation for-
mula. Table 27.1 contains a numerical example for rock salt, NaCl.

The discrepancies between the calculated and the observed values is
never greater than 5 units in the third place after the decimal point,
although only a single eigenfrequency 
0 D 2:85 � 1015 Hz was em-
ployed. It corresponds to the wavelength �0 D 0:105�m. It could

Table 27.1 The dispersion of NaCl between � D 0:3�m and 5�m
(Fig. 27.1)
(NV D 2:28 � 1028 ion pairs/m3, b D 4, i D 1, 
0 D 2:85 � 1015 Hz > 
)
� in �m 0.3 0.4 0.5 0.7 1 2 5
n measured 1.607 1.568 1.552 1.539 1.532 1.527 1.519
n computed from Eq. (27.8) 1.610 1.567 1.550 1.535 1.528 1.522 1.521

4 The quotient n2�1
n2C2

D R0 is known as the refraction.
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be called the “center of gravity” of the k curve in the ultraviolet
(Fig. 27.1). Of course, by using i D 3 or 4, we could improve the
agreement between the calculation and the measurements even fur-
ther; but that would be rather unproductive.

27.9 Refractive Indices for X-rays

As an additional test of the dispersion formula (Eq. 27.8), we
determine the refractive index for X-rays. With X-rays, the chem-
ical bonding of atoms into molecules plays practically no role
(Sect. 27.12). NV in Eq. (27.8) thus refers to the number density
of the atoms, i.e.

NV D NA%

Mn

(NA is the AVOGADRO constant D 6:022 �1023 mol�1, andMn is the molar
mass,M=n).

Furthermore, b is the number of all the electrons in an atom, b D
˙bi. This number is the same as the atomic number Z, which can
be expressed in terms of the molar mass Mn D Ar kg/kmol (see
Sect. 26.7); for atoms whose molar mass is not too large, Z D 0:5Ar

(Eq. (26.21)). Therefore,

NVb D Number of electrons

Volume
D 0:5 � 6:022 � 1026 1

kg
% :

In addition, we consider only one resonance frequency 
0; and finally,
for hard X-rays, 
0 � 
. Using 
 D c=�, we obtain from Eq. (27.8)

n2 � 1

n2 C 2
D 26:9

m3

s2
NVb

.�
2/ D �0:81 � 1028 m3

s2kg
%
��
c

�2
: (27.9)

Numerical example: % D 104 kg/m3 and � D 10�10 m, refractive index
n D 0:999986, thus somewhat less than 1. This is confirmed by observa-
tions; see Sect. 27.2.

The dispersion equation (27.8) thus encompasses the whole spectrum
from the infrared up to the X-ray region. It also functions in the
region of the longest waves; however there, we must take into account
not only the secondary radiation from electrons, but also that from
ions or from still larger objects.

27.10 The Refractive Index and the
Number Density. Light Drag

We have interpreted refraction in terms of the secondary radiation
from the irradiated molecules, and thus obtained the dispersion for-
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Table 27.2 The electric polarizability ˛ of single molecules in AC fields at the frequency of yellow light,

 D 5:1 � 1014 Hz, calculated using Eqns. (27.3) and (27.4). Compare the values determined here for ˛ with
those found for low frequencies in Table 13.5.

Substance Mass
density %
in kg

m3

Number density
of molecules NV

in m�3

Measured refrac-
tive index n
at �D 589 nm

Refraction

R0 D n2 � 1

n2 C 2

Molecular polariz-
ability ˛
in A sm

V=m

O2 liquid, �183ıC 1130 2:14 � 1028 1.222 1:41 � 10�1 1:77 � 10�40

O2 gas, 0ıC and
1:013 � 105 Pa

1.43 2:69 � 1025 1.00027 1:82 � 10�4 1:78 � 10�40

Water, liquid 1000 3:36 � 1028 1.334 2:06 � 10�1 1:64 � 10�40

Water vapor, 0ıC,
referred to
1:013 � 105 Pa

0.805 2:69 � 1025 1.000255 1:7 � 10�4 1:68 � 10�40

mula (Eq. (27.8)). It provides two kinds of information: First, it
describes the dependence of the refractive index n on the light fre-
quency 
. That was shown in Sects. 27.7–27.9. Second, it describes
the influence ofNV, the number density of the molecules, on the value
of the refractive index. We want to consider this point in more detail.
To that end, we take 
 to be constant, and thus consider observations
using monochromatic light.

For gases and dilute solutions5, n is nearly equal to 1, and thus the
refraction R0 D .n2 � 1/=.n2 C 2/ is nearly equal to 2

3 .n � 1/. Then,
instead of Eq. (27.8), we have

.n � 1/ D const � NV ; (27.10)

i.e. in gases, (n � 1) is proportional to the number density, and in
solutions, it is proportional to the concentration. Or, expressed dif-
ferently, each molecule makes its contribution to the refractive index
independently of all the other molecules. This relation between the
refractive index and the gas density is well suited for demonstration
experiments. An experiment for a teaching laboratory was illustrated
in Fig. 20.31.

The independent contributions of the individual molecules to refrac-
tion remains valid even for the gas � liquid transition, that is in spite
of a change in density of around 1:1000. In Table 27.2, we have listed
some numerical examples, both for the refraction R0 as well as for the
electric polarizability ˛ which is derived from it. Both quantities are
thus to a large extent independent of the aggregate state (solid, liquid,
gaseous) and of chemical bonding.

A strange effect, called the “drag of light”, was predicted in 1818 by
A. FRESNEL and found in 1851 by A.H.L. FIZEAU: The propagation
of a light wave is influenced by the motion of the molecules. A liquid

5 In solutions, n D nsolution
nsolvent

, and it thus represents the refractive index that is due

solely to the dissolved molecules.
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which is moving in the direction of the light propagation at the ve-
locity u has a smaller refractive index for an observer at rest outside
the liquid, i.e. the velocity of the light is greater than for the same
liquid at rest. The velocity u of the liquid thus changes the phase
velocity c=n of light within the liquid, but not by its full magnitude
˙ u; instead, by approximately˙ u .1�1=n2/. (The experimental ar-
rangement is the same as shown in Fig. 20.31, except that both light
beams pass through chambers filled with water flowing in opposite
directions.)

We can understand the ‘light drag’ qualitatively from Eq. (27.8): The
number density NV of the molecules acted upon by the light increases
when the liquid is flowing towards the light source, and vice versa.
Quantitatively, the drag is calculated from the LORENTZ transforma-
tions in the special theory of relativity.

27.11 Curved Light Beams

The refractive index which holds for a particular monochromatic ra-
diation depends on the number density NV of the active molecules
(Eq. (27.8)). This density can be varied continuously within a certain
volume, thus producing a gradient in the refractive index. In such
a volume, curved light beams can be observed, as seen for example
in Fig. 27.14. The boundaries of curved beams as well as their axes
are drawn as curved light rays. In general, the radius of curvature of
a ray changes along its path. At each position x, we have

r D n

dn=dr
(27.11)

.derivation in Fig. 27.15/:

Here, dn=dr is the gradient of the refractive index at the position x in
a direction perpendicular to the beam.

Experimentally, gradients in the refractive index can be produced by
concentration gradients in solutions. The most suitable method is

Figure 27.14 A curved light beam in a liquid with a vertical, approximately
linear gradient in its refractive index. The fanning-out of the beam at the right
is due to dispersion: The path of the waves with the shortest wavelengths is
the most strongly curved (this is also a model experiment for the appearance
of the “green flash” (see below)) (Video 27.1).

Video 27.1:
“Curved light beams”
http://tiny.cc/wfggoy
A laser is used as light
source, so that there is no
fanning-out of the beam due
to dispersion. To produce
the gradient in the refractive
index, seven layers of sugar
solution, each 1 cm thick and
with decreasing concentra-
tion, were laid on each other.
While each layer was being
poured, a thin cork sheet was
used to keep mixing to a min-
imum.

http://tiny.cc/wfggoy
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Figure 27.15 The derivation of
Eq. (27.11). The three arrows indi-
cate the tipping of the wave crests at
their ends. The optical path lengths
are given according to Eq. (16.5) by
ds1 � .n � dn/ D ds2 � n. Furthermore,
from the sketch, we can see the geo-
metrical relation ds1 D d' � .r C dr/,
ds2 D d' � r. Combining the three
equations leads to Eq. (27.11).

Gradient of the refractive index, dn
dr

ds1(n – dn)

ds2·n

dr

r

dφ

Figure 27.16 A light beam with a wavy shape. The refractive index has its
maximum value at the center of the tank. Below is a saturated alum solution
with a density of 1:04 g/cm3. Above it is a glycerine/alcohol mixture, roughly
1:1, of density 1:01 g/cm3. At the top is water with ca. 10% alcohol, density
0:98 g/cm3. All the solutions contain quinine sulfate and sulfuric acid, and
their boundaries were smeared out by several hours of diffusion. The recipe
is due to R.W. WOOD.C27.7C27.7. See R.W. Wood,

Physical Optics (McMillan
Publishers, NY, 3rd edition
1934), p. 90. to use two liquids which are completely miscible, and to add them

in layers with appropriately chosen compositions. The boundary
surfaces which are initially present between the layers are rapidly
smeared out by diffusion. In this way, an approximately linear gra-
dient in the refractive index was produced in Fig. 27.14. At the
bottom of the tank is pure carbon disulfide (n D 1:63); at its top,
pure benzene (n D 1:50), and the transition between the two con-
sists of around 10 layers, each 1 cm thick. The light beam is most
strongly curved at its highest point, i.e. its radius of curvature r has
its minimum value there. This corresponds to Eq. (27.11): At the
top of the curve, the gradient of the refractive index in the direction
perpendicular to the direction of the light beam is maximal.

In Fig. 27.16, the gradient in the refractive index is also vertical, but
it changes its sign in the center of the tank. In this way, we can
demonstrate a light beam with a wavy shape.
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Figure 27.17 The lens action of
a cylindrically-symmetric gradient in the
refractive index (‘snapshot’). Top: The
cross-section of the arched rectangular
piece of sheet metal under the water

α

Radially-symmetric gradients in the refractive index, some with
cylindrical symmetry and some with spherical symmetry, play an
important role in the eyes of animals. The most prominent exam-
ple are the compound facette eyes of insects in their various forms.
However, even in the lenses of the eyes of vertebrates, there are also
gradients in the refractive index in combination with the curvature of
the lens surfaces. Strictly considered, “Strictly considered, in

a sketch of the human eye,
one should draw curved
light rays within the eye’s
lens”.

in a sketch of the human eye,
one should draw curved light rays within the eye’s lens.

Owing to its importance, we want to translate image formation
with curved light rays into the wave picture. To this end, we show
a model experiment with water waves in Fig. 27.17. We start from
Fig. 27.11 b and set a flat, rectangular, cylindrically-arched piece of
sheet metal under the surface of the water, between the two sides of
the slit. Its cross-section is sketched in Fig. 27.17 (top). Its long axis
is set perpendicular to the slit; this gives a shallow-water area of rect-
angular shape and variable depth. The depth of the water is smallest
in the center at ˛, and greatest at the side edges. As a result, the
waves propagate more slowly in the center than at the edges (Vol. 1,
Eq. (12.36)). They are convergent when they leave the rectangular
area and are focussed at an image point (Fig. 27.17 (bottom)).

Gradients in the refractive index with spherical symmetry play an
important role in astronomical observations. We mention just one
example. The density of earth’s atmosphere decreases on going up-
wards from the surface. A light beam which is incident tangential to
the earth’s surface arrives at the eye of an observer on a curved path.
The sun, when it seems to just touch the horizon, has actually already
set; the “atmospheric ray refraction” causes it to appear too high by
32minutes of arc. This means that a surprising effect can occur dur-
ing an eclipse of the moon: We can see the sun and the darkened
moon opposite to each another, both just above the horizon, at the
same time.

At sunset, especially at sea, one can sometimes see the last part of
the disappearing disk of the sun flash brightly with a green color.
This phenomenon, known as the “green flash”, can be explained by
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the stronger curvature of the optical path for short-wavelength light
(Fig. 27.14) (and not by a contrast effect in the eye of the observer).

The gravitational field of the earth is only indirectly involved in the
phenomenon of atmospheric ray refraction. Together with the ther-
mal molecular motions, it produces the density gradient of the gas
molecules and thus the gradient of the refractive index in the atmo-
sphere.

Surprisingly, however, gravitational fields alone can also produce
a gradient in the refractive index even in empty space, without any
interacting molecules. The light from the stars is subject to a deflec-
tion of about 1.75 seconds of arc near the disk of the sun (it is visible
only during total solar eclipses).

Half of this deflection, that is 0:8800 , was already explained in 1801 by
J. G. v. SOLDNER: Light rays in gravitational fields act like projectiles
emitted from the stars at a velocity of u D 3�108 m/s. They propagate along
hyperbolic paths. The other half of the observed deflection was predicted
by A. EINSTEIN with his general theory of relativity.C27.8

C27.8. EINSTEIN also
initially (1911) obtained
a similar value to that of
v. SOLDNER due to the
relativistic time dilation.
However, after his theory was
completed in 1915, now con-
taining also a spatial dilation,
he predicted an overall light
deflection of 1.75 seconds
of arc. This value was then
confirmed by observations
during the solar eclipse of
1919. See e.g. H. v. Klueber,
“The determination of Ein-
stein’s light deflection in the
gravitational field of the sun”,
Vistas in Astronomy, Vol. III,
p. 47 (1960).

27.12 The Qualitative Interpretation
of Absorption

We begin by looking back at Figs. 27.1 and 27.2. The extinction spec-
tra consist in general of a number of individual bell-shaped bands.
As a rule, they are not completely separated from each other, and of-
ten, single narrow bands merge together to give broad “unresolved”
bands.

We note for a preliminary overview: In the region of hard X-rays, the
extinction spectra are determined only by the atoms. They consist of
the sum of the extinction spectra of all the atoms involved. Chemical
bonding and the aggregate state have practically no influence. Our
conclusion: The extinction of the radiation occurs in the innermost
electronic shells of the atoms, which are protected from the influence
of their surroundings.

In the region of soft X-rays, chemical bonding begins to make itself
felt, along with the aggregate state: Crystals exhibit new bands which
are lacking in the spectra of individual molecules. We conclude that
now, the middle and outer electronic shells of the atoms play an im-
portant role; they are no longer impervious to influences from the
surroundings of the atoms.

In all of the remaining spectral regions, from the ultraviolet through
the visible to the infrared, the extinction spectra of the atoms depend
to a large extent on the aggregate state of the material. Furthermore,
bonding of the atoms into molecules gives rise to new, additional
bands. Conclusion: Here, the extinction is produced by processes in
the outermost electronic shells, which are also responsible for chem-
ical bonding, formation of the liquid phase and of crystal structure.
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Dispersion curves can be explained in terms of forced oscillations:
We assumed that electrical resonators were present in the interior
of the molecules. Their eigenfrequencies 
0 coincide with the fre-
quencies of the maxima of the absorption bands. Given these cir-
cumstances, we are led almost inevitably to an explanation of the
absorption process: The damping of the resonators consumes a part
of the energy of the incident light and converts it into other forms
of energy, e.g. into heat. Here, again, we offer a simple analogous
example from mechanics:

A glass “A glass filled with white
wine makes a clear ring-
ing sound when clinked
with another glass . . . But
a glass filled with cham-
pagne cannot be made to
ring by clinking”.

filled with white wine makes a clear ringing sound when
clinked with another glass. The glasses and their contents are subject
to oscillations (standing waves). These are formed by the superposi-
tion of travelling waves which are constantly reflected from the walls.
A glass filled with champagne, in contrast, cannot be made to ring by
clinking it with another glass; champagne contains bubbles of gas.
They themselves also act as resonators: They are excited to forced
oscillations by the waves. Their damping consumes the energy of the
waves.

27.13 A Quantitative Treatment
of Absorption

In Sect. 27.12, we gave a qualitative explanation of absorption. It is
supported by the shape of single absorption bands, i.e. those that are
well separated from neighboring bands. They often exhibit a notice-
able similarity to the energy-resonance curves of forced oscillations
(Vol. 1, Fig. 11.44). There, the ordinate is a measure of the kinetic
energy stored in the resonator, or the average power consumed by the

damping, PW
 .

The quantitative treatment is closely related to that in Sect. 26.5. We
again assume that the electric resonators are dipoles. We initially
make no assumptions about their nature. Their number density is N 0

V.
The incident light is again taken to be in the form of a collimated
beam. The absorbing substance is in a dilute solution and the solvent
has a refractive index of n.

In a segment of the beam of length �x and cross-sectional area A,
there are N 0

VA�x damped resonators. They give rise to an absorption
constant

K D � PW


PWp

� 1

�x
: (Defining equation (25.1))

Here, � PW
 is the power consumed by the resonators, and

PWp D n
"0

2
E2
0cA (27.12)
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is the power of the radiation which passes through the cross-section

A and excites the resonators there.C27.9C27.9. Derivation: In vac-
uum, we have

PWp D 1

2�0
E0B0A D SA ;

where S is the time averaged
value of the POYNTING vec-
tor (Comment C12.4). In
a dielectric material (refrac-
tive index n), we have

B0 D E0=.c=n/

and thus

PWp D n

2�0c
E2
0A ;

and with c D ."0�0/
�1=2

(Eq. (8.7)), Eq. (27.12) fol-
lows.

� PW
 is the sum of the power
consumed by all of the damped resonators together. Each single one
of them consumes the power

PW
 D �4�H � Wkin : (27.13)

H is the halfwidth of the energy-resonance curve, as defined in Vol. 1,
Fig. 11.42, andWkin is the average value of the kinetic energy stored
in a resonator when it is oscillating at the frequency 
.

Derivation: The amplitude ˛.t/ of the free damped oscillation follows an
exponential law:

˛.t/ D ˛0e
�t=T ; (27.14)

where T D 
�1
0 is the period of the harmonic oscillator (Vol. 1, Sect. 11.10).

For the energy, it follows that

W
0 D W0e
�2t=T and PW
0 D �2

T
W
0 (27.15)

(the power here is the value averaged over a period T, since, precisely
considered, the energy consumption is ‘pulsed’ due to the dependence of
the frictional force that causes the damping on the momentary velocity).
Together with Eq. (11.2), and using W
0 D 2Wkin;
0 , we finally obtain
(Exercise 27.1):

PW
0 D �2�HW
0 D �4�HWkin;
0 : (27.16)

In the steady state, this power must be continually replaced. This result
also holds when the oscillator is excited at a frequency above its resonance
frequency 
0 (not shown here). This leads to Eq. (27.13).

All of the resonators contained in the volume A�x together consume

the power denoted by � PW
 :

� PW
 D N 0
VA�x4�HWkin :

With Eq. (26.1), we find the time-averaged value of the kinetic
energy of one oscillator which is vibrating at the frequency 

(Exercise 27.2):

Wkin D 1

4
m.!l0/

2 D
�

1

4�

�2 e2E2
w

m
� 
2

.
20 � 
2/2 C
�


�

�2

� 
20
2
:

(27.17)

The amplitude F0 of the exciting force was not set here to eE0, but
rather to eEw. Ew is the exciting amplitude of the light for a single
resonator. In materials with a refractive index n > 1 (liquids and
crystals), it is larger than the field-strength amplitude in vacuum, E0.
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Equation (13.32) holds here (n D p
"):

Ew D E0

3
.n2 C 2/ :

Combining these equations leads to the absorption constant

K D N 0
Ve

2

2�c"0m
� .n

2 C 2/2

9n
� H � 
2

.
20 � 
2/2 C
�


�

�2

� 
20
2
: (27.18)

This equation gives information about the shapes of the optical ab-
sorption curves (Sect. 27.14). In addition, it offers us the possibility
of determining the number density NV of the resonators from an
optical measurement: It leads to a quantitative analysis method for
absorption spectra, as discussed in Sect. 27.15.

In both cases, we must keep an essential point in mind: In deriving
Eq. (27.18), we did not take a mutual influence of the resonators on
each other into account. For this reason, this equation and its various
rearranged forms (Eq. (27.19)) can be applied only to the limiting
case of dilute solutions or gases of moderate density (see the footnote
in Sect. 27.10).

27.14 The Shapes of Absorption Bands

For a given solution, the first two fractional factors in Eq. (27.18)
contain only constants. (The weak dependence of the refractive index
n on the frequency 
 can be neglected within the width of a band).
Then we can choose the maximum value Kmax arbitrarily by fixing
N 0
V and obtain the shape of the absorption band from the fractional

expression on the right.

Figure 27.18 shows two examples. The upper part of the figure refers
to a solid solution of potassium atoms in a KBr crystal. In this sys-
tem, a small fraction of the Br ions in the lattice has been replaced
by electrons6. Their number density is NV. This gives rise to new
absorbing centers for which the name color centers (F centers) has
become established. The lower part of the figure shows data for a va-
por solution of mercury in compressed hydrogen. It contains about
one Hg atom for each 6 � 106 H2 molecules.

Note the different scales on the abscissas in Fig. 27.18. In the upper
graph, the absorption curve is a broad band with a halfwidth of H D
1:21 � 1014 Hz (Q-factor 
0=H D 3:8). The lower graph, in contrast,
shows a spectral linewhose width is determined by thermal collisions

6 F centers. Considered chemically, a KC ion together with an electron forms
a neutral potassium atom. H. Pick, “Struktur von Störstellen in Alkalihalogenid-
kristallen”, Springer Tracts in Modern Physics (Springer-Verlag Berlin, Vol. 38,
p. 1 (1965)).
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Figure 27.18 The representation of optical absorption bands as energy-
resonance curves (lower part from measurements by G. JOOS). The calcu-
lated curves are fitted to the measurements at the band maxima. (H
 D H=
0,
1 atm D 1:013 � 105 Pa � atmospheric pressure)

(thermal broadening). It has H D 3:54 � 1011 Hz (
0=H D 3:3 � 103).
In both examples, the calculated curves agree quite satisfactorily with
the measurements. Thus, the basic assumption underlying this calcu-
lation, that of exponentially-damped resonators, combined with the
fitting of the number density NV to the observed maximum, yields
a useful model for the real situation. This is, however, not the case
for every absorption band. The systematic deviations between cal-
culated and measured bands are in most cases considerably greater
than in Fig. 27.18. In such cases, one can consider exponentially-
damped resonators (e.g. electrons which are quasi-elastically bound
to positive charges, dipoles) only as an approximation. This model
has however the advantage that it is intuitively understandable.

27.15 Quantitative Analysis Using
Absorption Spectra

Setting 
 D 
0 in Eq. (27.18), we obtain the absorption constant
Kmax at the band maximum. At the same time, we can solve for N 0

V,
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remove the logarithmic decrement by using the approximate relation
 D �H=
0 (for  	 1), and find

N 0
V D 2�c"0m

e2
9n

.n2 C 2/2
Kmax � H : (27.19)

We now compare the number density N 0
V of the resonators as deter-

mined from the absorption band with the overall number density NV

of absorbing centers (“molecules”). To do this, we define the ratio

N 0
V

NV
D Number of resonators

Number of molecules
D f :

This number f is called the “oscillator strength”. In Eq. (27.19), only
constants precede the product KmaxH. We thus obtain for the number
density of the absorbing molecules:

NV D const � Kmax � H (27.20)

with

const D 2�c"0m

f � e2 � 9n

.n2 C 2/2
(27.21)

(c D velocity of light; "0 D electric field constant; m D mass and e D
charge of the electron; n is the refractive index of the solvent at the fre-
quency of the band maximum (KBr in the example in Fig. 27.18, top);
f D oscillator strength).

This constant can thus be computed from physical constants, from the
refractive index n of the solvent, and from the oscillator strength f .
Equation (27.20) offers the possibility of determining NV, the num-
ber density of the absorbing molecules, from optical measurements.
This procedure, corresponding to the derivations of Eqns. (27.19) and
(27.20), is limited to the case that the resonators are independent and
do not mutually influence each other (BEER’s law, see Sect. 25.4).
In particular cases, one can set f D 1. Usually, however, the con-
stant must be empirically evaluated by a calibration measurement
with a relatively large number density NV which can be determined
chemically.

Spectral analysis using optical absorption is superior to chemical
analysis in terms of sensitivity. We estimate the orders of magnitude:
The constant in Eq. (27.20) has a magnitude of about 6 � 105 s/m2.
At a layer thickness of 10 cm, absorption constants down to K D
0:01/cm can be measured (e�0:1 D 0:9). The decisive factor is now
the halfwidth H. For solid and liquid solvents, H is seldom less than
1014 Hz. With these values for Kmax and H, we can optically deter-
mine number densities down to NV D 1020=m3 D 1014=cm3. In
solid and liquid substances, the number density of the molecules is
of the order of 1028=m3. Therefore, we can optically detect one dis-
solved molecule among 108 molecules of a solid or liquid solvent.
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In gases and vapors, the halfwidth H is considerably smaller; values
of 1010 Hz are not unusual7. Then the absorption in a 10 cm thick
sample suffices to detect molecules with a number density of about
1016/m3. Such a value of the number density corresponds to a vapor
pressure of the order of 10�3 Pa.

At room temperature, mercury has a saturation vapor pressure of
0:16 Pa. In poorly-ventilated laboratories where mercury is used
without sufficient protection, there can be just as many mercury
vapor molecules in each 1m3 of air as in a mercury droplet with
a volume of 1mm3. Optically, we can already detect 1% of this
amount. For the absorption measurements, one uses the wave-
length � D 0:2537�m (cf. 13th edition of “Optik und Atomphysik”,
Fig. 14.19).

Absorption spectral analysis has also been employed in liquid and
solid substances, for example to detect and measure the concentration
of vitamins,C27.10

C27.10. R.W. Pohl, Natur-
wissenschaften 15, 433
(1927); A. Windaus, Nobel
Lectures, Chemistry, 1927
(Elsevier Amsterdam, 1966),
p. 105.

and for the physical investigation of photochemical
reactions in crystals.C27.11

C27.11. A. Smakula
(Dr. rer. nat., Göttingen,
1927), Zeitschrift für Physik
59, 603 (1930); see also the
footnote in Sect. 27.14.

27.16 The Properties
of Optically-Effective Resonators

We have seen that the classical interpretation of dispersion and ab-
sorption in terms of the forced oscillations of resonators is able to
reproduce the observations to a good approximation. We therefore
want to supplement this model by giving some information on the
various types of resonators that may play a role.

Light, just like an alternating electric field, gives rise to influence
in molecules; they are electrically “deformed” or “polarized”: The
centers of gravity of their positive and negative charges are shifted
relative to one another. This periodic variation of the charge distribu-
tion is usually represented by the schematic picture of an oscillating
dipole. Two elementary charges of opposite sign are assumed to be
at its ends, that is ˙1:6 � 10�19 A s.

The mass of the molecule can be distributed in various ways over
the two charge carriers. In a limiting case, the negative charge is as-
sumed to carry only the small mass of one electron, i.e. 9 � 10�31 kg,
and all of the remaining large mass of the molecule is attached to
the positive charge. Then the molecule remains practically at rest
as a positive ion, and the dipole is created only through the oscilla-
tions of the electron around its rest position8. One refers for short
to a quasi-elastically bound electron. This model was found in the

7 Note that the measurements on mercury in Fig. 27.18 were carried out at a pres-
sure of 30 � 105 Pa.
8 The eigenfrequency 
0 of such a dipole (resonator or oscillator) corresponds
in quantum mechanics to the frequency 
0 D �W=h when the energy of the
molecule changes by �W .
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Table 27.3 Velocity of longitudinal sound waves, lattice constant and frequency of the residual-ray bands of
some crystals

Sound velocity Frequency of the residual-ray bandCrystal
in m/s

Spacing D of neighboring lattice
components (positive alkali ion and
negative halogen ion)

Calculated from
Eq. (27.22)

Observed

NaCl 3:3 � 103 2:81 � 10�10 m 5:9 � 1012 Hz 5:8 � 1012 Hz
KCl 3.1 3.14 4.9 4.7
KBr 2.3 3.29 3.5 3.6
KI 1.95 3.52 2.8 2.7

preceding sections to give good results both for visible light as well
as for ultraviolet light and X-rays.

The situation is different in the infrared spectral region: There, we en-
countered the absorption bands belonging to the residual rays. They
were observed for cubic ionic crystals (Fig. 27.9). A platelet made
from one of these crystals can be thinned at most to the spacing D
of two neighboring lattice components, for example a NaC and a Cl�
ion in NaCl. Such a (limiting-case) platelet of thickness D would
have a mechanical eigenfrequency of


0 D u

2D
: (27.22)

Here, u is the velocity of longitudinal sound waves in the crystal.
This mechanical frequency agrees with the optical frequency of the
residual rays. This is shown by the numbers9 in Table 27.3.

Thus, for the case of ‘residual rays’, we can calculate an optical fre-
quency from data obtained by non-optical measurements. This is
the fundamental importance of this relation, which was discovered in
1908 by E. MADELUNG.

This fact at the same time leads to information about the type of res-
onators that give rise to residual rays: Both of the elementary charges
are bound to the large masses of ions. These ions, e.g. NaC and Cl�,
vibrate oppositely to each other and thus form an oscillating dipole.
Here, the picture of a dipole is alreadymore than just a model scheme.

In the simplest ionic crystals, of the type NaCl, the molecules have
lost every trace of an individual existence. This is however a limiting
case. In many other types of crystals, whole molecules or parts of
them maintain their own identities. In such independent molecules,
and also in molecular crystals, pairwise oppositely-charged molec-
ular components can form dipoles and can absorb infrared light

9 The oscillation period T D 1=
 for the fundamental mechanical vibration of
a rod is D 2D=u. This means that a longitudinal elastic perturbation passes along
the entire length D of the rod twice during the time T, namely going forward and
then returning. The velocity of sound within a solid body is nearly always quoted
as the special case of its value along the length of a rod, without further comment
(cf. Vol. 1, Fig. 12.42 and Eq. (11.5)). In Eq. (27.22), however, a valid average
value for a three-dimensional body must be used.
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Figure 27.19 Absorption spectra of NO�
3 and NO�

2 ions. For the right-hand
graph, thin crystalline layers of KNO3 and KNO2 were employed. For the
left-hand graph, a solid solution of the ions in a KBr crystal was used. The
concentration was ca. 0.1% in the melt from which the crystal was prepared.
In the crystal, the concentration is roughly ten times lower than in the melt.

through forced oscillations. Two of many possible examples can be
found in Fig. 27.19. The two parts of the figure show absorption
bands belonging to the NO3 group and to the NO2 group. They lie
at around 7.2 and 8.0�m. The right-hand image refers to KNO3 and
KNO2 crystals, and the left-hand image to a solid solution of these
compounds in a KBr crystal. In this second case, mixed crystals were
grown, in which individual Br� ions were replaced in part by NO�

2
and in part by NO�

3 ions. In spite of the different crystal structures,
the absorption bands of NO3 and NO2 are in both cases at practically
the same positions. Thus, the absorption of infrared radiation leads
us to the recognition of inner oscillation frequencies which are char-
acteristic of the individual molecules. We must however be careful
to avoid an error: Large molecules built up from many components
can have many eigenfrequencies (compare Vol. 1, Sect. 11.5), but
only some fraction of those frequencies are associated with the os-
cillations of electrically-charged molecular components. Only those
oscillations can be effective in producing absorption bands (only
they are “optically active”). The optical detection of the remaining
frequencies must be carried out by a different method (described
in the 13th edition of “Optik und Atomphysik”, Chap. 15, ‘RAMAN

scattering’, or e.g. www.tsi.com/basics-of-raman-spectroscopy/).

The permanent electric dipole moments of polar molecules have no im-
portance for the absorption and dispersion in the optical spectral regions.
Their role begins only in the range of electric waves (radio, microwaves).
There, liquids with dipolar molecules can exhibit strong absorption and
large refractive indices. A well-known example is water (cf. Sect. 13.11).

www.tsi.com/basics-of-raman-spectroscopy/
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27.17 The Mechanism of Light
Absorption in Metals

The absorption spectra of metals show a special feature: In all
the non-metallic substances, the bands from “bound” electrons are
followed by an absorption-free region (Fig. 27.1). Only at longer
wavelengths, in the infrared region, do we begin to see absorption due
to ions. In metals, in contrast, an additional absorption is observed,
beginning in the ultraviolet, which initially increases in strength
with increasing wavelength. Usually, it overlaps with the longest-
wavelength bands that result from bound electrons (Fig. 27.6). There
is thus no absorption-free region in the spectrum, and the absorption
constant in the infrared attains values of the order of 105 mm�1.

This additional absorption, which is lacking in all other materials but
is seen in metals, is due to their electrical conductivity � ; it thus has
its origin from “free” or “conduction” electrons. At � > 10�m,
practically the only absorption is that due to free electrons. There,
just as in the range of electric waves (radio, microwaves), we can cal-
culate the absorption from the conductivity � . The magnetic field of
the penetrating waves generates eddy currents which convert the en-
ergy of the waves into heat. The relations derived for electromagnetic
waves apply, namely

n D k D
s

1

4�"0
� �



D 5:47
p
ohm �

p
� � � (27.23)

and

K D
s

4�

"0c
� �
�

D 68:8
p
ohm �

r
�

�
(27.24)

(here, n is the refractive index, k the absorption coefficient, defined by
Eq. (25.3), K is the absorption constant, defined by Eq. (25.1), � is the
vacuum wavelength, � the specific electrical conductivity, and "0 is the
electric field constant, 8:86 � 10�12 A s/Vm).

Derivation: The third MAXWELL equation (see Sect. 14.5) states that

curl H D j C PD : (27.25)

Here, PD D ""0 PE is the displacement current density and j D �E is the
conduction current density. For an undamped travelling electromagnetic
wave of amplitude E0, we find from Eq. (25.26) that

E D E0e
i!.t�zn=c/; and thus PE D i!E or E D � i PE

!
:

Inserting this into Eq. (27.25) yields

curl H D "0 PE
�
" � i�

"0!

�
:
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The expression in parentheses can be regarded as a complex dielectric con-
stant, that is "0 D " � i�="0!. It is linked via the MAXWELL relation
.n0/2 D "0 to the complex refractive index n0 D n � ik. We obtain

.n � ik/2 D " � i�

"0!
; i.e. n2 � 2nik � k2 D " � i�

"0!
: (27.26)

In metals (and sometimes also in semiconductors), we can neglect the
displacement current; that is, we set the real part of the dielectric con-
stant " D 0. Finally, we can equate the real and the imaginary terms in
Eq. (27.26) individually, so that

n2 � k2 D 0 and � 2nik D � i�

"0!
;

and from this, Eq. (27.23) follows.
Numerical examples: For silver, � D 62 � 106��1�m�1. At � D 10�m,
n D k D 136 and K D 1:7 � 105 mm�1 (compare Fig. 27.6). For mercury,
a poorly-conducting metal, the corresponding numbers are: � D 1:04 �
106��1�m�1, n D k D 17:6, and K D 2:2 � 104 mm�1.

With such large and equal values of n and k, BEER’s formula for the
reflectivity R can be simplified. Instead of Eq. (25.37), we obtain as
a good approximation DRUDE’s rule:

R D 1 � 2

k
D 1 � 0:366p

˝
p
��

: (27.27)

In this formula, the absorption coefficient k causes only a (usually
small) deviation of the reflectivity from the “ideal” value of 1 (com-
pare Fig. 27.8).

27.18 Dispersion by Free Electrons
with Weak Absorption
(Plasma Oscillations)

In Sect. 27.8, we derived the dispersion formula (Eq. (27.7)) for spec-
tral regions in which the absorption can be neglected. We can solve
Eq. (27.7) for n2, obtaining

n2 D 1 C e2NV

4�2"0m
� 1


20 � .e2NV=12�2"0m/ � 
2 : (27.28)

The derivation of Eqns. (27.7) and (27.28) was based on the following
considerations:

1. In a neutral molecule, one negative electron and the positively-
charged “remainder” of the molecule can undergo mutual quasi-
elastic oscillations with an eigenfrequency of 
0.

2. This oscillatory structure is excited to forced vibrations by an in-
cident light wave.
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3. With closely-packed molecules (in liquids and solids), the ampli-
tude of these forced oscillations depends not only on the amplitude
of the incident light waves, but also on the electric dipole moments p
which are produced in the neighboring molecules under the influence
of the light waves.

In this derivation, it was left completely open as to how the quasi-
elastic oscillations with an eigenfrequency of 
0 were produced. One
can treat them as a circular oscillation, in which the electron orbits
on a circular path around the positive charge. The required radial
acceleration !2

0r is produced by the attractive force of the positive
charge e (COULOMB’s law, Eq. (3.8)). We then find

!2
0r D e2

4�"0r2m
(27.29)

("0 is the electric field constant D 8:86 �10�12 A s/Vm; e D 1:6 �10�19 A s;
m is the mass of the electron D 9:11 � 10�31 kg).

A circular orbit of radius r requires a volume

V D 4

3
�r3 D e2

3"0m!2
0

: (27.30)

This volume V necessary for the circular orbit cannot become larger
than 1=NV, i.e. the reciprocal of the number density NV of the
molecules. Then for the largest possible radius, we find

r3max D 3

4�NV
: (27.31)

At this magnitude of the radius, the circular frequency of the orbiting
electron has its smallest value, !0;min. It is given by

!2
0;min D e2NV

3"0m
: (27.32)

equal to


20;min D e2NV

12�2"0m
: (27.33)

Below this limiting frequency, the electron is free. It can no longer be
associated with a particular positive charge carrier or ion. We are then
no longer dealing with oscillations within a single neutral molecule,
but rather with oscillations of a whole set of electrons relative to all
of the positive counter-ions, that is with plasma oscillations. 
0;min is
the eigenfrequency of a (transversally) oscillating plasma.C27.12

C27.12. The derivation of
the plasma frequency, i.e. the
frequency of oscillations of
a cloud of electrons within
the lattice of positively-
charged ions (as in a metal),
can be found in Feynman’s
Lectures on Physics, Vol. II,
Sect. 7.3 (available online,
see Comments C6.1. and
C7.1., and the solution to
Exercise 26.1.), or also in
F.S. Crawford, Waves, Berke-
ley Physics Course, Vol. 3
(McGraw Hill, New York
1968), p. 87. It is given by

!2
p D e2NV

"0m
:

We
insert it in place of 
0 into Eq. (27.28) and obtain the dispersion for-
mula of a plasma for the region of weakly-absorbed waves:

n2 D 1 � e2NV

4�2"0m
2
D 1 � 80:6

m3

s2
� NV


2
: (27.34)
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27.19 The Total Reflection of
Electromagnetic Waves by Free
Electrons in the Atmosphere

In the case of metallic bonding (which occurs only in solids and
in liquids), the strong interactions of closely-packed atoms (a high
value of NV!) leads to the formation of the best-known plasma:
A cloud of freely mobile electrons within a lattice of positive ions.
But Eq. (27.34) cannot be applied to metals due to their strong light
absorption.

Electrons can however also be released without the interactions of
closely-packed atoms, for example by the effects of ionizing radia-
tions. Thus, especially through the action of ultraviolet light, elec-
trons are set free in the upper layers of the atmosphere (the ‘iono-
sphere’). Their number density at an altitude of 100 km is of the order
of magnitude of NV D 1011 /m3, and is thus very small compared to
that in metals (e.g. NV;Cu D 8:4 � 1028=m3).

The refractive index produced by these free electrons can be cal-
culated using Eq. (27.34). For an electron number density of
NV D 1011/m3, equation (27.34) gives a refractive index which
is very nearly equal to 1 for the frequency range of visible and in-
frared light (around 1015-1012 Hz). However, in the region of electric
waves (‘radio’ waves), the situation is different: At 
 D 3 � 106 Hz
(corresponding to � D 100m), Eq. (27.34) gives n D 0:32, and thus
a phase velocity of 9:4 � 108 m/s. For


2

NV
< 80:6

m3

s2
or NV�

2 > 1:12 � 1015 m�1 ; (27.35)

equation (27.34) even yields negative values for n2, i.e. the refrac-
tive index becomes imaginary. Then even waves which are incident
perpendicular to the layer are subject to total reflection10; no travel-
ling wave can penetrate into the ionized layer. Making use of this
total reflection, we can determine the number density of the electrons
at various altitudes. A numerical example is given in Table 27.4.
“Echoes” are rare for � < 30m. The necessary number density of
the electrons would be NV > 1:8 �1012/m3; it seldom occurs, and then
usually at altitudes of around 250 km.

The free electrons in the upper layers of the atmosphere (the ‘iono-
sphere’, e.g. the KENELLY-HEAVISIDE layer) are of great impor-
tance for communications by radio in the medium- and long-wave
bands. They reflect the electromagnetic waves and guide them (along
curved paths) to their distant targets. The lack of total reflection for
� < 30m makes it possible for short-wave electromagnetic waves
that are emitted by the sun and more distant astronomical objects

10 It follows from Eq. (25.15) for an imaginary refractive index n that the reflectiv-
ity is R D .Er=Ei/

2 D 1 (numerator and denominator have the same magnitude).
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Table 27.4 The total reflection of electromagnetic waves in the atmosphere

A signal of wavelength �D 125m 102m
will, according to Eq. (27.35), be totally
reflected at a number density of electrons
NV D

0:7 � 1011/m3 1:1 � 1011/m3

Its transit time t for outgoing and return
paths is measured to be

6:33 � 10�4 s 1 � 10�3 s

The number density NV leading to total
reflection thus lies at the altitude Hr D
1
2 tc D

95 km 150 km

to reach the surface of the earth. They can be captured with large
parabolic antennas (the concave ‘mirrors’ of radio telescopes). Radio
astronomy has made many important contributions to our knowledge
of the galaxy and the cosmos, e.g. the detection of the spiral structure
of the Milky Way galaxy.

27.20 Extinction by Small Particles of
Strongly-Absorbing Materials

In the cases described thus far, we have been able to treat separately
the two contributions to extinction, i.e. scattering and absorption;
the former in Chap. 26, and the latter in the present chapter. How-
ever, this separation is not always possible. This is the case for
example with extinction by small particles which consist of strongly-
absorbing materials.

Organic dyes and metals exhibit strong absorption even in the vis-
ible spectral region. When finely divided, they have quite different
extinction spectra than as bulk materials. A long-known example is
ruby glass. It contains very finely-divided gold particles; however, it
does not allow green light to pass through, like very thin gold leaf,
but instead red light (Fig. 27.20). The diameter of the individual gold
particles is below the resolving power of light microscopes, but each
particle produces a colored diffraction disk under dark-field illumi-
nation in the viewing field of a microscope. Light is thus scattered
from each particle11. The proportions of scattering and absorption
are found from experience to depend strongly on the size of the parti-
cles: Very small particles scatter only weakly; they attenuate the light
mainly by absorption.

For a quantitative investigation, a solid solution of sodium in an NaCl
crystal is suitable. A hot NaCl crystal in Na vapor takes up excess Na
atoms. The mechanism of this process is known: A small fraction of
the negative chlorine ions in the lattice is displaced (and replaced) by
thermally-diffusing electrons. The resulting absorption centers are

11 This detection of single particles is called “ultramicroscopy”.
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Figure 27.20 The extinction
spectrum of gold ruby glass
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Figure 27.21 The
extinction spec-
tra of atomic and
colloidally-dissolved
metal particles (Na in
an NaCl crystal). The
dashed curve for the
finest colloid, which
shows no scattering,
was calculated using
Eq. (27.37).
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called color centers (see Sect. 27.14). In equilibrium, the number
density NV of Na atoms in the crystal is about the same as in the
vapor; at 500 ıC, for example, it is NV D 5 � 1022/m3. In thermal
equilibrium at room temperature, NV D 3 � 1011/m3 would be found
in the crystal. Such small number densities cannot be detected even
by absorption-spectrum analysis (Sect. 27.15). Therefore, one has
to “quench” the crystal and “freeze in” the number density obtained
at a high temperature, so that it remains stable at room temperature.
Figure 27.21, left, shows the extinction spectrum of such a “frozen
in” atomic solid solution of Na (color centers) in an NaCl crystal, at
two temperatures. The extinction is due here entirely to absorption.
No trace of scattering is observable.

At room temperature, the frozen-in number density in an NaCl-
crystal can be maintained for years. At 300 ıC, on the other hand, the
diffusion rate has become measurably large. As a result, the crystal
lattice can precipitate a portion of the excess sodium, allowing it to
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condense into fine colloidal particles. This lowers the color-center
band; at the same time, a new extinction band with a maximum at
0.550�m appears (at the right in the figure). The extinction in this
band is also practically due only to absorption and not to scattering.
Its position remains nearly unchanged with changing temperature,
in contrast to that of the color-center band. Upon longer heating,
the particles increase in size, and their extinction bands are shifted
and extended to the region of longer wavelengths. Only then does
scattering begin to play a role in the crystal, initially weakly and then
more strongly.

The maximum of the new band (measured at room temperature) al-
ways lies at least 0.08�m to the long-wavelength side of the max-
imum of the color-center band. There is thus no gradual transition
of the color-center band by a continuous shift into the new band. As
a result, we must ascribe the new band to the smallest colloidal par-
ticles that remain stable.

For the atomically-dissolved metals in alkali halide crystals (color
centers), the shape of the band can be represented by the model of
damped resonators (Fig. 27.18). The position of the band is deter-
mined by the lattice constant a of the crystals (cf. the footnote at the
end of Chap. 22). The frequency of its maximum at 20ıC is given by
an empirical relation12:


max � a2 D 2:02 � 10�4 m2=s : (27.36)

For the colloidally-dissolved metals, in contrast, the shape and posi-
tion of the band are determined by the optical constants of the metals
(indeed, by the values of n and k measured on bulk samples), and
not by damped resonators. With these constants, we can calculate the
absorption constant K for the smallest colloidal particles (diameter
� �) at various wavelengths. The following equation is used for the
calculation:

K D 36�NVV
1

�
�

nk

nu"�
n

nu

�2

C
�

k

nu

�2
#2

C4

"�
n

nu

�2

�
�

k

nu

�2

C 1

#

(27.37)

(Here, nu is the refractive index of the solvent, � the wavelength in air, NV

the number density of the particles, and V is the volume of the individual
particles. For a derivation, see earlier editions of this bookC27.13). C27.13. See the 9th edition

(1954), or the 10th edition
(1958) of “Optik und Atom-
physik”, p. 206.

For our ‘standard example’, the smallest Na colloid in an NaCl crys-
tal, the optical constants of sodium are collected in Fig. 27.22 (top).
nu, the refractive index of the surroundings, that is of the NaCl crys-
tal, is practically constant at 1:55 (Fig. 27.1, bottom). There are no

12 E. Mollwo (Dr. rer. nat. Göttingen, 1933), Zeitschrift für Physik 85, 56 (1933).
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Figure 27.22 The optical
constants of sodium and
potassium. At � < 0:31�m,
potassium has a region of
weak extinction, i.e. k < 0:1
(Sect. 25.5); but the extinc-
tion constant K is still about
2 � 103 mm�1. For rubidium
and cesium, the curves are
similar to those for potassium.
Therefore, for sodium also,
we can expect a steep rise
in the refractive index n at
� < 0:25�m. R
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reliable data forNV and V; thus, we just compute the right-hand prod-
uct in Eq. (27.37) for various values of �. This leads us to the dashed
curve in Fig. 27.21. Its maximum value is fitted to the observed value
by choosing the constant in Eq. (27.37). n and k are hardly tem-
perature dependent, and the same holds for the computed function.
Result: The calculation can correctly reproduce the two essential fea-
tures of light extinction by very fine colloidal metal particles, namely
the small widths of the bands and their lack of temperature depen-
dence. Furthermore, the respective frequency of each band maximum
nearly coincides with the measured value13 in each case. The re-
maining discrepancies are not alarming. They could be eliminated
by small changes in the interpolation curves for n and k.

27.21 Extinction by Large Metal
Colloids. Artificial Dichroism,
Artificial Birefringence

For very fine metal and dye colloids, no secondary radiation can be
observed, only absorption. Only when the colloids consist of larger
particles (diameters or circumferences comparable to �) do we ob-
serve secondary radiation and scattering in addition to absorption.
In this case, the individual parts of the colloid particles are not all

13 The extinction curves of the fine colloids in Fig. 27.21 are not “optical resonance
curves”; their shapes are instead determined by the curves of the optical constants
of the material of the particles.
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Figure 27.23
Pressure-induced
dichroism in NaCl
containing colloidal
Na particles

E
xt

in
ct

io
n 

co
ns

ta
nt

 K

Wavelength λ

Frequency ν of the light

Pressure

Light

x z

y

0.45 0.50 0.60 0.70 μm
mm–1

1.5

1.0

0.5

7 6 5 4·1014 Hz

E║ E┴
to the direction
of the pressure

excited with the same phase by the primary waves. As a result, inter-
ference occurs, giving preferred directions to the secondary waves; in
particular in the direction of the primary waves, so that forward scat-
tering predominates (compare Fig. 26.10). We can thus no longer
assume a model employing the simple electric polarization of small
spheres for a quantitative description of this process. Instead, we
must use a similar description as in the calculation of the harmonics
of antennas. In this calculation, the essential quantity is the shape of
the particles; but precisely this is usually unknown for large colloidal
particles.

We of course cannot explore these complicated matters in detail here;
rather, we must content ourselves with a qualitative treatment of ar-
tificial dichroism (Sect. 24.3). As an illustration, we use a large-
diameter Na colloid in an NaCl crystal. The crystal appears violet
in transmitted light, and yellow-brown in reflected light. Its broad
extinction band has a maximum around 0.59�m, independent of the
orientation of the plane of oscillation of polarized light.

Now we subject the crystal to pressure parallel to one of its cubic
edges. The result is that it becomes dichroitic, i.e. it now exhibits
two overlapping extinction bands in polarized light (Fig. 27.23). Ex-
planation: The pressure causes the colloidal particles to take on an
elongated shape (inset in Fig. 27.23). In the case of E?, the ampli-
tude oscillates parallel to the longer particle axis x, while in the case
of Ek, it oscillates parallel to the shortest axis y. For E?, the long
diameter of the particles preferentially determines the wavelength,
while for Ek, the shortest diameter is determining.

All birefringent substances are dichroitic; this follows inevitably
from the general relation between dispersion and absorption. This
connection is represented schematically in Fig. 27.24. The full curves
refer to one of the two polarized oscillations, and the dashed curves
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Figure 27.24
A schematic sketch
illustrating the dichro-
ism of all birefringent
substances
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to the other, which is perpendicular to the first. With transparent sub-
stances (calcite, mica, quartz), both absorption spectra end already in
the ultraviolet spectral region, before the beginning of the visible.

The fabrication of very thin birefringent crystal platelets is rather dif-
ficult. Therefore, the relevant absorption bands for birefringence have
been measured only in a few cases. With artificial dichroism, the con-
centration of the light-absorbing particles is low, so that one need not
bother with very thin crystal samples. Its disadvantage is however
that now, the birefringence produced by the particles is quite small,
and furthermore it is seen on the background of the birefringence
of the strained solid solvent (Sect. 24.9). Therefore, we cannot detect
the birefringence from parallel-oriented, elongated particles with cer-
tainty by simple means. That can however be accomplished in other
cases.

A parallel orientation of small particles can also be achieved in nu-
merous ways even for large particle-number densities; among others,
by using electric fields or laminar flows in fluids. For example, we
can place a few drops of a suspension of vanadium pentoxide (V2O5)
in water between two glass plates and slide the plates relative to each
other by several millimeters. Immediately, the liquid layer becomes
birefringent (“flow birefringence”). It acts in the setup of Fig. 24.16
just like a crystal plate G. Still more impressive is the demonstration
experiment described in Fig. 27.25.

Artificial birefringence can also be produced using polar molecules,
as well as nonpolar molecules which however can be strongly de-
formed by electric fields. The best-known examples are nitrobenzene
and carbon disulfide. The crystal platelet G in Fig. 24.16 is replaced
by a parallel-plate condenser filled with one of these liquids, the field
direction is adjusted to be perpendicular to the light beam, and field
strengths E on the order of 104 V/cm are employed. This form of
artificial birefringence was discovered by J. KERR in 1875. Experi-
mentally, at a wavelength �, one finds a difference of the refractive
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Figure 27.25 A demonstration experiment showing flow birefringence (pho-
tographic positive). A glass cuvette about 4 cm deep and 1 cm thick is filled
with a suspension of V2O5 in water and observed between crossed NICOL

prisms (Sect. 24.3; see Fig. 24.16). When a glass rod is dipped into the liq-
uid, the layers which flow around it glow with a bright red color. Similarly,
when the liquid is stirred, the turbulence becomes visible; and likewise, in
a tube with a laminar flow, the boundary layer at rest on the walls of the tube
can be seen.

indices for the extraordinary and the ordinary light beams equal to

neo � no D B � � � E2 : (27.38)

In this equation, the “electric KERR constant” B is given by

B D neo � no
� � E2

D �

�
� 1
l

� 1

E2
; (27.39)

when the light traverses a path l in the electric field and thereby ex-
periences an optical path length difference of � D .neo � no/ l.

Explanation: The molecules which exhibit a KERR effect have an
asymmetric structure. They have a preferred direction of polarizabil-
ity. The dipole moments produced by the field are proportional to the
field strength E. Furthermore, the polarized molecules are progres-
sively oriented as the field is increased, gradually overcoming their
random thermal motions. Therefore, the birefringence increases pro-
portionally to E2.

Numerical example: For very pure nitrobenzene, B D 4:3 � 10�10

cm.V=cm/2
.

Then, for l D 1 cm and E D 104 V/cm:
�

�
D B � l � E2 D

4:3 � 10�10 � 1 cm � 108.V=cm/2
cm.V=cm/2

D 4:3 � 10�2 or � � 0:04�.

The KERR effect is employed technically for constructing control devices
(‘switches’) for light. The radiant power transmitted by the device in-
creases initially as � E4.
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Exercises

27.1 Derive the relationship between the halfwidth H and the log-
arithmic decrement  which is used in Eq. (27.16) for a linear mass-
and-spring pendulum (Fig. 4.13 in Vol. 1). Consider the case of
weak damping ( < 1), and thus a narrow resonance curve. In this
case, the amplitude l0 in Eq. (26.1) can be approximated as l0 �
F0=

	
4�2m

q
.2
20/.
0 � 
/2 C .=�/2
40



, as can be easily shown

(for a narrow resonance curve, 
 � 
0). Also, take into account that
the energy of the oscillator is proportional to the square of the ampli-
tude.
(Sect. 27.13)

27.2 A linear mass-and-spring pendulumwith a massm vibrates at
the circular frequency !. Its amplitude is l0. Find the mean value of
its kinetic energyWkin (Eq. (27.17)).
(Sect. 27.13)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-50269-4_27) contains supplementary material, which
is available to authorized users.
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Thermal Radiation 28
28.1 Preliminary Remark

Among the various possibilities for excitation of molecules and
atoms, thermal excitation has played a special role since ancient
times. Therefore, thermally-excited radiation (or “temperature radia-
tion”) has been extensively investigated. The crowning achievement
of this work was the formulation and derivation of PLANCK’s ther-
mal radiation law in 1900, and with it the discovery of the physical
constant h, PLANCK’s constant or PLANCK’s quantum of action.

28.2 Basic Empirical Results

The fundamental experimental results can be summarized briefly:

1. All objects radiate energy towards each other. Warmer objects are
thus cooled, while cooler objects are warmed. In order to demon-
strate this transfer of heat via radiation, we must first avoid thermal
conductivity. It is expedient to use two concave mirrors facing each
other at a distance of several meters. At the focal point of one mirror,
we place a radiometer ( a radiation thermopile). At the focus of the
other, we can first hold a warm finger, then a beaker filled with ice
water. In the first case, the radiometer will indicate warming, and in
the second, it will indicate cooling (jokingly known as ‘cool radia-
tion’).

2. The radiant intensity increases strongly with increasing temper-
ature. This can be demonstrated using an electric cooking pot with
a thermometer, which is placed as a “radiating emitter” at a distance
of around 0:5m from a radiometer that serves as “receiver”.

3. As the temperature increases, the distribution of the radiant in-
tensity in the thermal spectrum also changes. With a slowly heated
metal wire, we can demonstrate the sequence: First invisible infrared
radiation, perceptible only as heat; then glowing red, glowing yellow,
finally glowing ‘white hot’.

4. At a given temperature, an object which absorbs light emits more
thermal radiation than a transparent or a strongly reflecting object.
To demonstrate this, we heat different but equal-sized objects beside
each other in similar colorless BUNSEN-burner flames and observe
the light that they emit: A rod made of clear glass absorbs practi-
cally no visible light and emits only weakly. A rod made of colored

577© Springer International Publishing AG 2018
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Figure 28.1 A brightly glowing, strongly turbulent
flame from natural gas containing benzene vapor
casts a deep dark shadow when placed in front of the
condenser of a projector

glass absorbs part of the visible spectrum and emits strongly. A clear
glass tube, filled with finely-powdered colored glass, scatters inci-
dent light. Only a small fraction of the light can penetrate into the
interior of the tube and be absorbed there. The powder thus absorbs
less than the solid colored rod, and therefore, it also emits less than
the rod.

Another example: A brightly glowing flame of “carbureted” natural
gas which contains benzene vapor is placed in front of the condenser
of a projector: A deep, dark image of the flame then appears on
the screen (Fig. 28.1). The innumerable fine carbon particles (soot)
which float in the gases of the flame absorb a noticeable portion of
the light from the projector lamp. Now, by increasing the air flow, we
convert the flame to a colorless BUNSEN-burner flame in the well-
known manner; i.e. all the carbon is burned and no soot is formed.
Then we no longer see an image of the flame on the screen, it no
longer absorbs visible light. At the same time, its emission also van-
ishes. A flame which can absorb no visible light also cannot emit
visible light. A candle flame likewise produces a dark image in a pro-
jector. In general, thermal emission of incandescent light by a flame
is based on the presence of solid particles which absorb visible light,
namely soot particles.

28.3 KIRCHHOFF’s Law

Quantitatively, the experimental facts listed above can be described
by KIRCHHOFF’s law. We explain its content by considering
a thought experiment. In Fig. 28.2, the objects 1 and 2 represent
small sections of two large, flat objects. They are made of two dif-
ferent, arbitrary materials. Each of them radiates thermal energy
towards the other, and in equilibrium they are at the same tempera-
ture. The radiated power which is emitted from their back surfaces is
reflected completely and without losses by the two ideal mirrors M.
Thus we need consider only the radiation between the two objects.
In a steady state, object 1 must radiate just the same radiant power to
object 2 as object 2 receives. Object 1 radiates its own radiant power
PW1 towards 2, and in addition it reflects the non-absorbed fraction
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Figure 28.2 Illustrating KIRCHHOFF’s law M M

1 2

.1 � A1/ of the power PW2 that it receives from 2. Here, A1 is the
absorbance of the object for non-monochromatic radiation, defined
by the equation

Absorbance A D Absorbed radiant power

Incident radiant power
: (28.1)

The corresponding conclusions hold conversely for the radiation
emitted by 2 and transported to 1. Therefore, in equilibrium, we have

PW1 C .1 � A1/ PW2 D PW2 C .1 � A2/ PW1 ;

that is

PW1

A1
D PW2

A2
;

and, in general,

.Le/1
A1

D .Le/2
A2

; (28.2)

where Le denotes the radiance (Sect. 19.2). This relation holds for
any two arbitrary bodies. Therefore, the quantity Le=A must be in-
dependent of all materials properties. It can depend only on other
quantities, such as the temperature or the wavelength of the radia-
tion. This statement is KIRCHHOFF’s law.

Continuing our thought experiment, we suppose that between the
objects 1 and 2 there is now an absorption-free interference filter
(Sect. 20.13) which allows only a very narrow interval of wavelengths
�� to pass through. The radiance is given by

Le D
1Z
0

@Le
@�

� d�

.@Le=@� is the spectral radiance/;

so that for the selected wavelength interval [� ! �C��] (which we
denote simply by its central “wavelength �”), we have

Le;� D
�C��Z
�

@Le
@�

� d� I
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and, instead of Eq. (28.2), we find

.Le;�/1
.A�/1

D .Le;�/2
.A�/2

: (28.3)

An object 1 with the absorbance .A�/1 D 1 thus absorbs all the in-
cident radiation of wavelength �; it is termed black for �. Then it
follows from Eq. (28.3) that

.Le;�/2 D .Le;�/1 � .A�/2 : (28.4)

In words: For thermally-excited, monochromatic radiation, the ra-
diance .Le;�/2 of any arbitrary body is equal to the radiance .Le;�/1
of a body which is “black” for the wavelength �, multiplied by the
absorbance .A�/2 of the body which is not black at �.

28.4 The Black Body, and the Laws
of Black-Body Radiation

Zero light reflectivity, i.e. an absorbance of A D 1, can be real-
ized in the form of a small opening in the wall of a box which is
otherwise opaque to light. Such an opening appears blacker than
a soot-coated plate held next to it. It absorbs all of the incident light,
via multiple, mostly diffuse reflections. Following a suggestion by
G. KIRCHHOFF (1859), such black bodies were heated to high, uni-
formly distributed temperatures and their openings were employed
as emission sources (“black-body radiators”). The incandescent light
which emerges from the opening is called black-body radiation.

As a demonstration experiment, we electrically heat a roughly 15 cm long
platinum tube of ca. 2 cm diameter in air until it begins to glow. A weakly
reflecting cross is drawn on the wall of the tube using iron oxide paint.
Near it, the tube wall has a small opening to the interior. The polished,
highly reflective platinum tube wall glows the least; the weakly-reflecting
cross glows more strongly, but the completely non-reflecting “black” open-
ing glows the most brightly.
Larger black bodies can be constructed of fireproof ceramic materials.
In general, a long tube with several cross-sectional baffles is sufficient.
Its outer wall is covered with an insulating material in order to conserve
heating energy. For the purposes of measurements at high temperatures,
tungsten is a suitable material. It is mounted and heated just like the tung-
sten filaments in an incandescent lamp; that is, no external insulation is
required.

An essential feature of every usable black body is that the tempera-
ture in its interior must be uniformly distributed and constant. If this
condition is fulfilled, then, looking in through an opening, we can
see no details or internal structure. Examples are the furnaces used to
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Figure 28.3 The spectral radiance distribution in the spectrum of a black body. At the left, it
is referred to equal wavelength intervals, and at the right, to equal frequency intervals. These
curves, as well as Eqns. (28.5) and (28.6), hold for unpolarized radiation. For the quantita-
tive experimental investigation of the spectral radiance distribution, one uses the arrangement
sketched in Fig. 19.1 (usually for the special case of # D 0, that is perpendicular emission).
One measures the radiant power d PW� or d PW
 which is emitted into the selected spectral interval
and into the solid angle d˝ . From the defining equation for the radiance Le, it then follows that

d PW� D @Le
@�

� d� � dAP � d˝ or d PW
 D @Le
@


� d
 � dAP � d˝
(dAP is the projected emitting area as in Fig. 19.3. For perpendicular emission, dAP D dA).

melt glass (glass kilns) in a glass factory, or the coke ovens in a cok-
ing plant. Every surface element in the interior of the black body,
independently of its material or structure, emits at exactly the same
radiance: Surface elements with a high absorbance (Eq. (28.1)) also
emit a large amount and reflect very little of the radiation from all the
other surface elements. For surface elements with a low absorbance,
the converse holds: they themselves emit less strongly, but they re-
flect more of the incident radiation from the other surface elements.

The distribution of the radiance over the various spectral intervals has
been investigated quite thoroughly for “black-body” radiation, that is,
for the incandescent light emerging from the opening of a black body.
In particular, its dependence on the temperature has been very care-
fully determined. The results are collected in Fig. 28.3. The spectral
radiance is plotted in the left graph against equal wavelength inter-
vals, and in the right graph against equal frequency intervals. In the
search for a formal description of these empirical results, a number of
competent physicists invested considerable efforts. The final success
was attained at the end of 1900 by MAX PLANCK, with his famous
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radiation formula1:

@Le
@�

D C1

�5
� 1

e
C2
�T � 1

(28.5)

or

@Le
@


D C3 � 
3 � 1

e
C4

T � 1

: (28.6)

C1 : : : C4 are empirical coefficients with the following values:

C1 D 1:191 � 10�16 Wm2 ; C2 D 1:439 � 10�2 mK ;

C3 D 1:47 � 10�50 W s4

m2
; C4 D 4:78 10�11 s K :

PLANCK wanted to refer these coefficients back to universal physical
constants. In this process, he made one of the greatest physical dis-
coveries: He found the new universal physical constant h. PLANCK

was the first to introduce the energy equation E D h � 
, and with
it, he opened the door to the world of atomic-scale processes (now
called quantum physics).

Today, there are several derivations of PLANCK’s formula. We refer
to the details given in all modern textbooks on theoretical physics.
However, independently of the derivation, the relationship between
the empirical constants in the radiation formula and the universal
physical constants remains. We find:

C1 D 2hc2 ; C2 D hc

k
; C3 D 2h

c2
; C4 D h

k

(h is PLANCK’sconstantD 6:626�10�34 W s2, k is BOLTZMANN’sconstant
D 1:38 �10�23 W s/K, and c is the vacuum velocity of light D 3 �108 m/s).

PLANCK’s radiation formula contains two important laws as special
cases; these had both been discovered previously:

1. The STEFAN-BOLTZMANN law: The total power emitted outwards
from a surface area AC28.1C28.1. In this chapter, the

letter A is used both for the
absorbance of a body and
also for a surface area. This
should however be clear from
context, so that the danger of
confusing the two quantities
is minimal.

of a black body increases proportionally
to the 4th power of its temperature T , that is

PW D � � A � T4 (28.7)
�
� D 2�5k4

15c2h3
D 5:67 � 10�8 W

m2 K4

�
:

1 In the visible spectral range, i.e. for � < 0:8�m, and up to T D 3000 K, the
term �1 in the denominator can be left off; the resulting error is less than 0.1%
(this then gives the radiation formula of W. WIEN).
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The sun emits radiation to a good approximation as a black body. At
its surface, the emitted power per surface area (Sect. 19.3) is:

PW
A

D �Le D 6:3 � 107 W

m2
:

According to Eq. (28.7), this corresponds to a temperature of 5700K.
See Fig. 28.6.

In practical applications of this equation, it is often desirable to determine
the net power which is lost by a body through radiation. Then, in addition
to the power emitted by the body, we must also consider the power with
which the body is irradiated from its surroundings. This reduces the net
power loss by the body. The result is

PW D � � A �T4 � T4
s

�
(28.8)

.Ts is the temperature of the surroundings; e.g. of the receiver/:

2. The displacement law of W. WIEN: The wavelength �max at which
the spectral radiance has its maximum value is inversely proportional
to the temperature T . We have:

�max � T D hc

4:97 � k D 2:88 � 10�3 mK : (28.9)

In the solar spectrum, we can observe that the maximum value of the spec-
tral radiance is at the wavelength � D 0:48�m. For a black body, this
corresponds to a temperature of 6000K (see Fig. 28.6).

28.5 Selective Thermal Radiation

The absorbance A of a black body is 1 for all wavelengths. For all
other bodies, A depends on the wavelength and is furthermore always
less than 1. For this reason, at a given temperature and wavelength,
instead of the radiance Le;� of a black body, only the fraction A � Le;�
is emitted by a non-black object. A is especially small for the limiting
cases of very strong or very weak absorption (Sect. 25.5). With strong
absorption (w < � as in metals,w D average penetration depth of the
radiation), the radiation cannot penetrate into the object; often, more
than 90% of the incident power is reflected. For “weak absorption”
(w > �), only a small fraction of the radiation is prevented from
penetrating the object by reflection, and therefore, the major portion
of the incident radiation can be absorbed. This however takes place
at great depths, too thick for many technical applications. There is
in addition a further complication: The optical constants also change
with temperature.
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Figure 28.4 ZnO smoke, glowing blue-green. In the
light of an arc lamp, the smoke casts a deep black
shadow, just like the soot particles in a glowing gas or
candle flame (Fig. 28.1).

This dependence is well understood in only a few cases and for limited
spectral ranges, e.g. for metals in the infrared. There, the reflectivity R is
determined only by the electrical conductivity of the metal (Sect. 27.17),
and its temperature dependence is well known. In general, for non-black
bodies, the dependence of the radiance Le;� on � can only be determined
experimentally, and only approximately. Very few materials can survive
large variations of their temperatures without permanent changes. Nearly
always, the internal and surface structures depend strongly on the thermal
history of the object. A microcrystalline texture is converted into a rough
mosaic of strongly reflecting single crystals, etc.

In the visible spectral range, selective thermal emission can be read-
ily demonstrated experimentally: A small quartz-glass plate is half
covered with a thin layer of ZnO, and the other half is covered with
a Pt film. On heating over a BUNSEN burner, the platinum begins to
glow red, but the ZnO glows blue-green. The reason is that hot ZnO
crystals absorb only the short-wave portion of the visible spectrum,
with a very steeply rising absorption curve; as a result, they can emit
only this part of the spectrum thermally. To make this demonstration
visible to a large audience, we heat a zinc-coated iron wire electri-
cally (Fig. 28.4): The zinc vaporizes, the vapor becomes oxidized,
and the hot ZnO smoke glows like a blue-green torch, visible from
a considerable distance.

28.6 Thermal Light Sources

Thermal light sources make exclusive use of the radiation from solid
bodies. These are heated either by chemical processes (in a flame),
or electrically by JOULE heating. There are in principle two ways of
shifting a large fraction of the emitted radiant power into the visible
spectral range: High temperatures (Fig. 28.3), and the use of selective
emitters. Their absorbance must be as close as possible to that of
a black body in the visible range, and as small as possible in other
spectral regions, especially in the infrared.

The flames which have been used as light sources since antiquity
produce a typical incandescent gaslight: Solid objects (kindling,
torches) or liquid fuels, soaked up by a wick, are converted by the
heat of combustion into gaseous hydrocarbons. These are not com-
pletely burned. Solid carbon is formed as very fine particles, called
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Figure 28.5 The spectral
radiance. The solid curve
is for an AUER mantle,
while the dashed curve
applies to a black body at
the same temperature
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soot (Fig. 28.1). These solid, very hot carbon particles produce the
radiation.

Only at the beginning of the 19th century was the production of gas
for combustion separated from the locality of the consumer. The gas
was produced centrally from solid or liquid fuels and distributed to
the consumers through pipes. The last decade “The last decade of the

19th century then saw the
second leap of progress
since PROMETHEUS”.

of the 19th century
then saw the second leap of progress since PROMETHEUS:C28.2

C28.2. According to an-
cient Greek mythology,
PROMETHEUS brought
fire back to mankind using
a torch ignited secretly on
the Sun Chariot; it had pre-
viously been taken away by
ZEUS.

The
carbon particles in the flame, which radiate nearly as “black bodies”
in the infrared as well as the visible range, were replaced by a mantle
which radiates selectively. It is heated by a colorless BUNSEN-burner
flame and emits predominantly visible radiation.

The mantle, a small bag of silk mesh, is soaked with a suspension of very
selectively absorbing cerium oxide (ca. 1%) in a thin and therefore not
strongly absorbing layer of thorium oxide. Fig. 28.5 shows the spectral
radiance @Le=@� from a commercial AUER mantle (C. AUER, 1885; T �
1800K), and above it, dashed, the form of the @Le=@� curve of an ideal
black body at the same temperature. In the blue spectral range, the curves
coincide; there, the absorbance A of the AUER mantle is nearly equal to 1.
Thus, the mantle radiates nearly like a black body in this range. Between
� D 1 and 7�m, however, the absorbance A of the mantle is small, and
therefore only a small portion of the radiance is emitted in this spectral
region, which is useless for illumination purposes. For � > 9�m, the
radiance again approaches that of a black body.

When JOULE heating is to be used to raise the temperature, today
we make use of metal wires with a high melting point. Metals have
a high reflectivity R in the infrared region (Fig. 27.8) and thus a small
absorbance A D 1 � R there. As a result, their thermally-emitted
radiation also predominates at shorter wavelengths. Temperatures of
the order of 6000K would be desirable (Fig. 28.6). But even tung-
sten, with its melting point of Tm D 3700K, can tolerate at most
temperatures of only about 2700K over longer periods of time due to
increased evaporation of the metal. This is the usual operating tem-
perature of gas-filled tungsten-filament lamps with a double-wound
filament (Fig. 28.7). The windings of the filament radiate nearly as
black bodies in the visible. Their lifetime is longer than 1000 hrs.
For tungsten lamps which produce a particularly high radiance Le,
the temperature is increased up to around 3400K. But the operating
lifetime of the filament is then only 1 to 2 hrs. In both types of lamps,
evaporation of the metal filament must be reduced by using an unre-
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Figure 28.6 The distribution of the spec-
tral radiance of a black body at 6000K,
the temperature of the sun’s surface
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Figure 28.7 A double-wound lamp filament

active gas atmosphere (Ar, Kr) or a halogen-containing gas (“halogen
lamps”).

Modern developments in illumination technology replace thermal excita-
tion by electrical excitation. The well-known and widespread “fluorescent
tubes” in use today are filled with mercury vapor (or in some cases noble
gases) and are a further development of the very first form of electrical
illumination (FRANCIS HAUKSBEE, 1705C28.3).

C28.3. FRANCIS HAUKS-
BEE, F.R.S. (died around
1713). He produced light
by shaking an evacuated
glass tube partially filled
with mercury. (Philosophi-
cal Transactions, No. 303,
Vol. 24 (1705); see also
J.L. Heilbron, “Electricity in
the 17th and 18th centuries:
A study of early modern
physics”, Univ. of Califor-
nia Press, Berkeley (1979),
Chap. VIII.)

In contrast to thermally-
excited sources, these fluorescent tubes produce a large amount of ultra-
violet radiation, which is useless to the human eye for illumination. It
is converted to visible radiation by coating the inner walls of the glass
tubes with a chemical compound that absorbs the ultraviolet light and
emits visible fluorescence light. For almost colorless fluorescent tubes,
the light emission efficiency is (80–100) lm/WC28.4, and thus

C28.4. The unit ‘lumen’ (lm)
is defined in Table 29.1.

around five
times greater than that of gas-filled tungsten-filament lamps. We should
also mention here the electroluminescence from solid-state light-emitting
diodes (LEDs). Their performance is improving rapidly; their light emis-
sion efficiency is currently over 100 lm/W.

28.7 Optical Thermometry.
The Black-Body Temperature
and the Color Temperature

Black-body radiation and its laws find an important application in the
measurement of temperatures above 600 ıC. Above 2600 ıC, optical
thermometry is in fact the only practicable method of temperature
measurement2.

2 Gas thermometers with iridium vessels can be applied up to 2000 ıC. Ther-
moelements made of tungsten and a tungsten-molybdenum alloy can operate up
to 2600 ıC.
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Figure 28.8 Optical temperature measurement using a pyrometer. In this
demonstration experiment, the radiance of an arc-lamp condenser is com-
pared with that of a tungsten-filament incandescent lamp. At the correct value
of the lamp current, the filament of the tungsten lamp becomes invisible.

In such an application, we want to compare the radiance Le;� within
a narrow spectral range of a body of unknown temperature with the
radiance Le;� of a black body at a known temperature T . The simplest
method for all comparisons is a null method: We vary the known tem-
perature of the black body until its radiance is the same as that of the
body whose temperature we wish to measure. Then we define the
known true temperature T of the black body as the “black-body tem-
perature” Tb of the body of unknown temperature. The black-body
temperature Tb of a body thus means that within a limited spectral
range which should always be quoted, the body radiates with the
same radiance as a black body at the true temperature T . The true
temperature of a bodymust always be higher than its black-body tem-
perature. Otherwise, the body could not emit the same radiance Le;�
as a black body with A� D 1, in spite of its absorbance A� < 1.

Based on this definition, practical and convenient pyrometers are con-
structed. Their main component consists of a tungsten-filament lamp with
variable current, an ammeter and a red filter. The tungsten filament is
placed in front of the image of a radiating surface and its radiance is varied
by changing the current. When the radiance of the filament and of the sur-
face coincide, the filament becomes invisible (demonstration experiment
in Fig. 28.8). The instrument is calibrated using the surface of a black
body, and then the true temperatures of the black body are marked on the
scale of the ammeter.

The discrepancies between the “black-body temperature” and the
“true” temperature are often considerable, even for materials with
little selective absorbance, e.g. tungsten, which is technically very
important. This is shown in Table 28.1.

Table 28.1 Optical temperature measurements (in K) with tungsten

True temperature T of the tungsten 1000 1500 2000 3000
Black-body temperature Tb, measured
with the radiance Le;� in the region
around � D 665 nm

964 1420 1857 2673

Color temperature 1006 1517 2033 3094

(The ratio of the true to the black-body temperature is not constant, because the
absorbance of the metal varies with temperature.)
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Figure 28.9 A demonstration experiment for the measurement of the color
temperature. The body of unknown temperature here is an electrically-heated
SiC rod. As a comparison object, a black body should in fact be used; but
for this demonstration, a tungsten-ribbon lamp with a variable current source
is quite sufficient. A definite color comparison requires approximately the
same irradiation intensities on the screen; they are obtained by adjusting the
iris diaphragms

For this reason, in addition to the black-body temperature, another
temperature has been defined, called the color temperature. For its
definition, the unresolved visible radiation is used, that is without
a color filter, and instead of the radiant fluxes of the two objects, one
compares their hues (red, yellow-red, etc.). Here, also, a null method
is again the simplest, that is adjustment to color equality. A demon-
stration experiment is sketched in Fig. 28.9. The true temperature of
the black body which applies at color equality is defined as the color
temperature of the body which is being compared to it. The color
temperature deviates in general much less from the true temperature
than the black-body temperature does. An example is also given in
Table 28.1.

Rationale: In Fig. 28.10, two solid curves of the spectral radiance @Le=@�
are shown for the visible range; both hold for the same arbitrarily-chosen
temperature. For both, the absorbance over the whole visible spectrum has
been assumed to be constant. For the upper curve, we have set A� D 1; it
thus applies to a black body. For the lower curve, A� D 0:6 was chosen.
The ordinates of the two curves thus differ only by a constant factor of 0.6
(bodies with an absorbance which is independent of �, with A� < 1, are
frequently called “grey”). The ratio

Spectral radiance in the wavelength range around �1
Spectral radiance in the wavelength range around �2

D F (28.10)

characterizes the temperature range used (Eq. (28.5)). For our sensory
perceptions of light, the ratio F determines the hue of the emitting body.
The hue is thus the same for the black body and the non-black body, in
spite of their different radiant fluxes, and conversely, the same color hue
implies strictly equal true temperatures.
In general, however, the case A� D const is not fulfilled for the non-black
body. The lower curve then has a shape such as shown for example by the
dashed or the dotted curves (Fig. 28.10). In that case, color equality means
only approximate equality of the temperatures. The color temperature is
lower than the true temperature in the case of the dashed curve, and it is
higher in the case of the dotted curve. But such deviations become serious
only for bodies with extremely selective absorption.
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Figure 28.10 Measuring the color
temperature. The values shown
apply to the direction perpendicular
to the emitter surface.
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The blue of the sky corresponds to a color temperature of around
12 000K; in April and May, even up to 27 000K. This means that in
the visible spectral range, the distribution of the radiance of the light
from the sky, which results from diffuse (RAYLEIGH) scattering, is
the same as that from some extremely hot stars (e.g. Sirius, 11 200K,
or ˇ Centauri, 21 000K).
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Visual Perception
and Photometry 29

29.1 Preliminary Remark. The Need
for Photometry

The eye, like our other sensory organs, has been the object of much
physiological and psychological research. Nevertheless, physicists
must also be aware of the more important properties of their sense of
visual perception.

In physics, we classify radiation according to its radiant power PW .
(We also call this quantity the radiant flux to emphasize the “flow”
of energy carried by a beam of radiation, e.g. towards a receiver; see
Chap. 19). Figure 15.4 showed the measurement of radiant power in
one of the usual units, e.g. in watt. The radiant power d PW as defined
there is contained within a solid angle d˝ . Then we define the

Radiant intensity I# D Radiant power d PW#

Solid angle d˝
: (19.2)

The radiant intensity (or simply intensity) is thus measured in physics
as a derived quantity with the unit 1W/sr.

For the sense of visual perception, the physical radiant power and
the quantities derived from it (Chap. 19) are not relevant. Our vi-
sual sense responds to radiant power only very selectively in a small
region of the electromagnetic spectrum. Therefore, a method of mea-
suring the radiation had to be found in which the radiant power is
evaluated only in terms of its effect on the human eye, i.e. on our vi-
sual perceptions (photometry). The fundamentals of photometry will
be treated in Sects. 29.2 through 29.7.

Everything which is seen by our eyes, including our own bodies, con-
sists of colored, variegated or monochrome surfaces. We see them,
usually in three dimensions, as more or less bright and often shiny.
Sections 29.8 to 29.13 are intended to show under which conditions
our perceptions of color and brilliance occur.
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29.2 Experimental Aids for Varying
the Irradiance

For the demonstrations in this chapter, we will require rapid and
convenient variations of the irradiance (previously known as the ir-
radiation intensity):

Irradiance Ee D Radiant intensity I# of the light source

.Distance R to the source/2
D d PW#

dA0 :

(19.4)

This defining equation (cf. Eq. (19.4) and Comment C19.4.) shows
the two possibilities: Either we change the distance R from the source
to the irradiated area dA0 (at normal incidence) in the denominator, or
we change the radiant intensity I# of the source in the numerator.
Among the available experimental possibilities, two will suffice for
the following:

1. A rotating sector wheel (“chopper”), as shown in Fig. 29.1. It
changes only the time average of the radiant intensity, and thus is
completely independent of the spectral range employed. A schematic
drawing of this method can be seen in Fig. 29.2 (˛).

Figure 29.1 Rotating sector wheel (“chopper”) for varying the time average
of the radiant intensity. More than about 30 to 60 dark phases per second
are no longer perceived by the eye (cf. motion picture camera!). The small
black circle indicates the cross-section of the light beam. A carriage allows
the chopper to be shifted to the side in the direction of the double arrows.

α β

Figure 29.2 Schematic drawings of two groups of technical methods for
varying radiant intensities. Left a rotating sector wheel, right two polariz-
ing prisms.
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2. Grey filters (see Fig. 27.8) of variable thickness, or two polarizing
prisms or foils, one behind the other (see Sect. 24.3). They can be
used only within limited spectral ranges. A schematic of this method
is also given in Fig. 29.2 (ˇ).

29.3 The Principles of Photometry

The fundamental principle of photometry is simple: We measure the
radiant intensity using our visual perception sense as a new base
quantity, termed the “luminous intensity”. The unit of this new base
quantity is realized in terms of the intensity of an internationally
agreed-upon standardized light source and is called 1 candela1 (ab-
breviated cd).

The meaning of this statement is explained by Fig. 29.3. Its upper
part shows an incandescent lamp whose luminous intensity is to be
measured; its lower part shows three standard lamps, sketched for
simplicity as candles. A section of the same printed text is pasted
onto the two areas dA0. The number of standard lamps has been
empirically chosen so that the lower area appears to be “illuminated”
by them in just the same way as the upper area is “illuminated” by
the incandescent lamp: This means that one can read the text equally
well in each of the two areas. Then for our eyes, we could replace the
incandescent lamp by three standard lamps at its position and would
see the text equally clearly. If each standard lamp has a luminous
intensity of 1 cd, then the luminous intensity of the incandescent lamp
is thus equal to 3 cd.

For the luminous intensity as a new base quantity, we then find
the following juxtaposition of photometrically- and physically-
determined quantities:

Separating partition

dΩ = Solid angle Disks with the
same printed text

R

dΩ dA'

dA'dΩ

Figure 29.3 An example of the principle of photometry: For the eye, the
incandescent lamp could be replaced by three standard lamps at the same po-
sition, represented here as candles. In the technical version, one employs only
a single standard lamp and reduces the luminous intensity from the incandes-
cent lamp on the upper disk to one third. The method of accomplishing this
was described in Sect. 29.2.

1 Candela (the second syllable is stressed) is the Latin word for candle. The
luminous intensity is thus denoted by the same word that refers to a commercially-
available object, for example a light from burning wax.
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Table 29.1 Some quantities relevant to photometry, and their SI units

Quantity Definition Unit
Luminous intensity Base quantity candela (cd)

Luminance Luminous intensity/
Apparent source area
(Fig. 19.3)

candela

meter2For the
Source

Luminous flux Luminous intensity � Solid angle candela � steradian D
1 lumen (lm)

For the
Receiver

Illuminance
Luminous flux

Receiver area
D

Luminous intensity of the source

(Distance to the source)2

candela � steradian
meter2

D
lumen

meter2
D 1 lux .lx/

Note: The luminance is also sometimes called the “luminous density”, and the illuminance is sometimes called the
“illumination intensity”. See Comment C19.2. and the reference there.

1. From the source:

Luminous intensity instead of Radiant intensity .Power=Solid angle/

Luminance instead of Radiance
�
Power/Solid angle

Source area dA

�

Luminous flux or
Luminous power

�
instead of

�
Radiant flux or
Radiant power

�
.Power/

2. For the receiver:

Illuminance instead of Irradiance (Power/Receiver area dA0)
(Illumination intensity) (Irradiation intensity)

3. For both the source and for the receiver:

Luminous energy instead of Radiant energy.

Up to 1979, the standard lamps were “black bodies” with an aperture
of .1=60/cm2 and a temperature of 1770 °C, the solidification tem-
perature of platinum. Previously, before 1942, a gas lamp named for
F. HEFNER (an Austrian physicist, 1845–1904) was used. Its radiant
intensity in the horizontal direction was termed a “Hefner candle”.
One Hefner candle is � 0:9 candela.C29.1

C29.1. Since 1979, the fol-
lowing definition of the
base unit candela has been
in effect: “The candela is
the luminous intensity in
a particular direction of
a radiation source which
emits monochromatic ra-
diation at the frequency
540 THz and whose radi-
ant intensity in that direc-
tion is (1/683) W/sr”; see
e.g.: PTB-Mitteilungen 117
(2007), No. 2; English: see
http://physics.nist.gov/cuu/
Units/current.html Specially-
constructed incandescent
lamps are employed in prac-
tice as secondary standards.

The base quantity ‘luminous intensity’ suffices in order to determine
all the other quantities needed in photometry as derived quantities2.
If the units of these derived quantities are given special names, as
is often the case, then this harmless measurement specification takes
on the aspect of a truly esoteric doctrine. In Table 29.1, we have
collected the names of some of these quantities and their units.

2 Of course, one could introduce other physical quantities which can be related to
our visual perception sense as base quantities, for example the luminous density
or photometric brightness (now called the “luminance”), i.e. the radiance as per-
ceived by the eye. Then the luminous intensity would become the derived quantity
luminance � source area, etc. The use of the luminous intensity as base quantity
makes it experimentally simpler to develop the photometric measurement proce-
dures.

http://physics.nist.gov/cuu/Units/current.html
http://physics.nist.gov/cuu/Units/current.html
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29.4 Definition of the Equality
of Two Illuminances

All of photometry stands and falls with our ability to identify two
areas or “fields” which are perceived as “equally illuminated” by
different light sources; or, more precisely stated, we perceive their
illumination intensities, or illuminances, as being equal. In compar-
ing two light sources of similar construction, for example a large and
a small tungsten-filament incandescent lamp under normal current
strengths, the approach to equal illuminances is readily detected. We
let the two areas dA0 in the schematic of Fig. 29.3 be adjacent to each
other. At a precisely equal illuminance, the boundary between them
vanishes, and we can no longer distinguish the two illuminated areas
from each other.

The situation is different in the comparison of different types of light
sources, e.g. a yellow sodium-vapor lamp and a blue-green mercury-
vapor lamp, or two arc lamps with colored filters F1 and F2, one a red
filter and the other a blue filter. In such cases, the concept of equal
illuminance or illumination intensity must first be defined. There are
several possibilities for accomplishing this:

1. Visual sharpness or acuity. This possibility was already explored
in Sect. 29.3. Now, we suppose that on a sheet of newsprint, there
are two rectangular fields next to each other. Each one is illuminated
with an arc light, one with a red filter, the other with a green filter
(Fig. 29.4). The illuminance of the one field can be continuously
varied in a quantitatively measurable manner using the apparatus ˇ.
With a remarkable accuracy, one can adjust the two fields to have
the same legibility or the same visual sharpness. Therefore, for any
color, we can define the visual sharpness or acuity as characterizing
equal illuminances.

2. Delay time. The two rectangular, colored fields are projected onto
a wall screen side by side with a vertical boundary between them, but
interrupted by the shadow of a horizontal rod. The rod is moved up
and down. Its moving shadow in general doesn’t appear to be a hor-
izontal straight line, but instead it seems to show a dislocation at the
boundary between the two fields, as shown e.g. in Fig. 29.5. That
is, our sensory system perceives the motion only with a certain delay

β

F1

F2

+

+
−

−

Figure 29.4 The definition of equal illuminances using visual acuity (sharp-
ness). The surrounding area in this and in the following photometric
demonstration experiments is lit with an illuminance of about 10 cd/m2. Then
it radiates diffuse light itself, with a luminance of about 3 cd/m2.
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Figure 29.5 The definition of equal illuminances
through equal delay times

time, which is dependent on the illumination intensity. Again, we can
vary the illuminance of one of the fields continuously (apparatus ˇ),
and then with good accuracy, we can adjust it to eliminate the appar-
ent dislocation of the rod’s shadow. Thus, independently of the color,
we can use the equal delay times to define equal illuminances.

In technical photometers, stereoscopic effects can be produced by delays of
differing lengths. When they disappear, the illuminance is equal. Demon-
stration experiment: Hang a metal ball by two cords (bifilar, length � 4m)
as a gravity pendulum and let it swing in one plane (the bifilar suspension
guarantees this; T � 4 s). The observer views it from the side with both
eyes, but holds a piece of dark or colored glass in front of one eye. Then the
ball appears to follow an elliptical path. The direction in which it moves
around the ellipse depends on whether the reaction time of the left eye or
the right eye is delayed by the dark glass.

3. The limiting frequency of flickering. Intermittent illumination
(stroboscopic light), produced e.g. by a rotating sector disk with ra-
dial sectors as in Fig. 29.6, causes flickering. This flickering appears
to vanish above a certain limiting frequency3. The higher the illu-
mination intensity (variable using the apparatus ˇ), the higher the
limiting frequency. When the illumination is of different colors, the
same limiting frequency of flickering can be defined to indicate equal
illuminance.

4. Flicker-free field exchange. The two fields illuminated with col-
ored light are no longer projected beside each other, but are rather
precisely superimposed on each other (Fig. 29.7) and presented al-
ternately to the eye of the observer, around 10 times per second. In

βF1

F2

+

+
−

−
S

Figure 29.6 The definition of equal illuminances by equal limiting frequen-
cies of flickering. The rotating sector disk S with radial sectors opens both
light sources simultaneously and for equally long times.

3 The limiting frequency is, from experience, smallest when the durations of the
dark and light intervals are equal. (In motion-picture films, about 0.01 s. Every
image is projected twice and only every second dark interval is used to change to
the next image; the image frequency is thus 25Hz.)
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Figure 29.7 The definition of equal illuminances by means of a flicker-free
field exchange

general, one sees the exchange of the two images as a flickering of
the color hue. By changing the illuminance of one of the sources
(apparatus ˇ), one can suppress the flickering. The eye then sees the
fields in an unchanging, mixed color. This flicker-free field exchange
can be defined as an indicator of equal illuminances, independently
of the colors used.

These different definitions for the equality of two illuminances lead
to moderately good agreement among the results4. Making use of
them, the luminous intensities of various sorts of light sources can
be compared and measured in multiples of the conventional unit, the
candela. The numerical values obtained from photometry naturally
hold only for an “average normal human”; and even for such a per-
son, they hold only under normal conditions, and not when some sort
of stress-related disturbances have affected the subjective well-being
of the person.

29.5 The Spectral Distribution
of the Sensitivity of the Eye:
The Luminosity Function

According to the considerations in the previous section, luminous
intensities for any color can be measured in candela. As a result, we
can determine experimentally how the ratioC29.2 C29.2. It is equivalent to the

definition

E� D Luminous flux

Radiant flux

(unit: lumen/watt), as plotted
on the right ordinate axis of
Fig. 29.8.

E� D Luminous intensity, measured photometrically in candela

Radiant intensity, measured physically in watt/steradian
(29.1)

4 One would have to give preference to the definition whose results best obey
an additivity rule. Illuminances are additive; for example, following one of the
methods described, we determine two illuminances A and B. When added, they
yield the illuminanceC D ACB. When a direct measurement by the same method
also gives the value C, we can say that the method obeys the additivity rule. In
this sense, definition no. 4 appears to be the best.
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Figure 29.8 The spectral distribution of the luminosity function or luminous
efficiency E� of the eye, for an eye adapted to bright light, as defined by
the current internationally agreed-upon values.C29.3C29.3. The measurement of

the luminous efficiency curve
(Fig. 29.8) is a complex pro-
cess. Here, as in Sect. 28.3,
we are dealing with wave-
length intervals which are
small and are denoted by
their central wavelength.
The curve was established
by the International Com-
mission on Illumination
(Commission Internationale
de l’Eclairage, CIE) in
1931 for a bright-adapted
eye (“photopic curve”). See
e.g. https://en.wikipedia.org/
wiki/Luminosity_function
and http://www.cie.co.at/ for
more details.

If the 10% of all male
observers with minor color-vision disturbances are eliminated, then the max-
imum would be shifted to a wavelength of 565 nm. Conventionally, the
wavelength range from 400 to 750 nm is termed “visible”. This is, however,
somewhat arbitrary.

depends on the wavelength of the radiation. One can denote E� as
the spectral sensitivity of the eye, or alternatively as the luminosity
function or luminous efficiency as a function of the wavelength �.

The methods of measurement are sufficiently well known to us from
the previous sections. The result � averaged over a year for hundreds
of individuals � is plotted in Fig. 29.8. It holds for an eye which
is adapted to bright light, i.e. for a state of the eye which applies
when the luminance of light sources (lamps) or the illuminance of
reflected light (room walls, furniture, printed pages) is > 3 cd/m2.
The maximum of the curve then lies at a wavelength of � D 555 nm;
at this wavelength, Emax D 683:002 cd

W=sr D 683:002 lm
W .

The position of the maximum of the spectral sensitivity of the eye can be
demonstrated qualitatively by very simple experiments. We project the
spectrum from an arc light onto a wall screen and assume that the radiant
intensity of the different wavelength regions is roughly constant, a suffi-
ciently good approximation. We then place a sector disk in the optical
path and gradually increase its rotational frequency. At first, the whole
spectrum flickers, then its ends (violet and red) become flicker-free. The
region which is still flickering becomes narrower and narrower. Finally, the
limiting frequency of flickering is reached in the green region of the spec-
trum; this is the region of highest sensitivity. Or, still more simply: We
remove the sector disk and hold a needle horizontally in front of the slit.
It divides the spectrum along its whole length horizontally by a straight,

https://en.wikipedia.org/wiki/Luminosity_function
https://en.wikipedia.org/wiki/Luminosity_function
http://www.cie.co.at/
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dark streak. We then move the needle slowly up and down; the dark streak
appears to be bent into a curved arc, its ends in the red and violet regions
lag behind. The top of the arc is in the green region, i.e. again in the region
of maximum sensitivity, where the delay time of the eye is shortest.

At low illumination intensities, the light receptors of the bright-
adapted retina of the eye, the “cones”, are no longer functional.
Instead, other receptors, the “rods”, take over. At illumination in-
tensities of < 3 � 10�3 cd/m2, only the rods are active. The spectral
sensitivity distribution of the eye is then shifted towards shorter
wavelengths. Its maximum lies around 510 nm. The eye still reacts
to an irradiance of around 6 � 10�13 W/m2, i.e. its pupil, with an area
of 5 � 10�5 m2, must pass a radiant power of about 3 � 10�17 W or
a luminous flux of around 2 � 10�14 lm5. With the rods alone, the eye
can no longer see objects in color � “At night, all the cats are

grey”.
“At night, all the cats are grey”.

The rods are not present in the angular region of greatest visual acu-
ity (see the last paragraph of Sect. 18.14). Therefore, objects seem
to disappear when looked at directly (fixed), and they reappear when
one looks past them. We see “ghostly lights” and will-o’-the-wisps.

To demonstrate these effects, we completely darken the lecture hall and
project a spectrum onto the wall screen while varying the illumination in-
tensity from the slit using two crossed NICOL prisms or Polaroid filters
(Sect. 24.3). After a few minutes, the observers are all dark-adapted. The
spectrum appears to be a silvery-shining band, with a clear maximum in-
tensity in the region that was previously “blue”. When one fixes an object
directly, it is invisible; one has to “look past it” in order to see it.

Having determined the two spectral sensitivity distributions for the
bright- and the dark-adapted eye, we have laid down the physio-
logical basis of photometry. For technical and economic purposes,
aptly-chosen average values (e.g. as in Fig. 29.8) can be agreed upon
as internationally binding. Based upon them, all the necessary prac-
tical measurements of light can be carried out with instruments only,
without reference to human visual perceptions. It is not difficult to
provide a photoelectric radiometer (a photocell and an ammeter, see
Fig. 15.6) with the same spectral sensitivity as that of the eye. The
selective photoelectric effect of the alkali metals, especially cesium,
is very well suited for this purpose (cf. 13th edition of “Optik und
Atomphysik”, Chap. 18); it can be combined with special filters. Such
arrangements are often called objective photometers. They indicate
the radiant power (watt) with the same measure, which varies with
wavelength, as a conventional, average “normal eye”. The scale of
the ammeter can be directly calibrated in a photometric unit, e.g.
candela. In this and other forms, technical photometry solves by con-
vention the task of providing economically usable data and avoiding
controversies. For the vision of a single individual, these data are of
course not strictly applicable.

“Where the results of such
data contradict visual per-
ceptions, the eye is always
right!”

Where the results of such data contra-
dict visual perceptions, the eye is always right!

5 Corresponding to roughly 100 light quanta/second.
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29.6 The Rise Time and Accumulation
Time of the Eye

The results of the previous section hold only for steady illumination
of the eye. Only then is the luminous intensity proportional to the
radiant power. Our visual sensory perceptions are initiated by photo-
chemical processes in the retina of the eye. The concentration of their
reaction products is by no means always and continuously propor-
tional to the absorbed light energy. Thermal processes and biological
regeneration in the living cells effect a reconstitution. As a result,
the concentration never exceeds a steady-state limiting value which
is proportional to the radiant power. This value is however reached
only after a certain rise time. As long as the irradiation time is short
compared to this rise time, the photochemical reaction products are
accumulated. During the accumulation time, only the product of the
radiant power and the irradiation time is relevant; it measures the en-
ergy input.

Example: For the bright-adapted eye, the accumulation time is � �
0:05 s. Therefore, one can look at the disk of the sun (luminance
� 109 cd/m2) for a time of e.g. 5 � 10�5 s without perceiving it to
be brighter than a continuously-observed, weakly glowing tungsten
ribbon lamp (luminance � 106 cd/m2).

Application: We can allow a lamp to glow continuously, and then bymeans
of brief overload pulses, we can produce additional flashes of light, for
example to serve as signals. The human eye does not perceive the signals,
but they can be registered by a receiverwhich makes use of a photo detector
with a very short rise time.

29.7 Brightness

This often-used word from everyday language is rather ambiguous.
It denotes for example the quality of a sensation: the chromatic hue
‘violet’ can never be perceived to be as bright as the chromatic hue
‘yellow’. Usually, brightness is used in the sense of luminance, mea-
sured in candela/m2, both for primary light sources and for reflection
(secondary) sources. In addition, everyday language uses the word
‘brightness’ for the luminous intensity of a lamp, of a firefly, etc.,
measured in candela, without considering the size of its radiant area.
In astronomy, finally, the word ‘brightness’ is used in three different
ways; most frequently in the sense of illuminance:

EL D Luminous flux

Receiver area
D Luminous intensity IL of the star

.Distance R to the star/2
: (29.2)

Astronomers compare only the illuminances EL;1 and EL;2 from two stars
as registered on the earth. Then they define (on the basis of a long historical
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development) the visual magnitudes mi by the equation

m2 � m1 D 2:5 log
EL;1

EL;2
: (29.3)

The difference between two magnitudes m2 and m1 is thus proportional to
the logarithm of the ratio of the corresponding illuminances from the two
stars. The value m1 is taken to be C 2:12 for the north polar star, Polaris
(an arbitrary convention). On this scale, the visual magnitude m2 of a star
which can just be discerned by the naked eye is equal to C 6. Its value
for ˛ Cygni (Deneb) is C 1:3; for Sirius, it is �1:6; and for the sun, it is
�26:7. (Compare the definition of the phon in Vol. 1, Sect. 12.29).
In Eq. (29.3), the illuminance EL is used. With known distances R, as-
tronomers instead use the luminous intensity IL D ELR2 (Eq. (29.2)), and
define the difference between two numbers M1 and M2 by the equation

M2 � M1 D 2:5 log
IL;1
IL;2

D 2:5 log
EL;1R2

1

EL;2R2
2

: (29.4)

These numbers are called the absolute magnitudes or absolute brightness.
Combining Eqns. (29.3) and (29.4) yields

M2 � M1 D m2 � m1 C 5 log
R1

R2
: (29.5)

For a fixed star at a distance of R1 D 10 parsec6 which has a “visual mag-
nitude” of m1 D 0, M1 is assigned the value 0. Thus, for a fixed star
at a distance R2 and with a visual magnitude of m2, we find the absolute
magnitude to be given by the number

M2 D m2 C 5 log
10 parsec

R2
; (29.7)

or, if we use Eq. (29.9) to express its distance R2 as a parallax7 from the
earth, replacing the distance by ˛2:

M2 D m2 C 5 C 5 log
˛2

100 : (29.10)

The brightness or magnitudes which are termed ‘absolute’ are thus those
which would be observed from a distance of 10 parsec.

6 In astronomy, the distance unit ‘parsec’ is equal to that distance R0 from which
the radius of the earth’s orbit r would be seen to subtend an angle of 100, that is

R0 D r=100 D 1 parsec D 3:08 � 1016 meter (29.6)

.100 D .1=3600/ı D 4:85 � 10�6 rad; r D 1:49 � 1011 m/:
7 The parallax ˛ of a fixed star is defined as the angle

˛ D Radius of earth’s orbit r

Distance to the fixed starR
: (29.8)

From Eqns. (29.6) and (29.8), we find that a fixed star with a parallax ˛ is at
a distance

R D 100

˛
� R0 D 100

˛
parsec (29.9)
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Table 29.2 Examples of luminances

Luminance
in cd/m2

Primary light sources
Night sky ca. 10�11

Neon lamp ca. 10�5

Gas mantle lamp 6 � 10�4

Mercury arc light (2–6/ � 106
Tungsten filament lamp (gas-filled) (5–35/ � 106
Carbon arc crater (black-body temperature D 3820K) 1:8 � 108
ditto, with added cerium fluoride (BECK lamp) (4–12/ � 108
High-pressure mercury arc lamp (quartz bulb, 45 bar) up toa 6 � 108
Sun .10–15/ � 108
Reflective sources (secondary sources)
Objects in illuminated working and living rooms < 102

Objects in workplaces for very fine or precision work ca. 103

Objects on the street, sun behind the observer ca. 5 � 103
Objects outside in cloudy weather ca. 3 � 103

aFor short times (fractions of a second), this maximum value may be greatly ex-
ceeded, up to a large multiple of the luminance of the sun.

The photographic brightness refers to the ratio

E0
e D Photochemically-evaluated radiant intensity I of the star

.Distance R of the star from the earth/2
: (29.11)

Using the quantitiesE0
e instead of EL, the astronomers then define numbers,

using an equation analogous to Eq. (29.3), which are termed “photographic
magnitudes”.
The luminosity in astronomy refers to two different quantities: First, the
total radiant power emitted by a star (measured e.g. in watt); and second,
a pure number, namely the ratio of the absolute magnitude of a star to the
absolute magnitude of the sun .Mˇ D C 4:8). These numbers lie between
around 105 (for giant stars) and 10�6 (for dwarf stars).

Given“Given this desolate mud-
dle, we should avoid the
word ‘brightness’ as far as
possible”.

this desolate muddle, we should avoid the word ‘brightness’
as far as possible. The

LuminanceLL D Luminous intensity

Projected source area (Fig. 19.3)
(29.12)

is independent of the direction of emission when LAMBERT’s cosine
law applies (Sect. 19.2); that is, both for primary light sources and
for ideally diffuse-scattering reflectors. Therefore, we see the sun’s
sphere as if it were a uniformly-emitting disk, just like a white ball
that is illuminated uniformly from all sides (see however the footnote
in Sect. 19.3).

The eye can adapt itself to an astonishingly wide range of lumi-
nances, namely the range between 2 � 10�6 and 2 � 105 cd/m2. For ev-
ery state of adaptation, a certain maximum luminance should not be
exceeded; otherwise dazzling or temporary blindness occurs, i.e. the
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visual acuity of the eye and its ability to distinguish colors are greatly
reduced. At the upper limit of the eye’s adaptation range, first dis-
comfort and then pain warn of the impending permanent eye damage.
The luminances of many light sources exceed the adaptation range of
the human eye. This is shown in Table 29.2.

The influence of optical instruments such as telescopes on the lu-
minance of the objects being observed is very important. But here,
psychological aspects also play a significant role.

29.8 Achromatic Colors. The Conditions
for Their Formation

The achromatic colors can be arranged along a series, called the grey
scale. At one end is white, at the other end is black. The transition
between them includes all the grey colors. It can be continuous or in
discrete steps, e.g. in 10 steps of equal change in contrast. To demon-
strate the grey scale, we first make use of commercially-available
white, grey and black paper (Fig. A1 on Plate 1 at the end of this
chapter) and illuminate it with sunlight or with natural light from an
incandescent lamp (see the end of Sect. 16.1).

Physically, all these achromatic surfaces have one thing in common:
In the visible spectral range, their reflection coefficients depend
only weakly � in the ideal case not at all � on the wavelength
of the light. The different achromatic surfaces differ only in their
overall reflection coefficients. This is around 90% for white paper,
but only about 6% for black paper. For this reason, all achro-
matic surfaces (white, grey, and black) reflect visible radiation
with the same spectral distribution; only their radiance differs:
. Power
Solid angle�Area ; unit:

W
sr�m2 /, or, measured photometrically, their lumi-

nance (in cd/m2). This corresponds to a very important empirical
fact: Every achromatic surface appears to have the same color,
white, when it is illuminated by itself in a darkened room with natu-
ral light.

Demonstration experiment: In Fig. 29.9, a circular aperture is placed in
front of the condenser lens of an arc lamp and imaged on a screen. In the
well-lighted lecture room, a white cardboard sheet is hung up, and then the
lights are dimmed: One then sees a luminous white circular disk. Then the
arc lamp is switched off, the white cardboard is secretly replaced by a black
cardboard, the power to the arc lamp is increased and the observation is
repeated. The observer again sees a luminous white disk, something like
the luminous white moon against the dark sky.

I

α

+
−

Figure 29.9 How the color white comes about (Video 29.1)

Video 29.1:
“The color white”
http://tiny.cc/dgggoy

http://tiny.cc/dgggoy
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Figure 29.10 How the colors grey and black are formed

An achromatic surface alone can thus never be seen as grey or black.
To see grey or black, the eye requires a second area with a higher
luminance in its field of view. This can be arranged in two different
ways: Either we use at least two different achromatic surfaces with
different reflection coefficients and illuminate them with a common
source of natural light; or we use only one achromatic surface and
illuminate two separate fields on it with two lamps of different lu-
minous intensity. The latter method is shown in Fig. 29.10. Lamp I
illuminates a circular “inner field”, while lamp II illuminates only an
“outer field” which is bounded outside by a rectangular border. Both
illumination intensities can be varied continuously over a wide range
using the apparatus ˛ (e.g. sector wheels; cf. Fig. 29.1).

At first, only the inner field is illuminated and the luminance of its
scattered radiation is adjusted to a medium value. The inner field
appears to be pure white. Then, the inner field � without changing
anything in its own illumination � is surrounded by a luminous outer
field. Immediately, the color of the inner field changes to grey. The
more intense the illumination of the outer field, the darker the grey of
the inner field. We can pass through the entire grey scale up to deep
black, without, we repeat, making any changes at all in the illumina-
tion of the inner field. At the end, the illumination of the inner field is
removed, so that only its illuminated frame remains. Now, the inner
field appears to be blacker than the best matte black paper or even
soot.

Summary: A surface becomes black not through its own radiation, but
rather as a result of the radiation from its surroundings. Without light,
we see nothing at all; black can be seen only through light from the
surroundings. Grey colors are formed by the presence of two visible
radiations. One of them is radiated from the object itself, the other
from its surroundings. The ratio of the two luminances determines
the degree of greyness (the grey scale value).

29.9 Chromatic Colors, Their Hues, and
Their Tinting and Shading

With natural light, we produce a continuous spectrum. Even when
we look at it only fleetingly, we are surprised by the lack of variety
of different colors. A large group, the purple hues (wine red, etc.), is
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Figure 29.11 Tints and shades of chromatic colors (Video 29.2) Video 29.2:
“Tinting and shading of
chromatic colors”
http://tiny.cc/sgggoycompletely missing. We search in vain for the most frequently-used

colors of our clothing, our furniture and our wall coverings. There is
no brown, no pink, no dark green, etc. Alongside a commercial color
chart, the range of colors in the spectrum appears limited and paltry.

We can, to be sure, quite properly refer to radiation within a very nar-
row wavelength range as monochromatic, that is as a ‘pure color’: We
see it as a characteristic chromatic hue or ‘chroma’. But we cannot
turn this sentence into its converse: Only in rare cases is monochro-
matic light, that is light that we see as a ‘pure’ chromatic hue, identi-
cal to the radiation from a narrow wavelength range! (Sect. 29.10).

It is difficult to bring order into the sheer unmanageable variety of
chromatic hues. Every chromatic color exhibits a certain hue which
cannot be precisely defined, namely red, yellow, purple etc. In addi-
tion to this hue, another characteristic may be present: The color may
be tinted or shaded, i.e. a red can be whitened (tinted) or darkened
(shaded); it may furthermore often show a grey shading.

‘Pure’ colors which are not tinted or shaded can be produced using
filters and can be ordered on a circle according to their similarities
(cf. Fig. A2 in Plate 1 at the end of this chapter). In this color circle,
every hue is more similar to its two immediate neighbors than to any
other hue on the circle.

In order to demonstrate tints and shades, Fig. 29.10 is complemented
by a third projection lamp (Fig. 29.11). It illuminates only the inner
field, initially through a red filter. Then four experiments are carried
out, one after the other:

1. Only lamp III is turned on; the inner field appears as a pure or free
red hue.

2. Now we want to add a white tint to the red in the inner field.
To accomplish this, the inner field is additionally illuminated with
light from lamp I, and its illuminance is gradually increased using
the apparatus ˛. This leads us from the pure red through pink to an
achromatic white.

3. In the third experiment, the red of the inner field is to be given
a dark shading. Lamp I is switched off, and in its place, the outer

http://tiny.cc/sgggoy
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Iris diaphragm

brown – white
cardboard disks

Figure 29.12 Black shading of a chromatic color is possible only with the
aid of a second illuminated area

field is illuminated with increasing intensity by the natural light from
lamp II. We pass from the pure red via pleasant dark red hues to an
achromatic black in the inner field.

4. Finally, the pure red of the inner field is to be given a grey shading.
To accomplish this, it has to be overlaid simultaneously with white
and black, that is both the inner field (lamp I) and also the outer field
(lamp II) illuminate the screen with their natural light. Making use
of the apparatus ˛, we can vary the illuminance from both lamps and
can pass from a pure or free red via greyish-red to any arbitrary shade
of achromatic grey in the inner field.

All the tints and shades of a given color hue can be represented two-
dimensionally by “HERING’s triangle” (Fig. A3 on Plate 1 at the end
of this chapter). One such tinting and shading triangle thus corre-
sponds to each individual hue on the color circle. In this manner, all
the manifold colors in nature and art can, through the right combina-
tions, be catalogued and designated by letters and numbers. This is
used in commercial color charts, which are based without exception
on the classic works of EWALD HERING (1834–1918).

A black- or grey-shaded chromatic color can, just like a black or
grey shade, never appear alone in the field of view. In Fig. 29.12,
a brown paper disk is placed in front of an achromatic screen and, in
the darkened lecture hall, it is first illuminated with natural light. One
sees no brown, but instead only the corresponding unshaded hue that
corresponds to brown, a reddish-yellow color.8

C29.4. This disrespectful
experiment was described in
POHL’s “Optik” beginning
with its 1st edition in 1940.
See also the addendum to this
Comment at the end of this
chapter.

Then the light beam
which illuminates the disk is broadened so that the screen behind is
also illuminated. Immediately, a dark shading is produced, and the
reddish-yellow becomes a typical brown.

29.10 Color Filters for Producing Pure
Hues

In the previous section, we saw that we could produce luminous
colors free of any white tint by using suitably-chosen filters. What
range �� from the spectrum of natural light must such a filter trans-

8 The formation of brown shades can be demonstrated by quite simple means.
A circular disk has three glued-on sectors of colored paper, around 210ı of black,
90ı of red, and 60ı of yellow. It is rotated rapidly. The motion causes the three
individual colors to vanish and ‘merge’ together into a unified brown.C29.4
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Figure 29.13 The spectral distribution of pure hues with a high luminous intensity.
With a small modification, this arrangement is also suitable for the demonstration
of complementary colors. For this, we replace the template by a narrow prism with
a small angle of refraction. Then we can obtain two images of the aperture on the
screen, preferably partially overlapping. These two images are colored with com-
plementary hues; in the overlap region, an achromatic circular segment (‘lune’) is
seen. Tilting the auxiliary prism along the spectrum allows us to image a number of
different pairs of colors (Video 29.3).

Video 29.3:
“Complementary colors”
http://tiny.cc/4gggoy
In the video, some parts of
the spectrum are not blocked
off by the template, but rather
are deflected perpendicular to
the spectrum by a thin quartz
prism.

mit? We wish to answer this question experimentally as shown in
Fig. 29.13, in particular, as an example, for a pure, untinted and un-
shaded green hue (chroma).

The incandescent light of the arc lamp emerges from the slit S and
illuminates the aperture F. On the way, it is spectrally decomposed
by the prism and the lens L1. The image of the aperture is projected
onto the wall screen by the lens L2. The continuous spectrum appears
in the plane aa. In this plane, a template made of opaque cardboard
is placed in the optical path. We first use a very narrow slit (A in
Fig. 29.13) and locate the desired chromatic hue in the spectrum.
We then widen the slit gradually on both sides until it is a broad
rectangle. By trial and error, we find the largest width that is still
permissible (template B); it gives the maximum possible luminous
intensity without white tinting. The ratio ��=� approaches a value
of several tenths, so that the light is by no means monochromatic
(in the sense of ‘single-frequency’)! Finally, the steep sides of the
template can be tapered off somewhat (C). This changes neither the
luminous intensity nor the purity of the colors. In the same way as for
the green hue here, we can fabricate a broad template for every other
pure hue in the color circle. The template D in Fig. 29.13 shows an
example for a purple hue9.

Templates of this type, with tapered and bent flanks, can be replaced
by filters containing selectively-absorbing substances. The filter must
allow the same broad regions of the spectrum to pass through as does
the template. For demonstration experiments, we proceed as shown
in Fig. 29.14. We image the spectrum of the incandescent light (arc
lamp) on the wall screen, placing a filter cuvette in front of the slit,

9 For the purple hue, we need two narrow slits, one in the blue or in the violet
region, and the other one in the red.

http://tiny.cc/4gggoy
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violet red

C K S L P

Figure 29.14 A demonstration experiment on the selective light absorption
by dye solutions. The solutions are placed in the form of a wedge-shaped
layer in front of the entrance slit of the spectral apparatus. A similar wedge-
shaped layer of water prevents a disturbing deflection of the light due to
refraction. At the upper right, we see the transmitted region of the spectrum.
The densely dotted area indicates a high luminous intensity. Imagine that the
spectrum has been decomposed into horizontal stripes. The uppermost stripe
corresponds to the thickest layer of solution (the image is upside down!); only
a narrow region of the spectrum is transmitted. A middle horizontal stripe in
the spectrum corresponds to a medium layer thickness; here, the transmitted
region represents several tenths of the whole spectrum; and so forth.

with a diagonal separation partition. The cuvette which is shown as
transparent contains pure water; the shaded cuvette contains a dye
solution. Then the spectrum appears on the screen with only one
wavelength region, as if it were bounded by a template. The compo-
sition of the dye solution as well as its thickness are varied until the
outlines of the spectrum are identical with the opening of the desired
template.

Finally, we remove the prism, open up the slit fairly wide, and image
it by itself on the screen. Behind the greatest filter thickness, it is
imaged in pure chromatic hues. With decreasing filter thickness, the
hues are tinted more and more with white.

Starting with a large selection of light filters, those that are suitable for
producing pure, free hues can be selected with relative ease. We simply
observe a color circle through each filter; those that are suitable show one
half of the circle as bright, and the other half dark. The brightest sector of
the color circle shows the hue that can be selected by that filter.

The concentration and layer thickness of color filters select by no
means only the degree of white tinting, but rather often the chromatic
hue itself. To demonstrate this, we image a tungsten-filament lamp on
the screen and allow its light to pass through a wedge-shaped filter,
for example containing an indigo solution, that can be slid in the
longitudinal direction (wedge angle � 20ı, c � 0:05 g/liter). After
passing through a short filter layer thickness, the light from the lamp
appears blue-green; a longer thickness gives wine red. The color
transition occurs rather sharply at a layer thickness of about 3.5 cm
for a lamp operating at the usual temperature.
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The explanation can be seen in Fig. 29.15. Part a of the figure shows
the dependence of the light absorption constant K on the wavelength.
It is small in the red wavelength region, then passes through a maxi-
mum in the orange (� D 605 nm), but still remains larger in the blue
than in the red region.

Parts b and c of the figure show the transmission coefficients D, de-
fined by the equation

D D Transmitted radiant power

Incident radiant power
; (29.13)

for a small and a large layer thickness. At the small layer thick-
ness (b), the short and the longer waves are transmitted equally well:
The broad region of shorter wavelength predominates and therefore
the light from the lamp appears blue-green. At a larger layer thick-
ness (c), the shorter waves are much more strongly absorbed than the
longer waves; thus, the red spectral region predominates and the light
from the lamp appears to be wine red.

The layer thickness which corresponds to the color transition varies with
the temperature of the lamp (demonstration!). We can thus recalibrate the
thickness scale as a temperature scale. This provides us with a very conve-
nient instrument for measuring color temperatures (Sect. 28.7).
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29.11 Dyes and Pigments

The filters contain selectively-absorbing substances in the form of
suspended solids or in solution. Among such solutions are most of
the technical dyestuff and pigment materials. These layers can be
applied to an object in two ways:

In enamel or varnish paints, the solution is free of any sort of inhomo-
geneities which would make it cloudy. One can make out details of
the surface through the paint layer. Light coming from a light source
passes through the paint layer to the surface of the object and is scat-
tered there. It thus passes through the whole layer thickness twice
before reaching the eye of the observer. As a result, with the proper
concentration, rather pure chromatic hues can be obtained, free of
tinting or shading. The reflected light from the front surface of the
painted layer may cause a weak white tinting, but this surface can be
made smooth as a mirror, thus limiting this disturbance to the angular
range of specular reflections. Still better is the elimination of surface
reflections. This is most successful with textiles of the velvet type.
Black shading (e.g. in numerous articles of clothing) can be obtained
in any desired degree; one need only increase the concentration of
the absorbing substances.

The opaque or topcoat paints are made artificially cloudy. Usually,
the selectively-absorbing substance is not dissolved, but rather is sus-
pended as a fine powder in a binding agent. The incident light cannot
reach the surface of the painted object; it is scattered backwards by
the fine particles. Thus, the surface of the object is covered, and an
essential portion of the light passes through only some fraction of
the paint layer thickness. As a result, there is a considerable white
tinting. A black shading can also be obtained by using high concen-
trations of the absorbing substance, but the ever-present white tinting
has a disturbing effect. The tinting and the shading together lead to
a grey shading, and often, grey shadings appear rather “dirty”.

The“The contrast between var-
nish and topcoat paints can
be demonstrated with any
cup of tea”.

contrast between varnish and opaque paints can be demonstrated
with any cup of tea. Clear tea forms a “varnish layer”, and the tea
leaves at the bottom of the cup are clearly visible. Adding some
drops of milk converts the varnish layer into a cloudy topcoat layer.
The bottom of the cup is no longer visible, and at the same time,
a strong white tinting can be observed.

In general, the colors of objects, both natural colors and those pro-
duced by pigment coatings, are produced through selective absorp-
tion. Selective reflection plays practically no role, except in the colors
of metals. The light from an arc lamp which has been multiply re-
flected from the surface of a gold or copper object exhibits reddish
hues when projected onto a screen, with very little white tinting.
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Figure 29.16 The appearance of brilliance or shine (Video 29.4) Video 29.4:
“How brilliance comes
about”
http://tiny.cc/zgggoy29.12 Brilliance and Shine

Often, we see objects as not only colored, but also as shiny. As exam-
ples, we could mention polished wood and smooth metal objects, e.g.
a copper teakettle. Shine or brilliance can be seen whenever light is
scattered in strongly preferred directions. In this type of scattering,
even small motions of the object or the observer change the perceived
luminance strongly. The essentials can be shown in a simple demon-
stration experiment.

In Fig. 29.16, on the right we see a piece of non-shiny, matte red-
orange paper. At a few millimeters distance in front of it is a dirty
and therefore likewise non-shiny, slightly beaten-up wire sieve. At
the left is the light source, an arc lamp. The paper and the sieve can
be rotated or swung around together. Every observer believes that he
or she is seeing a somewhat dented but still very shiny copper sheet.
The reason: The shadow of the sieve falls on the paper surface. At
certain angles, the observer looks through the mesh of the sieve at the
shadows of its wires; the luminance in such directions is small. From
a somewhat different angle, he or she looks through the meshes at the
unshadowed parts of the paper, so that the luminance is large. ‘Shine’
is thus seen; it is no more a physical property of the object than is its
color.

29.13 Shimmering Colors

Shimmering colors are shiny colors in which a small change in the
angle of observation or of the incident light causes a strong variation
in the hue.

Their hues alone, that is without any directional dependence, can be
produced for example with the arrangement shown in Fig. 29.13. We
need only replace the template by a screen and use it to mask the main
portion of the spectrum, beginning either at its violet or red end.

Shiny, that is strongly directionally-dependent, shimmering colors
can be seen for example on the wings of butterflies and beetles, and
on some ornamental vases. In these cases, we always find substances
which form layered structures. In them, either a selective reflection
of light occurs on a series of equidistant planes (Vol. 1, Fig. 12.41c),
or else a selective transmission of light occurs; the latter is found

http://tiny.cc/zgggoy
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even at the boundary between two materials, when either the short-
wave portion or the long-wave portion of the natural light is totally
reflected. Occasionally, we are dealing with interference filters, like
those that were treated in Sect. 20.13.

To conclude, we emphasize once more the preliminary remarks in
Sect. 29.1: We have not attempted or claimed to give a complete
treatment here. This

“This chapter is intended
only to stimulate the reader
to engage in self study of
the very diverse and de-
lightful subject of color”.

chapter is intended only to stimulate the reader
to engage in self study of the very diverse and delightful subject of
color.

Addendum to Comment C29.4:
Concerning the formation of the color brown (the color which was sym-
bolic of the National Socialists in Germany), we add the following quotes
which were collected by Mr. E. Sieker:
1. When the first (brown) SA uniforms appeared in his lecture room, Pohl
was not pleased: “Either you participate in the SA, or you study physics –
you won’t have time for both!” (Source: “Praxis der Naturwissenschaften
Physik”, 6/77, June 15th, 1977, page 159).
2. When Pohl was demonstrating his well-known experiment on the move-
ment of colored ions in KCl crystals, he commented on the side, “As
you can see, the brown masses are shuffling along”. (This experiment
is described e.g. in the 21st edition of Pohl’s Elektrizitätslehre (1975), in
Chap. 25, Sect. 22. Source: Praxis der Naturwissenschaften Physik 6/77,
June 15, 1977, page 159).
3. The local leadership of the NSDAP (National Socialist or Nazi party)
suspected Pohl of being a sympathizer following the assassination attempt
on Hitler on the 20th of July, 1944. As became clear only after the War,
the NSDAP had not the slightest inkling of Pohl’s contacts to the Goerdeler
Group of civil resistance � if they had, it would probably have cost him
his life � Instead, their mistrust of Pohl, according to statements by the
former Rector of the University of Göttingen, was due only to his critical-
ambiguous comments on the color brown; for example, that “brown is
not a color at all”. (Source: H. Becker, H.-J. Dahms, C. Wegeler, “Die
Universität Göttingen unter dem Nationalsozialismus”, 2nd edition, 1998,
page 572).
4. During the War Winter of 1944/45, Pohl called indirectly for the ca-
pitulation of Germany while demonstrating an experiment. He attached
a small white flag to mark a movable object in the experiment, and noted
that in 1919, he had been criticized for using a black-white-red flag (the
colors of the Old Regime); and later, for using a black-red-gold flag (the
colors of the Weimar Republic). Now, he would simply use a white flag.
(Source: H. Becker, H.-J. Dahms, C. Wegeler, “Die Universität Göttingen
unter dem Nationalsozialismus”, 2nd edition, 1998, page 572f).
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Plate 1

Figure A1. The grey scale

Figure A2. The color circle

Figure A3. Hering's triangle (E. Hering, 1874)
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doi.org/10.1007/978-3-319-50269-4_) contains supplementary material, which is
available to authorized users.
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Table of Physical Constants

Some important physical constants (CODATA values from Dec. 2014)
Avogadro constant NA, D 6:022140857 � 1023 mol�1

Gravitational constant G D 6:6674 � 10�11 Nm2/kg2

Electric field constant "0 D 8:854188 � 10�12 A s/Vm
Magnetic field constant �0 D 12:566370 � 10�7 V s/Am
Velocity of light in vacuum c D ."0�0/

�1=2 D 2:997925 � 108 m/s
Wave resistance of vacuum Zel D .�0="0/

1=2 D 376:73 Ohm
Relative atomic mass of the proton .A/p D 1:007277 u*

Relative atomic mass of the neutron .A/n D 1:008665 u*

Rest mass of the proton mp D 1:672621 � 10�27 kg
Rest energy of the proton .Wp/0 D 9:382720 � 108 eV
Rest mass of the electron m0 D 9:101383 � 10�31 kg
Rest energy of the electron .We/0 D 5:10999 � 105 eV
Ratio of proton mass/electron mass mp=m0 D 1836:152
Elementary electric charge e D 1:602177 � 10�19 A s
Specific charge of the electron e=m0 D 1:760366 � 1011 A s/kg
Faraday constant F D 96 485:3329 A s/mol
Boltzmann’s constant k D 1:380648 � 10�23 W s/K

D 8:617325 � 10�5 eV/K
Stefan-Boltzmann constant � D 5:670367 � 10�8 Wm�2 K�4

Planck’s constant h D 6:626070 � 10�34 W s2

D 4:135667 � 10�15 eV s
Bohr magneton �B D he=4�m0

D 9:274010 � 10�24 Am2 (D J/T)
Classical electron radius rel D �0e2=4�m0 D 2:820 419 � 10�15 m
Rydberg frequency Ry D e4m0=8"20h

3 D 3:289842 � 1015 s�1

Rydberg constant Ry
* D e4m0=8"20h

3c D 10 973 731:6 m�1

Compton wavelength �C D h=m0c D 2:426310 � 10�12 m
Sommerfeld’s fine structure constant ˛ D e2=2"0hc D 1=137:036

˛ D Electron’s velocity v0 in the smallest H orbit

Velocity of light c

* u is the atomic mass unit, u D 1:660539 � 10�27 kg.
See http://physics.nist.gov/cuu/Constants/index.html.
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Solutions to the Exercises

I. Electromagnetism
1.1. I D 4:98A

1.2. 745 hours

1.3. The voltmeter is connected in series with a resistance of 99�.

1.4. Rshunt D 5:025m�

1.5. R D U=.I � U=RV/ (If OHM’s law does not hold for the conductor, then R depends on I.)

1.6. Two values of R2 fulfill this condition: R2 D 1� and 4�!

1.7. The battery has an internal resistance Ri of 1�, UI D 1:25V

1.8. N D 147

1.9. I D 0:167A

1.10. U D 6:8 kV

1.11. a) I D 1:25A, b) PQ2= PQ1 D 3

2.1. a) % D ��=h; b) E D �.1="0/%.h � x/, up to the height h, E is negative, and for x � h,
E D 0; c) Ux D �.1="0/%.x2=2 � hx/; d) U D .1="0/%h2=2

2.2. C D 356�F

2.3. C D 0:9995nF

2.4. CV D 0:9 nF

2.5. Ne D 5:54 � 1010 cm�2

2.6. C=l D 93 pF/m

617
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2.7. a) 1.37m from Q1, on the side away from Q2; b) 25 cm away from Q1, between the two
charges

2.8.
R
U dt D 10�5 V s

2.9. a) t1=2 D RC ln 2; b) C D 44:8 pF

2.10. With I D dQ=dt and U D �Q=C, we find dQ=dt D �Q=RC C Ug=R; .Ug D 157V),
with the solution Q D Ae�t=RC C UgC; .A D Umax � Ug; Umax D 220V). It then follows that
� D 1:16 s.

2.11. WBatt D U0
R
I dt D U0Q D U2

0C; WC D .1=2/U2
0C (Eq. (3.19)). Half of the energy

supplied by the battery is therefore converted to heat in the resistor, independently of its resistance!
This result however does not hold for R D 0, since then the condenser would be charged within an
infinitely short time without allowing any energy to be converted to heat. See Chap. 10, “Electrical
Oscillations”.

2.12. 17 plates

2.13. " D 2:8

2.14. 6.5% of the volume between the plates is filled with metal. This reduces the spacing of the
plates effectively by 6.5%, i.e. the capacitance is increased by about 7%. This leads to " D 1:07.

2.15. Corresponding to Eqns. (2.11) and (2.25), the capacitance of the completely filled condenser
would be C D ""0.a b=l/, and thus the energy stored in it would be We D .1=2/""0.U=l/2a bl.
In the present experiment, the energy thus increases when h increases, by an amount �We D
.1=2/." � 1/"0.U=l/2hbl D Fh. The liquid is thus pulled up into the condenser with a constant
force F. h is then found by setting F equal to the opposite force of the weight of the liquid which
has been pulled up: h D .1=2/."� 1/"0.U=l/2=.%g/.

2.16. The electrical energy is We D .1=2/""0.U=l/2A l. This leads (compare Eqns. (3.17) and
(3.11) in Sect. 3.7) to the force F D .1=2/""0.U=l/2A.

3.1. The weight of the brass plate is F D 1:6N. Using Eq. (3.12), this leads to l D 50�m
(this corresponds roughly to the thickness of a human hair; see Vol. 1, Sect. 1.2). The roughness
of the polished stone causes an average spacing which is however certainly much smaller, so that
a considerable fraction of the potential drop must occur within the stone!

3.2. R D 80 nm

3.3. The capacitance C and thus also the energy We vary by a factor n. If n < 1, then energy will
be pumped back into the current source.

5.1.
R
U dt D 3:2 � 10�4 V s, in good agreement with the observed 10 scale divisions

5.2. a) u D 2:04m/s; b)
R
U dt D 3:9 � 10�5 V s, in good agreement with the observed 1.2 scale

divisions (3:8 � 10�5 V s)
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5.3. a) Bh D 2:5 � 10�5 V s/m2; b) ' D 66ı (In Göttingen, the horizontal component of the earth’s
magnetic field points to the north and its vertical component points downwards).

5.4. 
 D 1:06Hz

5.5. The voltmeter indicates zero! (See also the first paragraph in small print in Sect. 5.5).
The pilot could indeed detect an electric field, e.g. by carrying out the experiment of W. WIEN

described at the end of Sect. 7.3, but he cannot detect the voltage of U D 0:8V between the wing
tips as given by Eq. (5.9), since it will be compensated by the charges which collect on the wing
tips. (The “insulated wire” corresponds to the conductor CA in Fig. 7.2).

5.6. The angle between the field vector B and the surface vector A is ˛ D 2�
t. From this,
it follows from Eq. (5.10) that U D �d=dt.BAN cos.2�
t// D 2�
BAN sin.2�
t/, i.e. an AC
voltage, as described in Chap. 8 (Fig. 9.3). Note that this result does not depend on the frame of
reference.

6.1. a) I D 93A (
R
H ds D 1:85 scale divisions); b) measured: H D 1360A/m, calculated with

Eq. (4.1): H D 1610A/m; c)
R
H ds D 500A

6.2. a) Since the magnetic potentiometer measured outside all the remaining coils along a closed
path (Fig. 6.7), we find Umag D 0; b) From a), it follows that Umag;i D �Umag;a.

6.3. If we combine the two methods of measuring the magnetic potentials Umag;a and Umag;i,
a closed path results. Around this path, the magnetic potential is always equal to zero unless the
path encloses a current. This is the case here, since, as mentioned in Sect. 6.3, each tunnel bored
through the material does not pass through individual molecules but rather between them; i. e. no
molecular currents can be included. We thus have Umag;i D �Umag;a. The same result follows also
from the MAXWELL equation (14.12). (See also Exercise 6.2.)

8.1. B D 3:37 � 10�4 T

8.2. Mmech D 0:1Nm

8.3. From the area which is marked with dashed lines, we obtain the flux ˚ � 1:5 � 10�6 V s. The
magnetic flux measured in Video 5.1 is 8 � 10�6 V s.

8.4. Wmagn D .1=2/�0.N2=l/I2�r2. Wmagn increases when l becomes smaller. In order to prevent
this, we require a force of F D 10�2 N.

10.1. L D 0:55H

10.2. LN D N2L1

10.3. R D 3:466�

10.4. Ieff D 0:796A

10.5. 
 D 50Hz

10.6. L D 123mH
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10.7. 
 D 97:5Hz

10.8. L D 158mH

10.9. LC D 2:53 � 10�8 s2

10.10. a) ZRL D 849�, '1 D 87:4ı (the current in the RL branch “lags behind” the applied
voltage); b) IRL;0 D 86mA, IC;0 D 84:85mA, I0 D 86mA � sin 2:6ı D 3:9mA, '2 D 15:2ı;
c) It follows from these values that Z D 73V=3:9mA D 1872�, and from Eq. (10.33), we find
Z D 1840�, in agreement with the value found in b) (compare this value also with the one that
can be read off at the maximum of the curve in Fig. 10.20).

10.11.  D 0:139, in agreement with the value in Fig. 10.20.

10.12. a) The active current is 3.77mA and the reactive current is 1.0mA; b) PW D .1=2/U0I0
cos 15ı D 0:138W, PWRLC D .1=2/.IRL;0/2R D 0:141W, and thus within the error limits, the values
are the same.

10.13. The current in the primary coil is Ip D Ip;0 sin!t, with Ip;0 D Up;0lp=.�0!N2
pAp/

(Eq. (10.4)). From this we find, with Eqns. (4.1) and (5.4), the flux density B of the magnetic
field from the primary coil, and with it, applying the law of induction (Sect. 5.6), the voltage across
the secondary coil, Us D Ns.�dB=dt/Ap. This leads finally to Eq. (10.39).

10.14. a) Owing to the phase difference of 90ı between the current and the voltage, in the primary

circuit we expect PW D 0. b) With a finite value of R, a current will flow in the secondary circuit.
The thermal energy from JOULE heating in the secondary circuit then must come from the primary
circuit. The mechanism for this is that the current in the secondary circuit induces an additional
current in the primary circuit, so that the phase difference there is no longer 90ı, and a finite active
current results.

11.1. The voltage across the condenser is UC D Q=C. The voltage across the coil is UL D
L dI=dt D L d2Q=dt2. These voltages are equal and opposite at all times: QC=C C L d2Q=dt2 D 0.
This differential equation can be solved by the trial function QC D QC;0 cos!t. This then yields
! D p

.1=LC/. Thus, we find that UC D .Q0=C/ cos!t and I D dQ=dt D �UC;0!C sin!t.

11.2. UL D L dI=dt (Eq. (10.16)). Therefore, UL;1 D L1 dI=dt and UL D .UL;1 C UL;2/ D
.L1 C L2/ dI=dt. From this, it follows that jUL;1=ULj D L1=.L1 C L2/. The coils thus act as
a voltage divider. An application is shown by the experiment described in Fig. 11.7. With the
correct choice of the inductance of the wire loop relative to the overall inductance of the oscillator
circuit, a voltage will be induced which causes the lamp to light up without burning out.

11.3. With the values of the capacitance C D 3:2 nF and the inductance L D 0:048mH, we find
the frequency to be 
0 D 400 kHz.

12.1. The rectifier allows only half of the sinusoidal current to pass. The throttle coils in Fig. 12.21
pass only the low-frequency FOURIER components of this current (for FOURIER analysis, see
Vol. 1, Sect. 11.3). These components include a direct-current contribution which is proportional
to the amplitude I0, and it will be indicated by the galvanometer.
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12.2. a) Using the trial function Ex D Ex;0 sin!.�t C z=c/, superposition with the incident
wave gives Etot D 2Ex;0 sin!.z=c/ cos!t, that is a standing wave with a node at z D 0, as
seen in Fig. 12.28. b) The magnetic component of the incident wave is described by the term
By D �By;0 sin!.t C z=c/, and thus its amplitude points in the negative y direction (right-handed
coordinate system, wave propagation in the negative z direction). The reflected magnetic compo-
nent is given by By D By;0 sin!.�tCz=c/ (in phase with the electrical component; the sign follows
again from the right-handed coordinate system). Superposition of the two magnetic components
gives Btot D 2By;0 cos!.z=c/ sin!t, i.e. again a standing wave, but now it has a maximum (wave
crest) at the reflecting surface (z D 0), with the amplitude 2By;0.

12.3. a) E D 220V/m, B D 1:8 � 10�4 V s/m2, S D 31:5 kW/m2; the POYNTING vector points
towards the interior of the spiral, as if the thermal power were deposited in the spiral from outside.
b) b D 1:35 kW/m2, E D 713V/m, B D 2:38 � 10�6 V s/m2 (also effective values).

12.4. The electromagnetic wave which is radiated from the outside and is used to excite the
small dipoles of the water molecules (Fig. 12.6) has a wavelength of � D 3m. With its velocity
of propagation, c D 3 � 108 m/s, we find its frequency to be 
 D 108 Hz. The dielectric constant
of water at this frequency is " D 81 (Table 13.2 and Fig. 13.11); thus its index of refraction is
n D 9:0. It follows from this that R D 0:64 (at normal incidence). 36% of the incident radiation
thus penetrates into the water; this is sufficient to excite the small dipoles.

13.1. The energy changes from .1=2/QU0 to .1=2/QUm, where Um D U0=". The excess energy
is taken up by the person who places the plate into the condenser.

13.2. The voltage is U0 D E.l � d/C .E="/d with the electric field E D U=l. Solving for ", we
find " D d=.d C l.U0=U � 1//. In this example, the result is " D 5.

13.3. The voltage between the points 1 and 2 is zero when the voltage drop over the capacitance C1

is equal to that over the resistance R1. Since the charges Q on the two condensers are then equal,
we have Q=C1 D I=R1 and Q=Cx D I=R2. From this, it follows that Cx D C1R1=R2.

13.4. The electric field E experiences no depolarization (Eq. (13.11)). It follows that D D "D0.
The displacement density in the rod is thus larger than in the space outside it. The concept of
“depolarization” refers to the field E (see also “demagnetization”, Sect. 14.6)

13.5. P D 3.." � 1/=." C 2//"0E0 (compare this result with the magnetization of a sphere,
Eq. (14.18))

13.6. pp D 3:04 � 10�30 A sm, and thus only half a large as measured in the gas phase. The reason
for this discrepancy is that in deriving the CLAUSIUS-MOSSOTTI equation within the “cavity”,
the interactions between neighboring molecules were not taken into account; that is, for water, the
hydrogen bonds between the water molecules (see H. Fröhlich, “Theory of dielectrics”, Oxford
University Press (1949), p. 137).

13.7. In paraelectric materials, " depends on the temperature, both due to the equation of state of
ideal gases and to the LANGEVIN-DEBYE theory. For the electric susceptibility, one finds �e D
" � 1 D .1=3"0/p2p=.kT/

2 � p (to distinguish it from the pressure p, the dipole moment is denoted
here by pp). This explains the difference between the two values of �e to better than 1%.
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13.8. a) From Fig. 13.11, we read off the dielectric constant at this frequency, thus obtaining

the index of refraction n D 9:0. It then follows that �W D 1:36 cm. b) PW D 697W. c) S D
11:6 kW=m2 D 8:6Ee (this is about the same as the value of the solar constant on the planet
Mercury!) (For reflection losses, see Exercise 12.4).

14.1. �m D �1:42 � 10�5. The permeability � is thus only slightly greater than 1.0, so that the
demagnetization effect can be neglected.

14.2. a) Analogously to Eq. (13.15), we have here H D H0 C Hm. Comparing with Eq. (14.18),
we then find Hm D �M=3 D �..� � 1/=.�C 2//H0. b) From Eq. (14.7), it follows that Bm D
.2=3/�0M.

14.3. Hi D 3�aHa=.�i C2�a/; from this, we find �i D 1 and Ha D H0=�a: Hi D 3H0=.1C2�a/,
and for �a � 1: Hi � .1:5=�a/H0.

14.4. F0 D 600N, Fd D 17:6N. Due to the hysteresis of the iron (Fig. 14.7), we must consider
these values to be only rough estimates.

14.5. a) and b): Following the rapid change of the current during the first second, both measure-
ments show an exponential variation with a relaxation time of �r D 10 s. c) Here, also, following an
initial rapid change, an exponential variation begins, but with a relaxation time of 110 s. Only near
the saturation value does the rate of change become more rapid and again approaches a relaxation
time of 10 s. For a qualitative explanation: During the initial rapid variation, of which we can see
an inkling even in experiment c), the magnetic domains cannot follow. The coil thus has a small
inductance during this variation. Thereafter, the reversals of the domains delay the rate of change
of the current in the coil in the same manner as the changes of the current in the coil delay its rate
of change due to induction. The coil now has a larger inductance because of the iron core. From
experiments a) and b), we obtain L D �rR D 1300H. In experiment c), the delay of the current
changes in the coil is even greater, since in the first 60 seconds, the magnetic domains (remanent
magnetization) rotate through 180ı, causing the induced voltage which delays the current change
to be increased. This results in a still larger inductance: L D 14 000H. Only near the end of the
increase in the current, after the remanent magnetization has been completely overcome, does the
rate of change again correspond to the same time constant as in experiments a) and b); L is thus
again smaller.

14.6. In Exercise 14.2, it was shown for a magnetized ball that the field Hm in its interior is
given by Hm D �NM (N is the demagnetization factor). Starting from Eq. (14.14), it can be shown
that the same result holds for every ellipsoid of rotation which is magnetized parallel to its axis of
rotational symmetry. For the disk with l=d D 0:1, we find N D 0:863 (Table 13.4). For a long
rod (l=d D 1), N D 0, and the field Hm is thus zero. From this, with Eq. (14.7) we find for the
field Bm in the disk the value Bm D �0.M � 0:863M/ D 0:137�0M, and for the rod, Bm D �0M.
These flux densities continue into the space outside the material, since div B D 0 (MAXWELL’s
equation (14.13)).

II. Optics
16.1. From the expressions for the law of refraction on both sides of the prism, sin˛1 D n �
sinˇ1 and sin˛2 D n � sinˇ2, we obtain from the sum and the difference: sin˛1 ˙ sin˛2 D
n � .sinˇ1 ˙ sinˇ2/. Rearranging, this gives sin..˛1 C ˛2/=2/ � cos..˛1 � ˛2/=2/ D n � sin..ˇ1 C
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ˇ2/=2/ � cos..ˇ1 � ˇ2/=2/ and cos..˛1 C ˛2/=2/ � sin..˛1 � ˛2/=2/ D n � cos..ˇ1 C ˇ2/=2/ �
sin..ˇ1 � ˇ2/=2/; dividing these two equations yields: tan..˛1 C ˛2/=2/= tan..˛1 � ˛2/=2/ D
n�tan..ˇ1Cˇ2/=2/= tan..ˇ1�ˇ2/=2/. With ˇ1Cˇ2 D � and ˛1C˛2 D ıC� , Eq. (16.8) follows. b)
Inserting the values of ˇ1 D 19:47ı and �=2 D 30ı into Eq. (16.8), we obtain a quadratic equation
for tan.ı=2/, and thus initially two solutions for ı. To find the correct solution, we consider a sketch
corresponding to Fig. 16.13. The result is finally ı D 47ı.

16.2. The point at which the incident beam in Fig. 16.24 is reflected by the mirror is called A, and
the angle of reflection is ˛. Then we have AF D FZ D R=.2 cos˛/. For rays near the axis of the
mirror (paraxial rays), ˛ is small and so cos˛ � 1. It follows that f D R � FZ D R=2.

16.3. A scale drawing corresponding to Fig. 18.1 for a concave mirror with an object y at a dis-
tance a and the associated image y0 at a distance b allows us to compare similar triangles and obtain
y=y0 D f =.b � f / D a=b, from which it follows that 1=f D 1=a C 1=b.

16.4. A parallel shift of light beams, even when they have differing wavelengths, leaves the image
in the focal plane of the eye unchanged (see e. g. Fig. 18.24, with parallel light beams between the
lens and the eye).

17.1. a) d � 100m; b) B � 11 cm

17.2. 2'min D 1:04 � 10�7, ˛ D 2:28 � 10�7

18.1. Considering two pairs of similar triangles in Fig. 18.1, we find y=y0 D a=b D f 0=.b � f 0/.
From this, it follows that 1=a C 1=b D 1=f 0.

20.1. a) mmax D 133, x D 21 cm, b) x10 D 1:19m

20.2. The observation is carried out at an angle of inclination ˇm, which can be treated as constant
for small changes in the order number. Then from Eq. (20.4), we find d D .1=3/�=2 D 0:1�m.

21.1. a) No change, since over the whole slit, the same path differences are found; b) likewise
no change, since the path difference due to the glass, � D d.n � 1/, is an integral multiple of the
wavelength (� D 145:8 �, thus nearly the “order-one position”); c) ˛ D 8:2ı. since in general the
quantities d, n and � are not known with sufficient accuracy, this calculation shows how one can
obtain the two positions in practice.

21.2. Due to the phase difference of �=2 between the two halves of the slit, in making the
construction, we must rotate the arrows 7 to 12 by 180ı; we then obtain the diffraction pattern of
the order-two position, that is with extrema at sin˛ D N�=B, where N D 1; 3; : : : for the maxima
and N D 0; 2; 4; : : : for the minima. (A more precise calculation shows that the maxima at N D 1
(Fig. 21.12) are slightly shifted.)

21.3. The angular range of the principal maximum determined by the width B of the slit ranges
over sin˛ D ˙ �=B. The maxima which occur through interference with immediately neighboring
slits are found at sin˛m D ˙ m�=D (m D 0; 1; 2; : : :). Then for a), we observe only three maxima,
but for b) there are 39 maxima.

21.4. a) In this case, the whole surface of the grating radiates with the same phase; diffraction
occurs only at its edges. b) The diffracted waves which emerge from two neighboring pairs of
beams and slits produce a diffraction pattern as shown in Fig. 21.12, lower left. The superposition



624 Solutions to the Exercises

of the waves emerging from all the beams and slits leads to a sharpening of the maxima (Fig. 22.6),
but leaves their positions and relative heights unchanged.

21.5. Since in the order-two position (ˇ), the radiant power is zero for the non-deflected beam
(˛ D 0), the power of the light which passes through the gaps and the “grating beams” must be
the same. Thus, if we can neglect absorption in the grating beams, they must have the same width,
i.e. L=D D 1=2.

21.6. c D m�
=.m sin˛/ D 875m/s

22.1. a) � D 600 nm, b) n D 1:33

26.1. a) The equation of motion for free damped oscillations is given by FRCFD D m d2l=dt2, with
FR D �˛ dl=dt (frictional force) and FD D �Dl (elastic force). That the expression l D l0e�ıt, with
ı D .1=2/.˛=m/, is a solution of this equation of motion can be demonstrated by substituting it into
that equation. For the relation between ˛ and , we obtain with this solution ˛ D 2ım D 2�
0m.
b) The equation of motion is now given by Fp C FR C FD D m d2l=dt2, or, after inserting the
forces and dividing by m: d2l=dt2 C 2
0 dl=dt C 4�2
20 l D .F0=m/ cos.2�
t/. We now insert
the complex trial solution l D l0ei.2�
t/ together with its first and second time derivatives into the
equation of motion, obtaining 4�2Œ.
20 �
2/C i.=�/
0
� D .F0=l0m/ei' . From this, applying the
mathematical relations aC ib D r.cos'C i sin '/ D rei' (Eq. (25.27)) and sin2 'Ccos2 ' D 1, we
obtain equations (26.1) and (26.3). (For literature on “forced oscillations”, see e.g. The Feynman
Lectures, Vol. 1, Chap. 21-5 (http://www.feynmanletures.caltech.edu/), or http://hyperphysics.phy-
astr.gsu.edu/hbase/oscdr.html).

27.1. .1=2/l20;max=l
2
0;max D .=�/2
40=Œ.2
0/

2.
0 � 
/2 C .=�/2
40 �,
.1=2/.2
0/2.
0 � 
/2 D .1=2/.=�/2
40 , 2.
0 � 
/ D H D .=�/
0. This result holds for every
harmonic oscillator, in particular for an electrical resonator.

27.2. Let the deflection be x D l0 sin!t; taking the time derivative gives: Px D !l0 cos!t.
The kinetic energy is thus Wkin D .1=2/mPx2 D .1=2/m.!l0 cos!t/2. With the average value of
cos2 !t D 1=2 over a whole oscillation, it follows that Wkin D .1=4/m.!l0/2.

http://www.feynmanletures.caltech.edu/
http://hyperphysics.phy-astr.gsu.edu/hbase/oscdr.html
http://hyperphysics.phy-astr.gsu.edu/hbase/oscdr.html
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A
Abbe, Ernst

imaging and diffraction, 340,
434

Aberration
astronomical, 460
spherical, 344

Absorbance, 579
Absorption, 492

and electrical conductivity, 565
and forced oscillations, 557
by atomic and colloidally

dissolved metals, 570
by free electrons in metals, 565
interpretation of, 556
weak and strong, 496, 497

Absorption band, 559
Absorption coefficient, 258, 494
Absorption constant, 492, 559

definition, 492
in the X-ray region, 538
Table, 493

Absorption spectra
analysis, 560

AC (alternating current)
generator, 195
resistance, 183
synchronous motor, 166

Achromatization, 351
Active current, 190
Activity, optical, 486
Acuity

visual (sharpness of vision), 363
Aepinus, F.U. T., 36
Air

in a magnetic field, 266
molecular picture, 34

Air gap of an electromagnet core,
272

Alkali halides
absorption of light, 537
reflectivity, 543

Alternating current, 161
production, 195
production, high-frequency, 198

Alternating current D AC, 180

Alternating-current generator, 161,
164

Ammeter or ampere-meter, 11
Ampere second, 21, 47
Ampere, unit of current, 12
Ampere’s law, 119, 122
Ampere-turns, 96
Amplitude, 181, 182, 208
Amplitude of a light wave, 318
Amplitude of alternating current,

181
Amplitude structure, 422, 436
Analyzer, 479, 481
Angle of inclination

of principal rays, 363
Angle of vision, 333

definition, 353
increase (magnification), 356
increasing, 354

Angled mirror, 324
Angles

units, 314, 333
Angular momentum, 97, 277
Angular velocity or circular

frequency, 181
Antenna, 31, 234
Anti-reflection coatings, 502
Aperture, 310
Aperture diaphragm, 299
Aperture stop, 342
Aperture, numerical (NA), 358
Area turns, 107
Astigmatism, 311, 345
Atmospheric ray refraction, 555
Atomic model, Bohr’s, 277
Attraction

electric, 72
electric, of current-carrying

conductors, 7
magnetic, 156, 273

Attractive force
magnetic, of current-carrying

conductors, 139
Auer mantle, 585
Autocontrol (feedback)

with diodes, 204

Avogadro constant, 274
Axis, optical, 471

B
Babinet’s theorem, 416, 436
Ballistic deflection or impulse

deflection, 21, 52
Ballistic galvanometer, 145
Barkhausen effect, 285
Barlow’s wheel, 109
Beam boundary, 299
Beam splitter, 384
Beer’s formula, 509, 542

Drude’s approximation, 566
Beer’s law, 494
Belt generator, 44
Birefringence, 478, 574

due to flow, 574
Birefringence or double refraction,

468, 472
of calcite, 473, 474
of mica, 475, 478
of quartz, 473, 488

Black body, 372, 379, 580, 594
Black-body radiation, 580
Black-body temperature, 587
Blazed grating, 453
Bohr magneton, 277
Bohr’s atomic model, 277
Boltzmann’s constant, 256, 275
Bose, G. M., 75
Bound charges, 63, 245
Boundaries of light beams

and perspective, 367
Boyle, Robert, 33
Bragg spectrograph, 455
Braun’s tube, 22, 77
Brewster’s angle, 498
Brewster’s law, 498
Bridge circuit, 244
Bright-field illumination, 358, 433
Brightness, 600
Brilliance, 611
Brownian molecular motion, 19
Buildup of a conduction current,

177
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C
Calibration factor

of instruments, 108
of measurement instruments, 13

Candela (cd), unit of the luminous
intensity, 593

Capacitance, 56
of a parallel-plate condenser, 56
of a sphere, 57
with a dielectric, 62, 243

Capacitive reactance, 185
Capacitive resistance, 185
Carrier of electricity, 31
Cathode-ray tube, 22, 77
Cat’s eye, 325
Cauchy’s formulas, 513
Central projection, 366
Characteristic (I-V) curves, 204
Charge carrier, 42, 81
Charge, electric, 34, 37

bound, 245
definition, 48
influence, 41, 52
measurement, 46
moving; production of magnetic

fields, 94
separation, 52, 159
surface density of, 51

Charging a condenser, 59
Choke coil, 225
Christiansen filter, 514
Chroma, 605
Chromatic aberration, 350
Chromatic colors, 604
Circular vibrations, 170
Clausius-Mossotti equation, 254,

549
Closure bar

for magnetic circuit, 147
Coaxial cable, 237
Coercive field, 268, 288
Coherence condition, 385, 390, 407
Coherence, partial, 408
Collimated beams, 300, 381, 491

of light, 301
Collimator, 444
Color centers, 559, 570, 571
Color filters for pure hues, 606
Color hue, 588, 605
Color temperature, 588
Colors

achromatic, 603
chromatic, 604
of the spectral regions, 322
tints and shades, 605

Coma, 348
Compass needle, 4, 88, 92, 96, 155
Complementary colors, 607

Complex index of refraction, 508,
509

Complex numbers, 507
Compound lenses, 335
Concave gratings, 453
Concave lenses, 315
Concave mirrors, 315
Concentration, definition, 494
Condenser, 30, 72

charging and discharging, 59
electrolytic, 61
in an AC circuit, 184
technical, 61

Condenser D capacitor, 28
Condenser lens, 342, 343, 358, 363
Condenser plates, attraction of, 72
Condensers

examples, 31, 56
parallel circuit, 56
series circuit, 56

Conductance
specific, 16

Conductivity, 16
electrical, 36, 565
specific, 232

Conductor, 36
Continuous spectrum, 320
Control grid, 203
Control of voice currents, 165
Converging lenses, 315
Convex lenses, 315
Corner mirror, 325
Corona ring, 53, 73
Coulomb D 1 ampere second, 48
Coulomb, Charles A., 52
Coulomb’s law, 52, 72
Creeping galvanometer, 145
Critical angle for total reflection,

306
Crystal

principal plane, 472
Crystalline axes in mica, 475
Curie constant, 264
Curie temperature, 248, 264
Curie’s law, 264
Current

as a moving charge, 96
during electric-field decay, 46
during magnetic-field decay, 179
effective value, 181
electrolytic effect of, 9
examples, 17
time integral, 20

Current impulse, 20, 46
measurement of, 145

Current meter D ammeter, 11
Current resonance, 189
Current sources, 159

inductive, 160
Current transformer, 190
Curved light rays, 553
Cyclotron frequency, 237
Cylindrical lenses, 310
Cylindrical rotor, 162

D
Damping, 496, 557
Damping constant, 207
Damping, aperiodic limit, 145
Dark-field illumination, 358, 433,

436
Dazzling, 602
DC motor, 167
Debye, cgs unit for molecular

electric dipole moments, 246
Debye-Scherrer method, 440
Debye-Sears experiment, 426
Decrement, logarithmic, 207
Deflection of a current-carrying

conductor in a magnetic
field, 7, 138

Delimiting of light beams, 343
Demagnetization, 271
Demagnetizing factor, 251, 271
Depolarization, 250
Depolarizing factor, 251
Depth of field or depth of focus, 365
Depth of focus, 365
Diamagnetic materials, 263, 264,

279
Dichroism, 471, 573

artificial, 573
Dielectric, 62, 243
Dielectric constant, 62, 217

complex, 566
definition, 243
frequency dependence, 257, 549
measurement, 243
of dielectric materials, Table,

246
Table, 244, 246

Dielectric materials, 246, 252
Dielectric polarization, 245
Dielectric susceptibility, 245
Diffraction, 317, 318, 328, 413

by a step, 422
model experiments, 318
of X-rays, 438

Diffraction pattern
from a semi-plane, 416
from a slit, 319, 407
from a step, 422
from a wire, 417
from circular disks and

openings, 414
in model experiments, 318, 423

Diffuse reflection, 306, 517, 532
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Diodes, 204
Diopter = unit of lens power, 314
Dipole

electric, 81, 213, 215
electric field of, 223
in water, 217
magnetic, 153
radiation field of, 228

Dipole field, 225
Dipole moment, 82, 245

electric, 520
electric, of polar molecules, 521,

564
molecular, 246, 257

Dipole radiation, 518, 521
Direct-current dynamo, 163
Direct-current generator, 162
Direction of the electric current, 93
Direction of the magnetic field, 93
Dispersion, 322, 443, 539

anomalous, 538, 540
by free electrons, 566
curves, 538, 539, 541, 547
demonstration experiment, 539
interpretation, 546
normal, 444, 538
of a prism, 445
of NaCl, 550
quantitative treatment, 548

Dispersion formula, 550
for gases and vapors, 550

Displacement current, 123, 184
Displacement current density, 124
Displacement density, 52, 123
Displacement law of W. Wien, 583
Distinct vision

distance of, 353
Diverging lenses, 315
Doppler effect, 463, 520
Double refraction

due to inner strains, 489
of an optically-active material,

487
Double-fiber voltmeter, 14
Drag of light, 552
Dressing of glass surfaces, 502
Drift velocity, 141
Du Fay, C. F., 34

E
Earth

electric field, 53, 54
magnetic field, 94, 108

Earth inductor, 109
Echelette grating, 453
Eddy currents, 142
Eddy-current damping, 145
Effective values, 181
Einstein

theory of relativity, 103, 133
Electret, 85, 132, 248, 251
Electric charges

bound, 63
free, 63

Electric current, 4, 10
Electric dipole, 81, 213, 215

in an inhomogeneous electric
field, 83

Electric dipole moment, 82, 520
from influence, 84
of polar molecules, 564
permanent, 85

Electric field, 27, 30, 114
decay of, 36, 211
direction of, 49
energy of, 78
force on a charge, 68
general definition of, 70
gradient of, 54
measurement of, 49
of a dipole, 225, 228
path integral of, 50
shielding of, 42
within matter, 249

Electric field constant, 52
Electric field lines, 30, 71, 75
Electric field strength, 49
Electric fields

dependence on the frame of
reference, 129

in vacuum, 33
Electric flux, 55
Electric flux density, 52
Electric motor, 166
Electric polarization, 249
Electric potential, 80
Electric voltage, 13
Electric waves, see Waves,

electromagnetic, 211
Electric wind, 58
Electrical conductivity, 565
Electrical oscillations, see

Oscillations, electrical, 196
Electrification, 84
Electrodeless ring current, 202
Electrolytic condenser, 61
Electromagnet, 143, 156, 272
Electromagnetic fields, 135
Electromagnetic waves, see Waves,

electromagnetic, 211, 230
Electron, 77

mass of, 527
Electron beam, made visible, 137
Electron volt (eV), energy unit, 538
Electronic spin, 278
Electrons, 276

free, 565

number density, 527
quasi-elastically bound, 560, 562

Elementary electric charge, 77
Elliptically-polarized light, 476, 479
Emissivity

of the sun, 376
Emitter area, projected, 373
Enamel or varnish paint, 610
Energy

electrical, measurement of, 23
of the electric field, 78
of the magnetic field, 156, 179
resonance curve, 209

Energy current, 401
Entrance pupil, 340, 343
Equipotential surface, 79
Equivalence principle

Faraday, 141
Faraday’s equivalence principle,

12
Exit pupil, 340, 343
Exit window, 363
Extinction

by large metal colloids, 572
by scattering, 492, 523
by scattering of X-rays, 526
by small, strongly-absorbing

particles, 569
by very fine colloidal metal

particles, 572
Extinction constant, 492, 523

molar, 494
of a metal, 541
of NaCl, 538
specific, 494

Eye
acuity (sharpness of vision), 365
adaptation, 598
as a radiation detector, 293
fixing, 362, 599
fovea centralis, 363
nodal points of, 338
range of accommodation, 353
resolvable angle of vision, 333
retina, 332, 599
rise and accumulation times, 600
sensitivity, 599
spectral sensitivity distribution,

597
Eyeball

turning while observing, 363
Eyes

of insects, 555

F
Farad, unit of capacitance, 56
Faraday cage, 42
Faraday constant

equivalence principle, 12, 141
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Faraday effect, 486
Faraday, M., 101
Feddersen spark, 198
Feedback

in a klystron, 235
with triodes, 202

Feedback D autocontrol, 203
Fermat’s principle, 304
Ferrites, 287
Ferroelectric materials, 247
Ferromagnetic materials, 264, 266,

280
Field gradient, 55
Field lens, 363
Field lines

electric, 30, 71, 75
electric, closed loops, 113, 201,

228
magnetic, 4, 87

around and in a conducting
wire, 200

Field of view, 362
Field of view aperture, 363
Field strength, 92

electric, 31, 49
magnetic

at the center of a cylindrical
coil, 120

Field, electric; see Electric field, 27,
30, 114

Field, magnetic; see Magnetic field,
87

Filter, 323
for infrared, 323
for pure hues, 606
for ultraviolet, 323

Fixed stars, 333, 408
aberration, 460
color temperature, 589
parallax, 601

Fixing with the eye, 362, 599
Flame, light absorption, 578
Flickering, limiting frequency, 596
Flow birefringence, 574
Fluctuations, 410
Fluorescence, 380
Fluorescent tube, 586
Flux

electric, 55
magnetic, 106, 261

Flux density
magnetic, 107, 261

Focal length, 312, 336
Focal plane, 313
Focal point, 313

virtual, 315
Focal ratio, 366
Force

in an electric field, 68
in an inhomogeneous electric

field, 83
in an inhomogeneous magnetic

field, 151
Forced oscillations, 205, 517, 520,

548
quantitative treatment, 207

Forced oscillations D forced
vibrations, 566

Forces
between two parallel currents,

139
in electric fields, 70
in magnetic fields, 137

inhomogeneous, 263, 265
on moving charges, 137

Forward scattering, 530, 534
Fovea centralis, 363
Frames of reference, 103
Franklin, Benjamin, 42
Fraunhofer’s observation mode,

406, 416
Free charges, 63
Fresnel zone plate, 428
Fresnel’s formulas, 501
Fresnel’s observation mode, 416
Fresnel’s zone construction, 413
Frictional electricity, 45
Frictional electrification machine,

22
f-stop

camera lens, 366
Fundamental oscillation, 217

G
Galilean telescope, 360

or terrestrial telescope, 361
Galvanometer, 7, 11, 19, 102, 145
Gas molecules

average spacing, 33
mean free path, 34

Gauss (unit) D 10�4 T, 107
Generator, 159
Geometric distortion, 349
Gilbert, W., 84
Gold-leaf electrometer, 14
Gold-leaf voltmeter, 14
Gradient

in the refractive index, 553, 555
Granulation, 419
Grating constant

optical, 446
Grating spectrometer, 446
Grating, optical, 423, 451

resolving power, 447
sine-wave, 424
sinusoidal modulation by, 424

Gray, S., 36

Grazing angle, 439, 455
Green flash, 555
Grey filter, 543
Grey scale, 603
Ground, 31
Grounding, 80
Group velocity, 238, 459
Guericke, Otto von, 45, 76
Guericke’s levitation experiment, 76
Gyromagnetic ratio, 277

of an electron, 278

H
Half-maximum width, 208
Halfwidth, 448

of diffraction patterns, 444
of spectral lines, 559
of the energy-resonance curve,

558
Halo phenomena, atmospheric, 305
Hammer interrupter, 192
Harmonic oscillator, 517
Harmonic oscillator circuit,

electrical, 212
Harmonics, 218
Hauksbee, F., 586
Headlight, 378
Heating by electric current D Joule

heating, 8
Heaviside layer, 568
Hefner candle, 594
Helmholtz coils, 120, 137
Henry, J., 173
Henry, unit of inductance, 175
Hering’s triangle, 606
Hertz, H., 227
Heusler alloys, 268
Hilsch, R., 204
Holography, 431
Hysteresis loop, 247, 267

I
Illuminance, 594, 600
Illuminances

definition of two equal, 595
Illumination intensity, 594, 600
Image definition

aberrations, 349
Image distance, 335
Image formation, 327

by a pinhole camera, 427
by a steel sphere, 427
by circular rings, 427
by concave mirrors, 327
by lenses, 327
using water waves, 328

Image point, 310
as a diffraction pattern, 328
from a lens, 328
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real, 311
virtual, 315

Image scale, 314
Image-plane arching, 345
Imaging

and irradiance, 376
by a pinhole camera, 365
by a ring grating, 428
by lenses, 311, 331
by zone plates, 429
of invisible objects, 432
of non-emitting objects, 435
of three-dimensional objects,

365
Imaging aberrations, 344

astigmatism, 345
chromatic, 350
distortion, 349

Imaging errors
coma, 348
spherical aberration, 344

Immersion fluid, 357
Impedance, 183

or AC resistance, 183
Impulse, 107, 145
Impulse deflection, 21

mechanical, 146
Incandescent gaslight, 584
Incandescent light, 397, 481, 482,

580
Inclination angle, 314
Increase

of the angle of vision, 356
Index of refraction, 233, 302

Table, 303, 322
Inductance, 175
Induction, 101, 142, 265

in conductors at rest, 104
in moving conductors, 108, 131

Induction coil, 101, 116, 191
Induction damping, 145
Induction furnace, 191
Induction phenomena, relativity,

103
Inductive reactance, 180, 183
Inductive resistance, 180, 183
Inertia

mechanical, 176
of a magnetic field, 176

Influence, 38, 71
Influence machine, 19, 29

Holtz, 19
Wimshurst, 19

Infrared, 323
Initial curve D new curve, 267
Insulator, 36
Intensity, 373

of scattered radiation, 519

Interaction cross-section, 495, 522
Interference, 238

A. Fresnel’s biprism experiment,
389

curves of constant inclination,
396

due to particles which redirect
the light, 404

experiment of T. Young, 388,
406

H. Lloyd’s experiment, 389
microscopy, 398
model experiments, 387, 389
of polarized light, 481, 483
redirection of radiant power by,

401
sharpening the fringes, 397
spectrometer, 454

of FABRY and PÉROT, 454
with a continuous spectrum, 399
with planar, parallel plates, 390

Interference filter, 402, 579
Interferometer

after A.A. Michelson, 409
optical, 408

Interrupter, electrolytic
Wehnelt, 192, 204

Ionization chamber, 298, 529
Iron core, 146
Irradiance, 296, 318, 319, 374, 376,

592
of the solar image, 379

Irradiation intensity, 374, 592

J
Joule heating, 8, 23, 177

K
Kenelly-Heaviside layer, 568
Kepler’s telescope or astronomical

telescope, 356, 360
Kerr effect, 575
Kirchhoff’s law, 578
Klystron, 234

L
Lambert’s cosine law, 372, 379, 533
Lambert’s law of absorption, 492
Landé g-factor, 278
Langevin-Debye formula, 257
Larmor precession, 279
Laser, 301, 399, 430
Lattice constant

crystallographic, 455
Laue diagram, 439
Law of induction, 105, 106, 109,

174
most general form, 110

Law of reflection, 302

Law of refraction, 302
Lead tree, 9
Lecher line, 220
Lecher system, 220
Lens

focal ratio Nf, 366
Lens formulas, 312
Lenses

for electromagnetic waves, 236
image points from, 328
model experiment, 546
resolving power, 331
thick, 336
with gradients in the refractive

index, 555
Lenses, “rubber”, 352
Lenz’s law, 142, 145, 177
Levitation experiment, 75
Leyden jar, 61
Lichtenberg, G. C., 34, 38
Lichtenberg’s figures, 38
Light

absorption of, 538, 541
as a transverse wave, 468
drag, 552
in a moving reference frame, 460
in gravitational fields, 556
monochromatic, 383

Light beam, 299, 300
boundaries of, 343
principal ray, 310

Light density or radiance, 197
Light rays, 300

curved, 553
Light source, 598

in the moving frame of
reference, 461

linear, 342
measuring the diameter of, 407
pointlike, 383
thermal, 584

Light sources, 301
Light vector, 471
Light waves

amplitude of, 318
Light waves as electromagnetic

waves, 233
Light waves, standing, 403
Light-beam boundaries, 334, 340

and energy transport, 371
and perspective, 368

Line grating, 423, 452
for X-rays, 453
sinusoidal modulation by, 424

Line spectrum, 448
in the X-ray region, 456

Line structure, 454
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Logarithmic decrement, 187, 189,
207

Lorentz contraction, 130, 133, 139
Lorentz force, 132, 137, 144, 160
Loss factor, 190, 207
Loupe, 354
Low-voltage transformer, 191
Lumen (lm), unit of luminous flux,

594
Luminance, 594, 602

Table, 602
Luminosity function, 598
Luminous efficiency, 598
Luminous energy, 594
Luminous flux, 594
Luminous fountain, 307
Luminous intensity, 593
Lummer-Gehrcke plate, 454
Lux (lx), unit of illuminance, 594

M
Mach’s stripes, 294
Madelung, E., 563
Magnetic charge, 153
Magnetic constant, 106
Magnetic dipole, 153
Magnetic field, 87, 113, 153

direction of, 89, 93
gradient, 151, 263
homogeneous, 89, 91
inertia of, 176
of a current-carrying wire, 5,

118, 120
of a long coil, 89, 93, 120
of a permanent magnet, 90, 270
of a ring coil, 91
of an oscillating dipole, 229
of the earth, 108
production of, 94
switching on and off, 177
unit of, 93

Magnetic field constant or induction
constant, 106

Magnetic field lines, 4, 87, 200
of the earth’s field, 94

Magnetic field of the earth, 94
Magnetic field strength, 92

at the center of a cylindrical coil,
120

Magnetic field, rotating, 170, 184
Magnetic fields

dependence on the frame of
reference, 129

Magnetic flux, 106, 146, 152, 154,
261

Magnetic flux density, 107, 261
Magnetic moment, 148, 262, 275

of a molecule, 275
of an electron, 278

Magnetic polarization, 262
Magnetic poles, 88, 152
Magnetic potential difference, 115
Magnetic potentiometer, 116, 117
Magnetic shielding, 272
Magnetic susceptibility, 262
Magnetizability

molecular, 273
Magnetization, 262, 270

remanent, 147, 268
Magnetometer, 93
Magneton, Bohr, 277
Magnetron, 236
Magnification, 354
Magnification or power

of a microscope, 356
of a telescope, 355, 361

Magnifying glass, 354
Magnitudes

of stars, 601
Malus, E. L., 498
Mass

of the electron, 527
Maxwell equations, 124, 125

in matter, 270
in vacuum, 55, 89, 114, 124, 125

Maxwell, J. C., 140
Maxwell’s relation, 233, 549
Mean free path of molecules, 34
Meissner-Ochsenfeld effect, 265
Meniscus lens, 339, 347
Mercury vapor, optical detection,

562
Michelson interferometer, 409
Microphone, 165, 248
Microscope, 356

free object distance, 359
immersion fluid, 357
magnification, 356
making phase structures visible,

437
numerical aperture, 358
oblique illumination, 437
resolving power, 357
telecentric optical path, 367
with dark-field illumination, 358

Microwaves, 237, 258
Millikan, R.A., 77
Mirror charge, 71
Mirror galvanometer, 11, 19
Mirror image, 302
Mirror prisms, 324
Mirror surface grating, 453
Mirror, concave, 328
Modulation length, 239
Molecular currents, 97, 147
Molecules

and dispersion, 548

electric polarizability, 523, 552
non-polar, 246
number density

optical determination, 559
polar, 246, 521, 564

Monochromatic (single-frequency)
sound waves, 444

Monochromatic light, 309, 322,
344, 351, 396, 397, 419, 421,
422, 424, 425, 430–432, 443,
449

hologram, 431, 432
laser, 399, 410, 430
single-frequency, 443

Monochromatic wave group, 449
Monochromatic wave train, 383,

429–431
Monochromator, 449
Motion pictures, image changing

without flickering, 596
Muller’s stripes, 399

N
Nanometer (nm) D 10�9 m, 322
Natural light, 301, 320, 449

spectrum, 320
Néel temperature, 286
New curve, 267
Newton’s rings, 396
Nicol prism, 471
Night glass, 362
Nodal points, 338
Non-reflective coating, 401
Normal element, 15
Number density, 254, 274

of electrons, 527
of molecules, 495, 567

Numerical aperture NA, 358

O
Object distance, 335
Objective, 335, 358
Objective lens, 355
Ocular, 351, 355, 363
Oersted, H. C., 87
Ohm, unit of resistance, 16
Ohmic resistance, 16, 182
Ohmic voltage, 182
Ohm’s law, 16, 17
Opaque or topcoat paints, 610
Opening angle, 299, 314

and radiant flux (power), 375
Opening-angle ratio = focal ratio,

352
Optical activity, 486, 487
Optical axis, 471, 472
Optical constants

Beer’s formula, 509
measurement of, 500, 513
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of Na and K, 572
Optical path, 304, 397, 444
Optical temperature measurements,

586
Order

of interference fringes, 384
of interference maxima, 389,

395
of interference rings, 392

Order-one and order-two positions
of a step grating, 422

Oscillations
autocontrol, 204
damped, 196
electrical, 196
energy resonance curve, 209
forced, 205, 207, 520, 548, 566
resonance frequency, 196
undamped, 202

Oscillator circuit, electrical, 196,
214

Oscillator strength, 561
Oscillator, electrical, 206
Oscilloscope, 77
Overcorrection, spherical, 345
Overtones, 218
Oxygen, liquid, in a magnetic field,

266

P
Paper condenser, 61
Paraelectric materials, 246, 252
Parallax, 601
Parallel circuit, 188, 189, 195, 209

of condensers, 56
of resistor, coil, and condenser,

188
of resistors, 17

Parallel light beams, 381
separation by image formation,

316
Parallel-bounded beams, 491

of light, 300
Parallel-plate condenser, 28, 35, 56,

77, 243
attraction of the plates, 72

Paramagnetic materials, 264, 265,
274, 280

Parsec D 3:08 � 1016 m, 601
Path difference, 383, 478
Path integral of the electric field, 50,

115
Path, optical, 304, 397, 444
Penetration depth

mean, of light, 493, 538, 541
of X-rays, 544

Permanent magnets, 97, 121, 149
Permeability, 261
Permeability constant, 106

Permittivity of vacuum D electric
field constant, 52

Perspective, 343, 366
Phase grating, 425
Phase jump on reflection, 392, 502,

510
Phase shift, 183, 184
Phase structure, 425, 437
Phase velocity, 237, 457

in metals, 542
Phase-contrast method, 437
Phasor diagram, 183
Photocell, 297
Photodiode, 297
Photometry, 293, 593, 599
Photomultiplier, 298
Piezoelectric crystals, 86
Pinhole camera, 331, 338, 365, 427
Planck’s constant, 277, 582
Planck’s radiation formula, 582
Plane of incidence, 302
Plasma oscillations, 566
Poisson’s spot, 414
Polar molecules, 246, 256, 521, 564
Polarizability, 255

electric, 523, 552
molecular, 253

Polarization, 467, 470
by birefringence, 469
by reflection, 498
by scattering, 528
electric, of a dielectric material,

63, 84, 245, 249
magnetic, 262
of electromagnetic waves, 231,

233
Polarization angle, 498
Polarization foils, 471, 483
Polarized light, 467

elliptic, 476, 479
interference, 481, 483

Polarized light (partially polarized),
502

Polarizers, 468–470
for ultraviolet, 474
for X-rays, 529

Polarizing
in the infrared, 498

Pole regions
forces between, 152

Poles of magnet coils, 90
Poles of magnets, 154
Polychromatic light, 351
Potential, 80
Potential difference, 81

magnetic, 115
Potentiometer, 18
Potentiometer circuit, 18

Potentiometer, magnetic, 116, 117
Pot-type magnet, 157
Power of a lens, 314
Power, electric, 25

of alternating current, 189
Poynting vector, 231
Precession, 280
Primary light source, 358, 602
Principal angle of incidence, 498
Principal orientation, 155
Principal plane, 335

of a crystal, 472
of a prism, 309

Principal points, 338
Principal ray, 310, 314, 336, 343

angle of inclination, 314, 336,
340, 343

Principle of relativity, 132
Prism, 309, 451, 472

direct-vision, 540
made of ZnO, 539
principal plane, 309
Wollaston, 474

Prism spectrometer, 443
Probe coil, 107
Prometheus, 585
Propeller, electric, 58
Pupils, 340
Purcell’s experiment, 520
Purple, 607
Pyroelectric crystals, 85
Pyrometer, 587

Q
Q-factor, 207, 559
Quality factor or Q-factor, 207
Quarter-wave plate, 480
Quartz, birefringence, 472, 473, 487
Quetelet’s rings, 404

R
Radiance, 373, 579

of an emitter, 376
spectral, of a black body, 581

Radiant energy, 594
Radiant exitance, 375
Radiant flux, 371
Radiant intensity, 373, 448

direction-independent, 381
of X-rays, 381

Radiant intensity (or Intensity), 591
Radiant power, 296, 297, 401, 578,

591
Radiation detectors, 296
Radiation field of a dipole, 228
Radiation formula of M. Planck,

582
Radiometer, 296, 491
Rainbow, 419
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Ram, hydraulic, 176
Raster grating, 425
Rate of change

of a magnetic field, 106, 113
of an electric field, 123

Rayleigh scattering, 520, 522
and compressibility, 525
dependence on the wavelength,

522
extinction constant, 523

Reactance
capacitive, 185
inductive, 180, 183

Receiver, 371, 519
Redshift, 465
Reflection, 302

avoiding, 502
elimination of, 401
from a weakly-absorbing

material, 501
of linearly-polarized light, 499
with strong absorption, 509

Reflection coefficient, 232, 603
Reflection filters, 401
Reflection grating, 450
Reflection source, 598, 602
Reflectivity, 232, 497, 501, 509, 542

metallic, 509, 542
Refraction, 302, 550, 552

by a plane-parallel glass block,
320

reduction to scattering, 545
Table, 552

Refractive index, 537
and gas density, 552
complex, 508, 509
for X-rays, 551
imaginary, 568
of mica, 475

Refractometer, 307
Reis P., 165
Rejection circuit, 189
Relative aperture Nf

of a lens, 366
Relativity principle, 103, 132
Relativity, theory of, 103, 133
Relaxation of a conduction current,

179
Relaxation time, 60, 178, 208
Remanence, 268
Residual rays, 543
Resistance, 16, 23

capacitive, 185
electrical, 177
inductive, 180, 183
measurement by field decay, 60
negative differential, 204
Ohmic, 16, 182

specific, 16
Resistivity, 16
Resistors

in parallel, 17
in series, 17

Resolvable angular spacing, 332
Resolving power, 331

of a grating, 447
of a lens, 333
of a microscope, 357
of a prism, 445
of spectrometers, 448

Resonance, 186, 188, 207
Resonance curve, 209

for the energy, 560
Resonance frequency, 186, 196
Resonant transformer, 199
Resonators

properties of optical, 562
Retina, 332, 599
Reversing prism, 324
Rheostat, 18
Ring coil, 91, 262
Ring current, electrodeless, 202
Ring current, molecular, 276
Ring grating, 428

with only one focal length, 430
Rochon prism, 474
Rotary condenser, 60
Rotating field, 143
Rotating field, magnetic, 143, 170,

184
Rotating-coil ammeter, 7, 11, 145
Rotating-coil instrument, 8
Rotating-field motor, 171
Rotational frequency of electric

motors, 167, 171
Rotor, 168

in motors, 166
Rowland’s experiment, 94, 129
Rubber lenses, 352
Ruby glass, extinction spectrum,

570

S
Saccharimeter (sugar content), 307,

487
Saturation magnetization, 266
Savart’s plate, 485
Scattered light, 306
Scattered radiation, 519
Scattering, 300, 492

angular dependence, 519
by weakly-absorbing particles,

530
from matte surfaces, 532
of X-rays, 526
Rayleigh, 520, 522
significance of, 517

transition to diffraction, 532
Scherrer, P., 456
Schlieren method, 432
Schmidt mirror, 352
Secondary light source, 358, 375
Secondary radiation, 522, 533
Sector wheel

with radial sectors, 596
Sector wheel or chopper, 592
Seignette salt crystals, 247
Self-inductance, 173, 199
Series circuit, 187, 195, 209

of a resistor and a coil, 178, 182
of condensers, 56
of resistor, coil and condenser,

186, 207
of resistors, 15

Shadow, 413
Shallow-water lens, 328, 555
Shimmering colors, 611
Shine, 611
Short-circuit current, 168
Shorted rotor, 143
SI D Systeme International

d’Unités, 12
Sine condition, 348, 357, 377
Sine-wave grating, 424, 429
Skin effect, 199
Sky blue, 523

color temperature, 589
Slide projector, 364
Slip, 143
Soft-iron ammeter, model, 8
Solar constant, 376
Solar image, diameter of, 315
Solar surface

radiation, 376
temperature, 583

Solid angle, 373
Space charge, 54
Spark, 37
Spark gap, 197
Sparking, 197
Specific resistance, 16
Spectral apparatus

after Fabry and Pérot, 398
Spectral lines, 443, 446

X-ray, 456
Spectrometer

after Lummer and Gehrcke, 454
and incandescent light, 449
for X-rays, 455

Spectrum
produced by a plane-parallel

block, 320
produced by a plane-parallel

glass plate, 443
produced by a prism, 321, 448
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Spherical aberration, 344
Spin, 278
Spinning top, 98
Split-pole motor, 184
Standard light source, 593
Standing light waves, 403
Standing waves, 220, 229
Stark effect, 132
Stars

deflection of rays, 556
Starter, 168
Stefan-Boltzmann law, 582
Strain birefringence, 489
Streak focal line, 381
Superconductivity, 177, 265, 272
Superparamagnetism, 282
Surface, 514
Surface tension, reduction by an

electric field, 74
Susceptibility

dielectric, 245
magnetic, 262

T
Tangent condition, 350
Tank circuit, 206
Telecentric optical path, 341, 458

image side, 341
object side, 367

Telegraph equations, 223
Telegraph of Gauss and Weber, 145
Telegraphy, wireless, 197
Telephone as an alternating-current

generator, 164
Telephoto objective lens, 337
Telescope, 407

Galilean or Huygens, 360
Kepler’s or astronomical, 333,

356
magnification, 355, 361
perspective, 370
single-lens, 355

Telescopic optical path, 360
Temperature measurements

optical, 586
Temperature radiation, 577
Temperature, true and black-body,

587
Terrestrial telescope, 360
Tesla coil, 198
Tesla, unit of the magnetic flux

density, 107
Test charge, 68
Theory of relativitaty

special, 130
Thermal radiation, 577

selective, 583
Thermocouple, 297
Thermoelement, 586

Thick lenses, 336
Thomson, J. J., 528
Three-dimensional viewing of

two-dimensional images, 370
Three-phase current, 171
Tinting and shading triangle, 606
Tints and shades

of chromatic colors, 605
Toepler’s schlieren method, 433
Toggle action, 192
Toggle oscillations, 205
Tolansky, S., 399
Top, spinning, 278
Toriodal coil, 262
Torque, 81, 82, 147, 166
Torsional waves, 496
Total reflection, 306, 470, 504

by electrons, 568
critical angle, 306

Tourmaline crystal, 86
Transformer, 190
Transmission coefficient, 609
Transmitter, 165, 224
Transverse waves, 467, 478
Triode, 203
Tungsten lamps, 585
Tunnel effect, 504
Two-phase AC motor, 171
Tyndall effect, 470

U
Ultramicroscope, 569
Ultraviolet, 323
Undercorrection, spherical, 344
Unipolar induction, 110
Unit

of electric current, 12
Unit system, 12
Usable wavelength range, 447, 451

V
Vacuum tube

with three electrodes (triode),
203

Van de Graaff generator, 44
van de Graaff, R. J., 45
Variable resistor, 18
Vector diagram, 183
Velocity

critical (electromagnetism), 140
of electromagnetic waves, 223
of electrons in metals, 141

Velocity of light, 140, 231, 457
in vacuum, 130, 223
measurement by Foucault, 458
measurement by interference

experiments, 462
measurement by Römer, 457

measurement using the
astronomical aberration,
461

Versorium, 84
Vibrations

circular, 170
forced, 517, 520, 566

Visual sharpness (acuity), 595
Volt balance, 13
Volt, unit of potential difference, 24,

70
Voltage

effective value, 181
examples, 17
induced, 106, 113
Ohmic, 182
time integral of, 102
unit of, 70

Voltage divider, 18
Voltage impulse, 102, 116, 174

measurement of, 145
Voltage or potential difference, 13
Voltage resonance, 187
Voltmeter, 14

current-carrying or dynamic, 16
galvanic, 16
static, 14

W
Waitz, J. S., 42
Walkiers de St. Amand, 45
Watt second D 1 newton meter, 24
Watt, unit of power, 25
Wave center

extended, 385
pointlike, 383, 385

Wave groups, 237, 383, 449
length of, 399

Wave resistance, 231
Waveguide, 237
Wavelength, 322, 537

measurement of, 229
Waves

mathematical representation,
506

Waves, electromagnetic, 211, 230
energy transport by, 231
polarization of, 231, 233
reflection of, 228
refraction of, 233
standing, 220
velocity of, 223, 231

Waves, electromagnetic, travelling
detection of, 229

Wehnelt interrupter, 192, 204
White light D natural light, 301
Wien’s displacement law, 583
Wilcke, J. C., 30, 32, 38
Wimshurst machine, 19
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Wind, electric, 58
Wire wave, electromagnetic, 222
Wollaston prism, 474
Wood, R.W., 540

X
Xerography, 38
X-ray spectrometer, 455
X-rays, 381, 453, 455

absorption of, 537, 541
diffraction of, 438

line spectrum, 456
penetration depth, 544
polarized, 529
refractive index, 537, 551
scattering of, 526

Y
Young, Thomas, 384, 387, 405, 409,

450, 502, 520
Young’s interference experiment,

388, 406

Z
Zernike, F., 437
Zinc oxide

dispersion of, 539
selective radiation, 584

Zone construction, Fresnel, 413
Zone plate, 428
Zoom lenses, 352
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